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TRANSPORT EQUATION IN CELL POPULATION DYNAMICS
II

MOHAMED BOULANOUAR

Abstract. In this work, we study the cellular profile in a cell proliferating
model presented in [4]. Each cell is characterized by its degree of maturity

and its maturation velocity. The boundary conditions generalizes the known
biological rules. We study also the degenerate case corresponding to infinite

maturation velocity, and describe mathematically the cellular profile.

1. Introduction

In this work, we continue the work in [4] in which we studied the transport
equation

∂f

∂t
+ v

∂f

∂µ
= −σf +

∫ b

a

r(µ, v, v′)f(t, µ, v′)dv′ (1.1)

describing a cell proliferating. Here f = f(t, µ, v) is the cell density at time t ≥ 0,
r(µ, v, v′) is the transition rate at which cells change their velocities from v to v′

and

σ(µ, v) =
∫ b

a

r(µ, v′, v)dv′ (1.2)

is the rate of cell mortality or cell loss due to causes other than division.
Each cell is distinguished by its degree of maturity µ ∈ (0, 1) and its maturation

velocity v (0 ≤ a < v < b ≤ ∞). During each cell mitotic, the degree of maturity
of a mother cell is µ = 1 and those of its daughter cells are µ = 0.

We equip (1.1) with the general biological rule mathematically described by the
boundary condition

f(t, 0, v) = [Kf(t, 1, ·)] (v) (1.3)
where, K is a linear operator into suitable spaces (see section 3).

This model was proposed, in [11], for the transition biological rule mathemati-
cally described by the operator

Kψ(v) =
β

v

∫ b

a

k(v, v′)ψ(v′)v′ dv′ (1.4)
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where, β ≥ 0 is the average number of daughter cells viable per mitotic and k
expresses the correlation between the maturation velocity of a mother cell v′ and
that of its daughter v.

In [11], only a numerical study has been made for the transition biological rule
(1.4) and since then, the model has been rarely studied because there are no meth-
ods or technics to study such a model.

When 0 < a < b < ∞, we have proved, in [3], that the model (1.1)-(1.4) is
governed by a strongly continuous semigroup and we have described its asymptotic
behavior for the biological interesting case (i.e., β > 1).

When 0 < a < b = ∞, then maturation velocities are obviously not bounded and
so all announced results in [3] do not hold. Then, we have recently proved, in [4],
that the general model (1.1)-(1.3) is governed by a strongly continuous semigroup
and we have given its explicit expression which is very useful in the sequel. At the
end of [4], we have set the following natural question: What happens when the cell
density is increasing?

In this work, we are concerned with the question above which has no answers in
the mathematical literature of the model (1.1)-(1.3). We organize this work as fol-
lows: Mathematical preliminaries; setting of the problem; positivity, irreducibility
and domination; spectral properties; asymptotic behavior.

In Section 3, we recall some proved results about the model (1.1)-(1.3). In
Sections 4 and 5, we study the positivity and the irreducibility of the semigroup
solving the model (1.1)-(1.3) and we give its spectral properties. We end this work
by describing the asymptotic behavior of this semigroup in the uniform topology
as follows

Lemma 1.1 ([6, Theorem 9.10 and 9.11]). Let (T (t))t≥0 be a positive and irre-
ducible strongly continuous semigroup on the Banach lattice X satisfying the in-
equality ωess(T (t)) < ω0(T (t)). Then, there exist a rank one projector P into X
and positive constants M and δ such that

‖e−s(A)tT (t)− P‖L(X) ≤Me−δt, t ≥ 0.

A strongly continuous semigroup (T (t))t≥0 satisfying Lemma above possesses an
asynchronous exponential growth with intrinsic growth constant s(T ). The result
above describes the cellular profile whose privileged direction is given by the projec-
tor P. This is what the biologist observes in his laboratory. Finally, some of these
results were announced in [5] and here we explicitly state the detailed conditions
and outline all the proofs. For all theoretical results used here, we refer the reader
to [9].

2. Mathematical preliminaries

Let X be a Banach space and let (T (t))t≥0 be a strongly continuous semigroup
whose generator is A. The type ω(T (t)) and the essential type ωess(T (t)) of the
semigroup (T (t))t≥0 are characterized by

ω(T (t)) = lim
t→∞

ln ‖T (t)‖L(X)

t
, (2.1)

ωess(T (t)) = lim
t→∞

ln ‖T (t)‖ess

t
. (2.2)
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Note that ‖C‖ess = 0 if and only if C is a compact operator. The spectral bound
s(A) of the generator A is

s(A) =

{
sup{Re(λ), λ ∈ σ(A)} if σ(A) 6= ∅
−∞ if σ(A) = ∅.

When X is an Lp space then

ω(T (t)) = s(A); (2.3)

see [13]. We need also the following results.

Lemma 2.1 ([6, Proposition 7.1 and 7.6]). Let (T (t))t≥0 be a strongly continuous
semigroup on a Banach lattice space X whose generator is A.

(1) (T (t))t≥0 is a positive semigroup if and only if (λ − A)−1 is a positive
operator for some great λ.

(2) Suppose that (T (t))t≥0 is a positive semigroup. Then (T (t))t≥0 is an ir-
reducible semigroup if and only if (λ − A)−1 is an irreducible operator for
some large λ.

Lemma 2.2 ([8]). Let (Ω,Σ, µ) be a positive measure space and S, T be bounded
linear operators on L1(Ω, µ).

(1) The set of all weakly compact operators is norm-closed subset.
(2) If T is weakly compact and 0 ≤ S ≤ T , then S is weakly compact.
(3) If S and T are weakly compact, then ST is compact.

Lemma 2.3 ([12]). Let (Ω,Σ, µ) be a positive measure space. Let A and A +
B be the generators, on L1(Ω), of strongly continuous semigroups (T (t))t≥0 and
(U(t))t≥0 where, B is a linear bounded operator from L1(Ω) into itself. Assume that
BT (t1)BT (t2) · · ·BT (tn) is compact for some n ∈ N∗ and for every t1, · · · , tn > 0.
Then, ωess(U(t)) = ωess(T (t)).

3. Setting of the problem

In this section, we recall some facts about the model (1.1)-(1.3) already studied
in [4]. Before we start, we suppose that the useful condition

a > 0 (3.1)

holds in this work. So, let us consider the framework L1(Ω) with norm

‖ϕ‖1 =
∫

Ω

|ϕ(µ, v)| dµ dv (3.2)

where, Ω = (0, 1)× (a,∞) := I × J and let W (Ω) be the Sobolev space

W (Ω) = {ϕ ∈ L1(Ω), v
∂ϕ

∂µ
∈ L1(Ω) and vϕ ∈ L1(Ω)}

whose norm is

‖ϕ‖W (Ω) = ‖vϕ‖1 + ‖v ∂ϕ
∂µ

‖1.

Finally, let Y1 := L1(J, vdv) be the trace space whose norm is

‖ψ‖Y1 =
∫ ∞

a

|ψ(v)|vdv.
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Lemma 3.1 ([2]). The trace mapping γ0ϕ = ϕ(0, ·) and γ1ϕ = ϕ(1, ·) are contin-
uous from W (Ω) into Y1.

In this context, we introduce a boundary operator K from Y1 into itself allowing
us to define the operator AK by

AKϕ = −v ∂ϕ
∂µ

on the domain

D(AK) = {ϕ ∈W (Ω), satisfying γ0ϕ = Kγ1ϕ}.
(3.3)

When K = 0, it is easy to check that the corresponding operator A0 has some
properties summarized as follows

Lemma 3.2. Let A0 be the unbounded operator

A0ϕ = −v ∂ϕ
∂µ

on the domain D(A0) = {ϕ ∈W (Ω), γ0ϕ = 0}. (3.4)

Then
(1) A0 generates, on L1(Ω), a strongly continuous semigroup (U0(t))t≥0, given

by
U0(t)ϕ(µ, v) = χ(µ, v, t)ϕ(µ− tv, v) (3.5)

where

χ(µ, v, t) =

{
1 if µ ≥ tv;
0 if µ < tv.

(3.6)

(2) U0(t) = 0 (and so compact) for all t > 1/a.
(3) For all λ > 0, the operator (λ − A0)−1 (resp. γ1(λ − A0)−1) is strictly

positive from L1(Ω) into L1(Ω) (resp. Y1).

In the general case, we set the following definition.

Definition 3.3. Let K be a linear operator from Y1 into itself. Then, K is said to
be an admissible operator if (K is bounded and ‖K‖L(Y1) < 1) or (K is compact
and ‖K‖L(Y1) ≥ 1).

Lemma 3.4 ([4]). Let K be an admissible operator and let Kλ be the operator

Kλ := θλK where θλ(v) = e−
λ
v . (3.7)

Then, there exists a real constant ω0 := ω0(K) ≥ 0 such that

ω0

{
= 0, if K is bounded and ‖K‖L(Y1) < 1;
≥ 0, if K is compact and ‖K‖L(Y1) ≥ 1.

(3.8)

satisfying ‖Kω0‖ ≤ 1 and

λ > ω0 =⇒ ‖Kλ‖ < 1. (3.9)

The number ω0 := ω0(K) is called the abscissa of the admissible K. In this
context, the unbounded operator defined by (3.3) satisfies the following result.

Lemma 3.5 ([4]). Let K be an admissible operator whose abscissa is ω0.
(1) For all λ > ω0, the resolvent operator of (3.3) is given by

(λ−AK)−1g = ελK(I −Kλ)−1γ1(λ−A0)−1g + (λ−A0)−1g (3.10)

for all g ∈ L1(Ω), where ελ(µ, v) = e−λ
µ
v .
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(2) The operator defined by (3.3) generates, on L1(Ω), a strongly continuous
semigroup (UK(t))t≥0 satisfying

‖UK(t)ϕ‖1 ≤ e
ω0
a etω0‖ϕ‖1, t ≥ 0, (3.11)

for all ϕ ∈ L1(Ω).
(3) The operator UK(t) is given by

UK(t) = U0(t) +BK(t), t ≥ 0, (3.12)

where

BK(t)ϕ(µ, v) = ξ(µ, v, t)
[
Kγ1UK

(
t− µ

v

)
ϕ
]
(v) (3.13)

for almost all (µ, v) ∈ Ω, with

ξ(µ, v, t) =

{
1 if µ < tv;
0 if µ ≥ tv.

(3.14)

(4) For all ϕ ∈ L1(Ω), we have∫ ∞

a

∫ t

0

|γ1 (UK(x)ϕ) (v)|v dx dv ≤ etω‖ϕ‖1

1− ‖Kω‖L(Y1)
, t ≥ 0. (3.15)

Note that a rank one operator is compact and therefore its admissibility holds.
In this case we have the following useful result.

Lemma 3.6 ([4]). Let K be a rank one operator in Y1; i.e.,

Kψ = h

∫ ∞

a

k(v′)ψ(v′)v′ dv′, h ∈ Y1, k ∈ L∞(J).

Then, for all ϕ ∈ L1(Ω), we have

UK(t)ϕ =
∞∑
m=0

Um(t)ϕ, t ≥ 0, (3.16)

where, U0(t) is given by (3.5) and

U1(t)ϕ(µ, v)

= ξ(µ, v, t)h(v)
∫ ∞

a

k(v1)χ
(
1, v1, t−

µ

v

)
ϕ

(
1−

(
t− µ

v

)
v1, v1

)
v1dv1

and, for m ≥ 2, by

Um(t)ϕ(µ, v) = ξ(µ, v, t)h(v)
∫ ∞

a

· · ·
∫ ∞

a︸ ︷︷ ︸
m times

m−1∏
j=1

h(vj)
m∏
j=1

k(vj)

× ξ
(
1, vm−1, t−

µ

v
−

(m−2)∑
i=1

1
vi

)
χ
(
1, vm, t−

µ

v
−

(m−1)∑
i=1

1
vi

)
× ϕ

(
1−

(
t− µ

v
−
m−1∑
i=1

1
vi

)
vm, vm

)
v1v2 · · · vm dv1 · · · dvm.

Furthermore, for all t ≥ 0 we have

lim
N→∞

‖UK(t)−
N∑
m=0

Um(t)‖L(L1(Ω)) = 0. (3.17)
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A stability result about the semigroup (UK(t))t≥0 is given as follows.

Lemma 3.7 ([4]). Let K and K ′ be two compact operators. Then

‖UK(t)− UK′(t)‖L(L1(Ω)) ≤ 4eω( 1
a +t)‖K −K ′‖L(Y1), t ≥ 0, (3.18)

for all ω big enough.

Now, let us define the following two perturbation operators

Rϕ(µ, v) =
∫ ∞

a

r(µ, v, v′)ϕ(µ, v′)dv′,

Sϕ(µ, v) = −σ(µ, v)ϕ(µ, v)

where σ is given by (1.2). Let us impose the following hypothesis

(H1) r is measurable positive, and σ ∈ L∞(Ω).

Denoting

σ := ess inf(µ,v)∈Ω σ(µ, v) and σ := ess sup(µ,v)∈Ω σ(µ, v),

by [4, Lemma 4.1], the operators S and R are bounded from L1(Ω) into itself and
S+R is a dissipative operator. Furthermore, the following two perturbed operators

LK := AK + S,

D(LK) = D(AK)
(3.19)

and
TK := LK +R = AK + S +R,

D(TK) = D(AK)
(3.20)

are infinitesimal generators as follows.

Lemma 3.8 ([4]). Suppose that (H1) holds and let K be an admissible operator
whose abscissa is ω0. Then

(1) The operator defined by (3.19) generates, on L1(Ω), a strongly continuous
semigroup (VK(t))t≥0 satisfying

‖VK(t)ϕ‖1 ≤ e
ω0
a et(ω0−σ)‖ϕ‖1 t ≥ 0, (3.21)

for all ϕ ∈ L1(Ω).
(2) The operator defined by (3.20) generates, on L1(Ω), a strongly continuous

semigroup (WK(t))t≥0. Furthermore, if ‖K‖L(Y1) < 1 then

‖WK(t)ϕ‖1 ≤ ‖ϕ‖1 t ≥ 0, (3.22)

for all ϕ ∈ L1(Ω).

Remark 3.9. The corresponding case to ‖K‖L(Y1) < 1 is biologically uninteresting
because the cell density is decreasing. Indeed, for all t ≥ 0 and s ≥ 0 such that
t > s, (3.22) leads to

‖WK(t)ϕ‖1 = ‖WK(t− s)WK(s)ϕ‖1 ≤ ‖WK(s)ϕ‖1

for all initial data ϕ ∈ L1(Ω) (p ≥ 1).
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4. Positivity, irreducibility and domination

In this section, we are concerned with the positivity and the irreducibility of the
generated semigroup (WK(t))t≥0. We end this section by a domination result.

Lemma 4.1. Let K be an admissible operator whose abscissa is ω0. Then
(1) If K is positive, then the semigroup (UK(t))t≥0 is positive too.
(2) Suppose that K is positive. If K is irreducible, then the positive semigroup

(UK(t))t≥0 is irreducible.

Proof. (1) Let λ > ω0 and g ∈ (L1(Ω))+. First, as K is a positive operator, then
Kλ (λ ≥ 0) (given by (3.7)) is a positive operator because of

Kλ ≥ e−λ/aK. (4.1)

Next, by (3.9) and (3.10) we are led to

(λ−AK)−1g = ελK(I −Kλ)−1γ1(λ−A0)−1g + (λ−A0)−1g

= ελK
∑
n≥0

Kn
λγ1(λ−A0)−1g + (λ−A0)−1g

and therefore
(λ−AK)−1g ≥ ελK

∑
n≥0

Kn
λγ1(λ−A0)−1g (4.2)

because of the third point of Lemma 3.2 and hence, (λ − AK)−1 is a positive
operator. Now, the positivity of the semigroup (UK(t))t≥0 follows from the first
point of Lemma 2.1.

(2) Let λ > ω0 and g ∈ (L1(Ω))+ with g 6= 0. First, from the third point of
Lemma 3.2, γ1(λ−A0)−1g is a strictly positive function. Hence, by the irreducibility
of the positive operator K, there exists an integer m > 0 such that

Kmγ1(λ−A0)−1g(v) > 0 for almost all v ∈ J. (4.3)

Next, (4.2) leads to

(λ−AK)−1g ≥ ελKK
m−1
λ γ1(λ−A0)−1g

which implies, by (4.1), that

(λ−AK)−1g ≥ ελe
−λ(m−1)

a Kmγ1(λ−A0)−1g

and therefore
(λ−AK)−1g(µ, v) > 0 a.e. (µ, v) ∈ Ω

because of (4.3). Now, the second point of Lemma 2.1 completes the proof. �

The positivity property of the semigroup (VK(t))t≥0 is given by the following
theorem.

Theorem 4.2. Suppose that (H1) holds and let K be an admissible operator whose
abscissa is ω0.

(1) If K is positive, then the semigroups (VK(t))t≥0 and (WK(t))t≥0 are posi-
tive. Furthermore, we have

e−tσUK(t) ≤ VK(t) t ≥ 0 (4.4)

and
VK(t) ≤ UK(t) t ≥ 0 (4.5)
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and
VK(t) ≤WK(t) t ≥ 0. (4.6)

(2) Suppose K is positive. If K is irreducible, then the positive semigroup
(WK(t))t≥0 is irreducible.

Proof. (1). Let t ≥ 0 and ϕ ∈ (L1(Ω))+. Thanks to Lemma above we get the
positivity of the semigroup (UK(t))t≥0 and therefore

e−tσUK(t)ϕ ≤
[
e−tσ/nUK(

t

n
)
]n
ϕ ≤ e−tσUK(t)ϕ ≤ UK(t)ϕ

for all integers n ≥ 1. Passing to the limit n → ∞ in the relation above together
with Trotter’s formula

VK(t)ϕ = lim
n→∞

[
e−tσ/nUK(t/n)

]n
ϕ

we obtain (4.4) and (4.5) hold. Furthermore, the positivity of the semigroup
(VK(t))t≥0 obviously follows from that of the semigroup (UK(t))t≥0 and (4.4). Next,
by (H1) we obtain R is a positive operator and therefore, for all integers n ≥ 1, we
have [

e
t
nRVK(

t

n
)
]n
ϕ =

[( ∑
p≥0

(
t
nR

)p
p!

)
VK(

t

n
)
]n
ϕ ≥ [I.VK(

t

n
)]nϕ = VK(t)ϕ

because of the positivity of the semigroup (VK(t))t≥0. Passing to the limit n→∞
in the relation above together with Trotter’s formula

WK(t)ϕ = lim
n→∞

[
e

t
nRVK(

t

n
)
]n
ϕ

we obtain that (4.6) holds and therefore the positivity of the semigroup (WK(t))t≥0

follows.
(2) Clearly (4.4) and (4.6) lead to

WK(t) ≥ VK(t) ≥ e−tσUK(t), t ≥ 0,

and therefore the irreducibility of the semigroup (UK(t))t≥0 obviously implies that
of the semigroup (WK(t))t≥0. The proof is now complete. �

We end this section with a domination result.

Theorem 4.3. Let K be an admissible operator whose abscissa is ω0 and let K ′

be a positive admissible operator whose abscissa is ω′0 such that

|Kψ| ≤ K ′|ψ|

for all ψ ∈ Y1. Then
|UK(t)ϕ| ≤ UK′(t)|ϕ|, t ≥ 0, (4.7)

for all ϕ ∈ L1(Ω).

Proof. First, note that (4.7) is obvious for t = 0. So, let t > 0 and λ > max{ω0, ω
′
0}.

For all ϕ ∈ L1(Ω), (3.10) infers that

|(λ−AK)−1ϕ| ≤ |ελK(I −Kλ)−1γ1(λ−A0)−1ϕ|+ |(λ−A0)−1ϕ|
≤ ελK

′|(I −Kλ)−1γ1(λ−A0)−1ϕ|+ |(λ−A0)−1ϕ|



EJDE-2010/145 TRANSPORT EQUATION 9

which leads, by (3.9), to

|(λ−AK)−1ϕ| ≤ ελK
′
∣∣∣ ∑
n≥0

Kn
λγ1(λ−A0)−1ϕ

∣∣∣ + |(λ−A0)−1ϕ|

≤ ελK
′
∑
n≥0

|Kn
λγ1(λ−A0)−1ϕ|+ |(λ−A0)−1ϕ|

≤ ελK
′
∑
n≥0

K ′n
λ|γ1(λ−A0)−1ϕ|+ |(λ−A0)−1ϕ|

and therefore

|(λ−AK)−1ϕ| ≤ ελK
′
∑
n≥0

K ′n
λγ1(λ−A0)−1|ϕ|+ (λ−A0)−1|ϕ|

= ελK
′(I −K ′

λ)
−1γ1(λ−A0)−1|ϕ|+ (λ−A0)−1|ϕ|

because of the third point of Lemma 3.2. Hence,

|(λ−AK)−1ϕ| ≤ (λ− TK′)−1|ϕ|
and by iteration we are led to

|
[
λ(λ−AK)−1

]n
ϕ| ≤

[
λ(λ− TK′)−1

]n |ϕ|
for all integers n > 0. Putting λ = n

t we obtain

|
[
n

t

(n
t
−AK

)−1
]n
|ϕ|| ≤

[
n

t

(n
t
− TK′

)−1
]n
|ϕ|.

Now, Trotter’s formula completes the proof. �

5. Spectral properties

In this section, we estimate the type ω(WK(t)) of the semigroup (WK(t))t≥0.
This is obtained by the characterization of the spectrum of the generator AK .
Before we start, let us note that a compact operator K is admissible and therefore
all semigroups of this work exist. So, let us commence by characterizing all elements
of σp(AK) belonging to C+ := {λ ∈ C : Re(λ) ≥ 0}.

Lemma 5.1. Let K be a compact operator in Y1 and let λ ∈ C+. Then

λ ∈ σ(AK) =⇒ 1 ∈ σp (Kλ) . (5.1)

Proof. Let λ ∈ C+. If 1 ∈ ρ(Kλ), then for all g ∈ L1(Ω), the equation

h = Kλh+ γ1(λ−A0)−1g (5.2)

has a unique solution h ∈ Y1. Let ϕ be the function

ϕ = ελKh+ (λ−A0)−1g ∈ L1(Ω). (5.3)

So, it is easy to check that

λϕ+ v
∂ϕ

∂µ
= g

and as we have

γ1ϕ = γ1

(
ελKh+ (λ−A0)−1g

)
= Kλh+ γ1(λ−A0)−1g = h

then
γ0ϕ = Kh = Kγ1ϕ
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and therefore ϕ ∈ D(AK). Hence (λ − AK) is invertible operator, which leads to
λ ∈ ρ(AK). The proof is complete. �

Let us finish this section with the following main result.

Theorem 5.2. Suppose that (H1) holds and let K be a positive, irreducible and
compact operator in Y1 with r(K) > 1. Then,

ω(WK(t)) > −∞. (5.4)

Proof. We divide the proof in several steps.
Step one. Let λ ≥ 0. As K is a positive and compact operator then Kλ, given

by (3.7), is a positive and compact operator too. Furthermore its irreducibility
follows from that of the operator K because of Kλ ≥ e−λ/aK. Now, by [10], we
obtain r(Kλ) > 0 and there exist a quasi-interior vector ψλ of (Y1)+ and a strictly
positive functional ψ∗η ∈ (Yq)+ such that

Kλψλ = r(Kλ)ψλ with ‖ψλ‖Y1 = 1

K∗
λψ

∗
λ = r(Kλ)ψ∗λ with ‖ψ∗λ‖Yq = 1

(5.5)

where K∗
λ is the adjoint operator of Kλ and p−1 + q−1 = 1. So, in the next step,

we prove that the mapping
λ −→ r(Kλ), (5.6)

is continuous and strictly decreasing.
Step two. Let λ ≥ 0 and η ≥ 0. First, writing (5.5) for η, it follows that

K∗
λψ

∗
η = r(Kη)ψ∗η with ‖ψ∗η‖Yq

= 1 (5.7)

where, ψη is a quasi-interior vector of (Y1)+ and ψ∗η ∈ (Yq)+ is a strictly positive
functional and K∗

η is the adjoint operator of Kη. Now, by (5.5) and (5.7) we obtain

r(Kη) =
〈K∗

ηψ
∗
η, ψλ〉

〈ψ∗η, ψλ〉
=
〈ψ∗η,Kηψλ〉
〈ψ∗η, ψλ〉

=
〈ψ∗η,Kλψλ〉
〈ψ∗η, ψλ〉

+
〈ψ∗η, (Kη −Kλ)ψλ〉

〈ψ∗η, ψλ〉

= r(Kλ) +
〈ψ∗η, (Kη −Kλ)ψλ〉

〈ψ∗η, ψλ〉
which implies

r(Kη)− r(Kλ) =
〈ψ∗η, (Kη −Kλ)ψλ〉

〈ψ∗η, ψλ〉
(5.8)

and therefore

|r(Kη)− r(Kλ)| ≤
‖ψ∗η‖Yq

〈ψ∗η, ψλ〉
‖(Kη −Kλ)ψλ‖Y1

=
1

〈ψ∗η, ψλ〉
sup
ψ∈B

‖Kηψ −Kλψ‖Y1

=
1

〈ψ∗η, ψλ〉
sup

ϕ∈K(B)

‖θηϕ− θλϕ‖Y1

≤ 1
〈ψ∗η, ψλ〉

sup
ϕ∈K(B)

‖θηϕ− θλϕ‖Y1
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where B is the unit ball in Y1. Thanks to the compactness of K(B), there exists
ϕ0 ∈ K(B) such that

|r(Kη)− r(Kλ)| ≤
1

〈ψ∗η, ψλ〉
‖θηϕ0 − θλϕ0‖Y1

which leads to

lim
η→λ

|r(Kη)− r(Kλ)| ≤ lim
η→λ

1
〈ψ∗η, ψλ〉

‖θηϕ0 − θλϕ0‖Y1 = 0

because of the dominated convergence Theorem and hence, (5.6) is a continuous
mapping. Now, let us prove that (5.6) is a strictly decreasing mapping. So, let
λ > η ≥ 0, then we have

Kλψλ = θλKψλ = θλ−ηθηKψλ = θλ−ηKηψλ < Kηψλ

which leads to Kηψλ − Kλψλ > 0 and therefore 〈ψ∗η, (Kη − Kλ)ψλ〉 > 0 because
ψ∗η is a strictly positive functional of (Yq)+. Now, thanks to (5.8) we can say that
(5.6) is a strictly decreasing mapping.

Step three. First, let us note that r(K0) = r(K) > 1. Next, let B be the unit
ball in Y1. Thanks to the compactness of K(B), there exists ϕ0 ∈ K(B) such that

‖Kλ‖L(Y1) = sup
ψ∈B

‖Kλψ‖Y1 = sup
ϕ∈K(B)

‖θλϕ‖Y1

≤ sup
ϕ∈K(B)

‖θλϕ‖Y1 = ‖θλϕ0‖Y1

and therefore

lim
λ→∞

r(Kλ) ≤ lim
λ→∞

‖Kλ‖L(Y1) ≤ lim
λ→∞

‖θλϕ0‖Y1 = 0

because of the dominated convergence Theorem. So, there exists a unique λ0 such
that

λ0 > 0 and r(Kλ0) = 1. (5.9)
Step four. Let us prove that s(AK) = λ0. Let λ ∈ σ(AK)∩C+. By (5.1), there

exists ψ such that Kλψ = ψ which implies

|ψ| = |Kλψ| = |θλKψ|
≤ |θλ|K|ψ| ≤ θRe(λ)K|ψ|
= KRe(λ)|ψ|;

therefore (KRe(λ))n|ψ| ≥ |ψ| for all integers n. Clearly r
(
KRe(λ)

)
≥ 1 and hence,

Re (λ) ≤ λ0 because the mapping (5.6) is strictly decreasing. Whence

s(AK) ≤ λ0. (5.10)

Conversely, by (5.5) and (5.9) we obtain Kλ0ψλ0 = ψλ0 . If we set ϕ = ελ0Kψλ0

then it is easy to check that

−v ∂ϕ
∂µ

= λ0ϕ

and
Kγ1ϕ = K [θλ0Kψλ0 ] = K[Kλ0ψλ0 ] = Kψλ0 = γ0ϕ

which implies that AKϕ = λ0ϕ and therefore λ0 ∈ σ1(AK) ⊂ σ(AK). Whence

λ0 ≤ s(AK). (5.11)
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Thanks to (5.10) and (5.11) and (5.9) we obtain s(AK) = λ0 > 0, and by (2.3) we
finally are led to

ω(UK(t)) > 0. (5.12)

Step five. Thanks to (4.4) and (4.6), we can write

WK(t) ≥ VK(t) ≥ e−tσUK(t)

and therefore,

‖WK(t)‖L(L1(Ω)) ≥ e−tσ‖UK(t)‖L(L1(Ω)).

Finally, (2.1) and (5.12) obviously lead to

ω(WK(t)) = lim
t→∞

ln ‖WK(t)‖L(L1(Ω))

t
≥ ω(UK(t))− σ > −σ.

Now, the hypothesis (H1) completes the proof. �

6. Asymptotic Behavior

In this section we are going to give a mathematical description of the cellular
profile of the model (1.1)-(1.3). This can be obtained as the asymptotic behavior
of the semigroup (WK(t))t≥0. To this end, we use the precious assumption (3.1)
that is

a > 0

and we firstly prove the compactness of the semigroup (UK(t))t≥0 for t > 2
a . Ac-

tually, when a > 0, then after a transitory phase, all cells will be divided or dead.
This explain the eventual compactness property which we are going to prove. Be-
fore we start, let us recall that a finite rank operator K is compact and therefore its
admissibility holds. Hence, all semigroups of this work exist. So, let us commence
by the following useful result

Lemma 6.1. Let K be a compact operator from Y1 into itself. Then, for all t > 2
a ,

UK(t) is a weakly compact operator in L1(Ω).

Proof. Let t > 2/a and ϕ ∈ (L1(Ω))+. In the sequel, we are going to divide the
proof in several steps.

Step one. Let K be the operator

Kψ = h

∫ ∞

a

k(v′)ψ(v′)v′ dv′, h ∈ Cc(J), k ∈ L∞(J). (6.1)

So, by Lemma 3.6, the operator UK(t) can be written as

UK(t) =
∞∑
m=0

Um(t) (6.2)

where U0(t) is given by (3.5) and

U1(t)ϕ(µ, v) = ξ(µ, v, t)h(v)
∫ ∞

a

k(v1)χ
(
1, v1, t−

µ

v

)
ϕ

(
1−

(
t− µ

v

)
v1, v1

)
v1 dv1
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and, for m ≥ 2, by

Um(t)ϕ(µ, v) = ξ(µ, v, t)h(v)
∫ ∞

a

· · ·
∫ ∞

a︸ ︷︷ ︸
m times

m−1∏
j=1

h(vj)
m∏
j=1

k(vj)

× ξ
(
1, vm−1, t−

µ

v
−

(m−2)∑
i=1

1
vi

)
χ
(
1, vm, t−

µ

v
−

(m−1)∑
i=1

1
vi

)
× ϕ

(
1−

(
t− µ

v
−
m−1∑
i=1

1
vi

)
vm, vm

)
v1v2 · · · vm dv1 · · · dvm.

First. As t > 2/a, then on the one hand we have

µ− tv < 1− 2
a
a = −1 < 0

for all (µ, v) ∈ Ω. This implies that χ(µ, v, t) = 0 and therefore U0(t) = 0 because
of (3.5). On the other hand we have

1−
(
t− µ

v

)
v1 < 1−

(2
a
− 1
a

)
v1 < 1−

(2
a
− 1
a

)
a = 0

for all (µ, v, v1) ∈ Ω× J . This leads to

χ
(
1, v1,

(
t− µ

v

))
= 0

and therefore U1(t) = 0. Whence, (6.2) becomes

UK(t) =
∞∑
m=2

Um(t). (6.3)

Next. As h ∈ Cc(J), there exists a finite real number b (a < b < ∞) such that
supph ⊂ (a, b). Let us denotes m = [tb] + 2 where [tb] is the integer part of tb. So,
as we clearly have m− 1 ≤ tb+ 1 < m, for all vi ∈ (a, b), i = 1 · · · (m− 1),

(
t− µ

v
−
m−2∑
i=1

1
vi

)
vm−1 ≤

(
t− (m− 2)

b

)
vm−1

≤
(
t− (m− 2)

b

)
b < 1.

This implies, by (3.14), that

ξ
(
1, vm−1, t−

µ

v
−

(m−2)∑
i=1

1
vi

)
= 0

and therefore, Um(t) = 0 for all m > bt+ 1. So, (6.2) becomes the finite sum

UK(t) =
[bt]+1∑
m=2

Um(t). (6.4)
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Now, let us prove that Um(t) is a weakly compact operator in L1(Ω) for all 2 ≤
m ≤ [bt] + 1. So, the change of variables

x = 1−
(
t− µ

v
−

(m−1)∑
i=1

1
vi

)
vm

v2
m−1dx = −vmdvm−1

together with some simplifications infer that

|Um(t)ϕ(µ, v)| ≤ m3

t3
‖h‖∞‖h‖m−2

L1(J)‖k‖
m
∞ξ(µ, v, t)|h(v)|

∫
Ω

ϕ(x, vm) dx dvm

:= Cm(t)I⊗ Iϕ(µ, v),
(6.5)

where, I⊗ I is the operator

I⊗ Iϕ(µ, v) = ξ(µ, v, t)|h(v)|
∫

Ω

ϕ(x, vm) dx dvm

and Cm(t) is the constant

Cm(t) =
m3

t3
‖h‖∞‖h‖m−2

L1(J)‖k‖
m
∞.

As, we clearly have ∫
Ω

ξ(µ, v, t)|h(v)| dµ dv = t‖h‖Y1 <∞,

then ξ(·, ·, t)h ∈ L1(Ω) and therefore I ⊗ I is rank one operator in L1(Ω). Hence
Cm(t)I⊗ I is a compact operator in L1(Ω). Using (6.5) we obtain

0 ≤ Um(t) + Cm(t)I⊗ I ≤ 2Cm(t)I⊗ I
which , by Lemma 2.2, implies Um(t) +Cm(t)I⊗ I is a weakly compact operator in
L1(Ω) and therefore

Um(t) = (Um(t) + Cm(t)I⊗ I)− Cm(t)I⊗ I
is a weakly compact operator in L1(Ω). Finally, thanks to (6.4), we can say that
UK(t), like a finite sum, is a weakly compact operator in L1(Ω).

Step two. Let K be the rank one operator

Kψ = h

∫ ∞

a

k(v′)ψ(v′)v′ dv′, h ∈ Y1, k ∈ L∞(J). (6.6)

As h ∈ Y1, there exists a sequence (hn)n of Cc(J) converging to h in Y1. Let us
define the operator

Knψ = hn

∫ ∞

a

k(v′)ψ(v′)v′ dv′

which has the form (6.1). By the third step, we obtain UKn(t) is a weakly compact
operator in L1(Ω). On the other hand, it follows that

|(Kn −K)ψ| ≤ |hn − h|
∫ ∞

a

|k(v′)ψ(v′)|v′ dv′

which leads to
|(Kn −K)ψ| ≤ |h− hn|‖k‖L∞(J)‖ψ‖Y1

and therefore
‖Kn −K‖L(Y1) ≤ ‖hn − h‖Y1‖k‖L∞(J).
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Hence,
lim
n→∞

‖Kn −K‖L(Y1) = 0. (6.7)

Now, (3.18) obviously implies that

lim
n→∞

‖UKn
(t)− UK(t)‖L(L1(Ω)) = 0,

and therefore we can say : UK(t) is a weakly compact operator in L1(Ω).
Step three. Let K be the finite rank operator

Kψ =
MK∑
i=1

hi

∫ ∞

a

ki(v′)ψ(v′)v′ dv′, hi ∈ Y1, ki ∈ L∞(J), i = 1 · · ·MK

where MK <∞, and let K ′ be the positive rank-one operator

K ′ψ = h

∫ ∞

a

k(v′)ψ(v′)v′ dv′,

where

h =
MK∑
i=1

|hi| ∈ (Y1)+ and k =
MK∑
i=1

|ki| ∈ (L∞(J))+.

As K ′ has the form (6.6), then thanks to the step above it follows that UK′(t) is a
weakly compact operator in L1(Ω). Furthermore, for all ψ ∈ Y1, we have

|Kψ| ≤
MK∑
i=1

|hi|
∫ ∞

a

|ki(v′)||ψ(v′)|v′ dv′

≤
[MK∑
i=1

|hi|
] ∫ ∞

a

[MK∑
i=1

|ki(v′)|
]
|ψ(v′)|v′ dv′ = K ′|ψ|

which leads, by Theorem 4.3, to

|UK(t)ϕ| ≤ UK′(t)|ϕ|
for all ϕ ∈ L1(Ω) . This clearly implies

0 ≤ UK(t) + UK′(t) ≤ 2UK′(t)

and therefore, the operator UK(t) +UK′(t) is weakly compact in L1(Ω) by Lemma
2.2. Now, we can say that

UK(t) = (UK(t) + UK′(t))− UK′(t)

is a weakly compact operator in L1(Ω).
Step four. Let K be a compact operator in Y1. So, by [7, Corollary 5.3, pp.276],

there exists a sequence (Kn)n of finite rank operators converging to K in L(Y1);
i.e.,

lim
n→∞

‖Kn −K‖L(Y1) = 0.

On the one hand, the step above leads to the weak compactness of the operator
UKn

(t) in L1(Ω), and on the other hand (3.18) implies

lim
n→∞

‖UKn
(t)− UK(t)‖L(L1(Ω)) = 0

which leads to the weak compactness of the operator UK(t). The proof is complete.
�

Let us consider the hypothesis
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(H2) There exist r ∈ (L1(J))+ ∩ (L1(J))+ and nr,mr ≥ 0 such that

r(µ, x, y) ≤ µnr+1

ymr+2
r(x),

for almost all (µ, x, y) ∈ I × J2.
Note that when (H2) holds, the σ given by (1.2) satisfies

σ(µ, v) ≤ µnr+1

vmr+2

∫ ∞

a

r(v′)dv′ ≤ 1
am+2

‖r‖L1(J) <∞

for almost all (µ, v) ∈ Ω and therefore (H1) holds too. Accordingly we have the
following result.

Lemma 6.2. Suppose that (H2) holds and let K be a compact operator from Y1

into itself. Then, for all t > 0, RUK(t)R is a weakly compact operator in L1(Ω).

Proof. Let t > 0 and let ω > ω0 be a given real where, ω0 is the abscissa of the
operator K. In the sequel, we divide the proof in several steps.

Step one. Let K be the operator

Kψ = h

∫ ∞

a

k(v′)ψ(v′)v′ dv′, h ∈ Cc(J), k ∈ L∞(J) (6.8)

and let ϕ ∈ (L1(Ω))+. Then (3.12) implies

RUK(t)Rϕ = RU0(t)Rϕ+RBK(t)Rϕ. (6.9)

First, by (3.13) and (6.8), a simple calculation implies

RBK(t)Rϕ(µ, v)

=
∫ ∞

a

∫ ∞

a

r(µ, v, v′′)ξ(µ, v′′, t)h(v′′)k(v′)γ1

(
UK

(
t− µ

v′′
)
Rϕ

)
(v′)v′ dv′dv′′

for almost all (µ, v) ∈ Ω; therefore,

|RBK(t)Rϕ(µ, v)|

≤ ‖h‖∞‖k‖∞r(v)
∫ ∞

a

∫ ∞

a

µnr+1

(v′′)mr+2
ξ(µ, v′′, t)|γ1

(
UK

(
t− µ

v′′
)
Rϕ

)
(v′)|v′ dv′dv′′

≤ ‖h‖∞‖k‖∞
amr

r(v)
∫ ∞

a

∫ ∞

a

µ

(v′′)2
ξ(µ, v′′, t)|γ1

(
UK

(
t− µ

v′′
)
Rϕ

)
(v′)|v′ dv′dv′′

because of hypothesis (H2). Now, a suitable change of variable in the above integral
leads to

|RBK(t)Rϕ(µ, v)| ≤ ‖h‖∞‖k‖∞
amr

r(v)
∫ ∞

a

∫ t

0

|γ1 (UK (x)Rϕ) (v′)|v′ dx dv′

which, by (3.15), implies

|RBK(t)Rϕ(µ, v)| ≤ ‖h‖∞‖k‖∞etω

amr
(
1− ‖Kω‖L(Y1)

)r(v) ∫
Ω

(Rϕ)(µ, v) dµ dv;

therefore,
|RBK(t)Rϕ| ≤ (αtrI)I⊗ Iϕ, (6.10)

where

I⊗ Iϕ =
∫

Ω

ϕ(µ, v)dµ dv, αt =
‖h‖∞‖k‖∞‖R‖L(L1(Ω))e

tω

amr (1− ‖Kω‖L(Y1))
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and I(µ, v) = 1 for all (µ, v) ∈ Ω.
Next, thanks to (3.5), a simple calculation gives us

RU0(t)Rϕ(µ, v)

=
∫ ∞

a

∫ ∞

0

r(µ, v, v′)r(µ− tv′, v′, v′′)χ(µ, v′, t)ϕ(µ− tv′, v′′)dv′ dv′′

which, by (H2), implies

|RU0(t)Rϕ(µ, v)|

≤
∫ ∞

a

∫ ∞

0

r(v)
µnr+1

(v′)mr+2
r(v′)

(µ− tv′)nr+1

(v′′)mr+2
χ(µ, v′, t)ϕ(µ− tv′, v′′)dv′ dv′′

≤ ‖r‖∞
a2mr+4

r(v)
∫ ∞

a

∫ ∞

0

χ(µ, v′, t)ϕ(µ− tv′, v′′)dv′ dv′′.

A suitable change in last integral easily leads to

|RU0(t)Rϕ(µ, v)| ≤ 1
t

‖r‖∞
a2mr+4

r(v)
∫

Ω

ϕ(x, v′′) dx dv′′

and thus
|RU0(t)Rϕ| ≤ (βtrI)I⊗ Iϕ, (6.11)

where βt = ‖r‖∞t−1a−2mr+4. Finally, thanks to (6.9), (6.10) and (6.11), we infer
that

|RUK(t)Rϕ| ≤ (γtrI) I⊗ Iϕ
where, γt = αt + βt, and therefore,

0 ≤ RUK(t)R+ (γtrI) I⊗ I ≤ 2(γtrI)I⊗ I.

By (H2), we obtain rI ∈ L1(Ω) which implies that the right-hand side of the relation
above is clearly rank one operator in L1(Ω) and therefore weakly compact. Then,
by the second point of Lemma 2.2, we infer the weak compactness, in L1(Ω), of the
operator RUK(t)R+(γtrI)I⊗I and therefore the weak compactness of the operator

RUK(t)R =
(
RUK(t)R+ (γtrI)I⊗ I

)
− (γtrI)I⊗ I

follows obviously.
Step two. Let K be rank one operator into Y1; i.e.,

Kψ = h

∫ ∞

a

k(v′)ψ(v′)v′ dv′, h ∈ Y1, k ∈ L∞(J). (6.12)

Then, there exists a sequence (hn)n of Cc(J) converging to h in Y1. This implies
the operator

Knψ = hn

∫ ∞

a

k(v′)ψ(v′)v′ dv′

has the form (6.8) and therefore, RUKn(t)R is a weakly compact operator in L1(Ω)
because of the preceding step. On the other hand, it is easy to check that

lim
n→∞

‖Kn −K‖L(Y1) = 0

and therefore
lim
n→∞

‖UKn
(t)− UK(t)‖L(L1(Ω)) = 0 (6.13)
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because of (3.18). Now, the weak compactness of the operator RUK(t)R in L1(Ω)
follows from

‖RUK(t)R−RUKn(t)R‖L(L1(Ω)) ≤ ‖R‖2‖UK(t)− UKn(t)‖L(L1(Ω)) (6.14)

together with (6.13) and from the first point of Lemma 2.2.
Step three. Let K be the finite rank operator

Kψ =
MK∑
i=1

hi

∫ ∞

a

ki(v′)ψ(v′)v′ dv′, hi ∈ Y1, ki ∈ L∞(J), i = 1 · · ·MK

where MK <∞. Setting

h =
MK∑
i=1

|hi| ∈ (Y1)+ and k =
MK∑
i=1

|ki| ∈ (L∞(J))+

it follows that the positive operator

K ′ψ = h

∫ ∞

a

k(v′)ψ(v′)v′ dv′

has the form (6.12) and therefore, RUK′(t)R is a weakly compact operator in L1(Ω)
because of the preceding step. On the other hand,

|Kψ| ≤
[MK∑
i=1

|hi|
] ∫ ∞

a

[MK∑
i=1

|ki(v′)|
]
|ψ(v′)|v′ dv′ = K ′|ψ|

for all ψ ∈ Y1. Then, thanks to the positivity of the operator R and Theorem 4.3,
we obtain

|RUK(t)Rϕ| ≤ RUK′(t)R|ϕ|;
therefore

0 ≤ RUK(t)R+RUK′(t)R ≤ 2RUK′(t)R.

Now, the second point of Lemma 2.2 implies the weak compactness, in L1(Ω), of
the operator RUK(t)R+RUK′(t)R and hence, that of the operator

RUK(t)R =
(
RUK(t)R+RUK′(t)R

)
−RUK′(t)R

clearly follows.
Step four. Now, let K be a compact operator in Y1. Thanks to [7, Corollary

5.3, pp.276], there exists a sequence (Kn)n of finite rank operators such that

lim
n→∞

‖Kn −K‖L(Y1) = 0.

So, on one hand the weak compactness of the operator RUKn
(t)R, in L1(Ω), follows

from the step above and on the other hand

lim
n→∞

‖UKn
(t)− UK(t)‖L(L1(Ω)) = 0

because of (3.18). Finally, a relation like (6.14) together with the first point of
Lemma 2.2 imply the weak compactness of the operator RUK(t)R in L1(Ω). The
proof is now complete. �

In the next result, we compute the essential type of the semigroup (WK(t))t≥0

as follows
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Theorem 6.3. Suppose that (H2) holds and let K be a positive compact operator
from Y1 into itself. Then we have

ωess(WK(t)) = −∞. (6.15)

Proof. First, let t > 4/a. Thanks to Lemma 6.1, we obtain UK(t/2) is a weakly
compact operator in L1(Ω). As, (4.5) leads to

0 ≤ VK(t/2) ≤ UK(t/2).

Then, by Lemma 2.2, we obtain VK( t2 ) is a weakly compact operator in L1(Ω) .
Once more Lemma 2.2 implies that VK(t) =

(
VK(t/2)

)2 is a compact operator in
L1(Ω) which leads, by (2.2), to

ωess (VK(t)) = lim
t−→∞

ln ‖VK(t)‖ess

t
= −∞. (6.16)

Next, let t > 0. The positivity of the operators R and K together with Theorem 4.2
clearly imply

0 ≤ RVK(t)R ≤ RUK(t)R.

The relation above together with Lemma 6.2 and the second point of Lemma 2.2
imply the weak compactness of the operator RVK(t)R. So, for all t1, t2, t3 > 0, the
operator

RVK(t1)RVK(t2)RVK(t3)R = (RVK(t1)R)VK(t2) (RVK(t3)R)

is compact in L1(Ω) because of the third point of Lemma 2.2; therefore, Lemma 2.3
leads to

ωess (WK(t)) = ωess (VK(t)) . (6.17)

Finally, (6.16) and (6.17) complete the proof. �

Now, we are ready to give the main result of this work. Before we state it,
let us point out that contrary to Remark 3.9, the case ‖K‖L(Y1) > 1 is the most
observed and biologically interesting because the cell density is increasing during
each mitotic. Now, we give the asymptotic behavior, in this case, for the semigroup
(WK(t))t≥0, as follows.

Theorem 6.4. Suppose that (H2) holds and let K be a positive, irreducible and
compact operator with r(K) > 1. Then, there exist a rank one projector P into X
and positive constants M and δ such that

‖e−ts(TK)WK(t)− P‖L(L1(Ω)) ≤Me−δt, t ≥ 0.

Proof. First, let us note that the admissibility of the operatorK holds and therefore
the semigroup (WK(t))t≥0 exists. Next, Theorem 4.2 implies that (WK(t))t≥0 is a
positive and irreducible semigroup. Finally, (5.4) and (6.15) lead to ωess(WK(t)) <
ω(WK(t)). Since all conditions of Lemma 1.1 are satisfied, the proof is complete. �

Remark 6.5. Note that a > 0 has been used in many places of this work. So the
open question is: What happens when a = 0?
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