Electronic Journal of Differential Equations, Vol. 2010(2010), No. 146, pp. 1-7. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

EXISTENCE OF NON-OSCILLATORY SOLUTIONS FOR A HIGHER-ORDER NONLINEAR NEUTRAL DIFFERENCE EQUATION

ZHENYU GUO, MIN LIU

Abstract. This article concerns the solvability of the higher-order nonlinear neutral delay difference equation

$$
\Delta\left(a_{k n} \ldots \Delta\left(a_{2 n} \Delta\left(a_{1 n} \Delta\left(x_{n}+b_{n} x_{n-d}\right)\right)\right)\right)+\sum_{j=1}^{s} p_{j n} f_{j}\left(x_{n-r_{j n}}\right)=q_{n}
$$

where $n \geq n_{0} \geq 0, d, k, j, s$ are positive integers, $f_{j}: \mathbb{R} \rightarrow \mathbb{R}$ and $x f_{j}(x) \geq 0$ for $x \neq 0$. Sufficient conditions for the existence of non-oscillatory solutions are established by using Krasnoselskii fixed point theorem. Five theorems are stated according to the range of the sequence $\left\{b_{n}\right\}$.

1. Introduction and preliminaries

Interest in the solvability of difference equations has increased lately, as inferred from the number of related publications; see for example the references in this article and their references. Authors have examined various types difference equations, as follows:

$$
\begin{gather*}
\Delta\left(a_{n} \Delta x_{n}\right)+p_{n} x_{g(n)}=0, \quad n \geq 0, \quad \text { in [14, } \tag{1.1}\\
\Delta\left(a_{n} \Delta x_{n}\right)=q_{n} x_{n+1}, \quad \Delta\left(a_{n} \Delta x_{n}\right)=q_{n} f\left(x_{n+1}\right), \quad n \geq 0, \quad \text { in [11, }, \tag{1.2}\\
\Delta^{2}\left(x_{n}+p x_{n-m}\right)+p_{n} x_{n-k}-q_{n} x_{n-l}=0, \quad n \geq n_{0}, \quad \text { in [6], } \tag{1.3}\\
\Delta^{2}\left(x_{n}+p x_{n-k}\right)+f\left(n, x_{n}\right)=0, \quad n \geq 1, \quad \text { in [10, } \tag{1.4}\\
\Delta^{2}\left(x_{n}-p x_{n-\tau}\right)=\sum_{i=1}^{m} q_{i} f_{i}\left(x_{n-\sigma_{i}}\right), \quad n \geq n_{0}, \quad \text { in [9, } \tag{1.5}\\
\Delta\left(a_{n} \Delta\left(x_{n}+b x_{n-\tau}\right)\right)+f\left(n, x_{\left.n-d_{1 n}, x_{n-d_{2 n}}, \ldots, x_{n-d_{k n}}\right)=c_{n},}^{n \geq n_{0}, \quad \text { in [8], }}\right. \\
\Delta^{m}\left(x_{n}+c x_{n-k}\right)+p_{n} x_{n-r}=0, n \geq n_{0}, \quad \text { in [15, } \tag{1.6}\\
\Delta^{m}\left(x_{n}+c_{n} x_{n-k}\right)+p_{n} f\left(x_{n-r}\right)=0, \quad n \geq n_{0}, \quad \text { in [3, 4, 12, 13], } \tag{1.7}
\end{gather*}
$$

[^0]\[

$$
\begin{gather*}
\Delta^{m}\left(x_{n}+c x_{n-k}\right)+\sum_{s=1}^{u} p_{n}^{s} f_{s}\left(x_{n-r_{s}}\right)=q_{n}, \quad n \geq n_{0}, \quad \text { in [16, } \tag{1.9}\\
\Delta^{m}\left(x_{n}+c x_{n-k}\right)+p_{n} x_{n-r}-q_{n} x_{n-l}=0, \quad n \geq n_{0}, \quad \text { in [17. } \tag{1.10}
\end{gather*}
$$
\]

Motivated by the above publications, we investigate the higher-order nonlinear neutral difference equation

$$
\begin{equation*}
\Delta\left(a_{k n} \ldots \Delta\left(a_{2 n} \Delta\left(a_{1 n} \Delta\left(x_{n}+b_{n} x_{n-d}\right)\right)\right)\right)+\sum_{j=1}^{s} p_{j n} f_{j}\left(x_{n-r_{j n}}\right)=q_{n} \tag{1.11}
\end{equation*}
$$

where $n \geq n_{0} \geq 0, d, k, j, s$ are positive integers, $\left\{a_{i n}\right\}_{n \geq n_{0}}(i=1,2, \ldots, k)$, $\left\{b_{n}\right\}_{n \geq n_{0}},\left\{p_{j n}\right\}_{n \geq n_{0}}(1 \leq j \leq s)$ and $\left\{q_{n}\right\}_{n \geq n_{0}}$ are sequences of real numbers, $r_{j n} \in \mathbb{Z}\left(1 \leq j \leq s, n_{0} \leq n\right), f_{j}: \mathbb{R} \rightarrow \mathbb{R}$ and $x f_{j}(x) \geq 0$ for $x \neq 0(j=1,2, \ldots, s)$. Clearly, difference equations 1.1 -1.10 are special cases of 1.11, for which we use Krasnoselskii fixed point theorem to obtain non-oscillatory solutions.

Lemma 1.1 (Krasnoselskii Fixed Point Theorem). Let Ω be a bounded closed convex subset of a Banach space X and $T_{1}, T_{2}: S \rightarrow X$ satisfy $T_{1} x+T_{2} y \in \Omega$ for each $x, y \in \Omega$. If T_{1} is a contraction mapping and T_{2} is a completely continuous mapping, then the equation $T_{1} x+T_{2} x=x$ has at least one solution in Ω.

As usual, the forward difference Δ is defined as $\Delta x_{n}=x_{n+1}-x_{n}$, and for a positive integer m the higher-order difference is defined as

$$
\Delta^{m} x_{n}=\Delta\left(\Delta^{m-1} x_{n}\right), \quad \Delta^{0} x_{n}=x_{n}
$$

In this article, $\mathbb{R}=(-\infty,+\infty), \mathbb{N}$ is the set of positive integers, \mathbb{Z} is the sets of all integers, $\alpha=\inf \left\{n-r_{j n}: 1 \leq j \leq s, n_{0} \leq n\right\}, \beta=\min \left\{n_{0}-d, \alpha\right\}$, $\lim _{n \rightarrow \infty}\left(n-r_{j n}\right)=+\infty, 1 \leq j \leq s, l_{\beta}^{\infty}$ denotes the set of real-valued bounded sequences $x=\left\{x_{n}\right\}_{n \geq \beta}$. It is well known that l_{β}^{∞} is a Banach space under the supremum norm $\|x\|=\sup _{n \geq \beta}\left|x_{n}\right|$.

For $N>M>0$, let

$$
A(M, N)=\left\{x=\left\{x_{n}\right\}_{n \geq \beta} \in l_{\beta}^{\infty}: M \leq x_{n} \leq N, n \geq \beta\right\}
$$

Obviously, $A(M, N)$ is a bounded closed and convex subset of l_{β}^{∞}. Put

$$
\bar{b}=\limsup _{n \rightarrow \infty} b_{n} \quad \text { and } \quad \underline{b}=\liminf _{n \rightarrow \infty} b_{n}
$$

Definition 1.2 (5). A set Ω of sequences in l_{β}^{∞} is uniformly Cauchy (or equiCauchy) if for every $\varepsilon>0$, there exists an integer N_{0} such that

$$
\left|x_{i}-x_{j}\right|<\varepsilon
$$

whenever $i, j>N_{0}$ for any $x=x_{k}$ in Ω.
Lemma 1.3 (Discrete Arzela-Ascoli's theorem [5]). A bounded, uniformly Cauchy subset Ω of l_{β}^{∞} is relatively compact.

By a solution of 1.11, we mean a sequence $\left\{x_{n}\right\}_{n \geq \beta}$ with a positive integer $N_{0} \geq n_{0}+d+|\alpha|$ such that 1.11 is satisfied for all $n \geq N_{0}$. As is customary, a solution of 1.11 is said to be oscillatory about zero, or simply oscillatory, if the terms x_{n} of the sequence $\left\{x_{n}\right\}_{n \geq \beta}$ are neither eventually all positive nor eventually all negative. Otherwise, the solution is called non-oscillatory.

2. Existence of non-oscillatory solutions

In this section, we will give five sufficient conditions of the existence of nonoscillatory solutions of 1.11 .

Theorem 2.1. If there exist constants M and N with $N>M>0$ and such that

$$
\begin{gather*}
\left|b_{n}\right| \leq b<\frac{N-M}{2 N}, \quad \text { eventually } \tag{2.1}\\
\sum_{t=n_{0}}^{\infty} \max \left\{\frac{1}{\left|a_{i t}\right|},\left|p_{j t}\right|,\left|q_{t}\right|: 1 \leq i \leq k, 1 \leq j \leq s\right\}<+\infty \tag{2.2}
\end{gather*}
$$

then 1.11 has a non-oscillatory solution in $A(M, N)$.
Proof. Choose $L \in(M+b N, N-b N)$. By 2.1) and 2.2), an integer $N_{0}>$ $n_{0}+d+|\alpha|$ can be chosen such that

$$
\begin{equation*}
\left|b_{n}\right| \leq b<\frac{N-M}{2 N}, \forall n \geq N_{0} \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{t_{1}=N_{0}}^{\infty} \sum_{t_{2}=t_{1}}^{\infty} \cdots \sum_{t_{k}=t_{k-1}}^{\infty} \sum_{t=t_{k}}^{\infty} \frac{F\left|\sum_{j=1}^{s} p_{j t}\right|+\left|q_{t}\right|}{\left|\prod_{i=1}^{k} a_{i t_{i}}\right|} \leq \min \{L-b N-M, N-b N-L\} \tag{2.4}
\end{equation*}
$$

where $F=\max _{M \leq x \leq N}\left\{f_{j}(x): 1 \leq j \leq s\right\}$. Define two mappings T_{1}, T_{2} : $A(M, N) \rightarrow X$ by

$$
\begin{gather*}
\left(T_{1} x\right)_{n}= \begin{cases}L-b_{n} x_{n-d}, & n \geq N_{0}, \\
\left(T_{1} x\right)_{N_{0}}, & \beta \leq n<N_{0},\end{cases} \tag{2.5}\\
\left(T_{2} x\right)_{n}= \begin{cases}(-1)^{k} \sum_{t_{1}=n}^{\infty} \sum_{t_{2}=t_{1}}^{\infty} \ldots & \\
\sum_{t_{k}=t_{k-1}}^{\infty} \sum_{t=t_{k}}^{\infty} \frac{\sum_{j=1}^{s} p_{j t} f_{j}\left(x_{t-r_{j t}}\right)-q_{t}}{\prod_{i=1}^{k} a_{i t_{i}}}, & n \geq N_{0}, \\
\left(T_{2} x\right)_{N_{0}}, & \beta \leq n<N_{0},\end{cases} \tag{2.6}
\end{gather*}
$$

for all $x \in A(M, N)$.
(i) Note that $T_{1} x+T_{2} y \in A(M, N)$ for all $x, y \in A(M, N)$. In fact, for every $x, y \in A(M, N)$ and $n \geq N_{0}$, by 2.4, we have

$$
\begin{aligned}
\left(T_{1} x+T_{2} y\right)_{n} & \geq L-b N-\sum_{t_{1}=n}^{\infty} \sum_{t_{2}=t_{1}}^{\infty} \cdots \sum_{t_{k}=t_{k-1}}^{\infty} \sum_{t=t_{k}}^{\infty} \frac{\left|\sum_{j=1}^{s} p_{j t} f_{j}\left(y_{t-r_{j t}}\right)-q_{t}\right|}{\left|\prod_{i=1}^{k} a_{i t_{i}}\right|} \\
& \geq L-b N-\sum_{t_{1}=N_{0}}^{\infty} \sum_{t_{2}=t_{1}}^{\infty} \cdots \sum_{t_{k}=t_{k-1}}^{\infty} \sum_{t=t_{k}}^{\infty} \frac{F\left|\sum_{j=1}^{s} p_{j t}\right|+\left|q_{t}\right|}{\left|\prod_{i=1}^{k} a_{i t_{i}}\right|} \geq M
\end{aligned}
$$

and

$$
\begin{aligned}
\left(T_{1} x+T_{2} y\right)_{n} & \leq L+b N+\sum_{t_{1}=N_{0}}^{\infty} \sum_{t_{2}=t_{1}}^{\infty} \cdots \sum_{t_{k}=t_{k-1}}^{\infty} \sum_{t=t_{k}}^{\infty} \frac{F\left|\sum_{j=1}^{s} p_{j t}\right|+\left|q_{t}\right|}{\left|\prod_{i=1}^{k} a_{i t_{i}}\right|} \\
& \leq N .
\end{aligned}
$$

That is, $\left(T_{1} x+T_{2} y\right)(A(M, N)) \subseteq A(M, N)$.
(ii) W show that T_{1} is a contraction mapping on $A(M, N)$. For any $x, y \in$ $A(M, N)$ and $n \geq N_{0}$, it is easy to derive that

$$
\left|\left(T_{1} x\right)_{n}-\left(T_{1} y\right)_{n}\right| \leq\left|b_{n}\left\|x_{n-d}-y_{n-d} \mid \leq b\right\| x-y \|\right.
$$

which implies

$$
\left\|T_{1} x-T_{1} y\right\| \leq b\|x-y\|
$$

Then $b<\frac{N-M}{2 N}<1$ ensures that T_{1} is a contraction mapping on $A(M, N)$.
(iii) We show that T_{2} is completely continuous. First, we show T_{2} that is continuous. Let $x^{(u)}=\left\{x_{n}^{(u)}\right\} \in A(M, N)$ be a sequence such that $x_{n}^{(u)} \rightarrow x_{n}$ as $u \rightarrow \infty$. Since $A(M, N)$ is closed, $x=\left\{x_{n}\right\} \in A(M, N)$. Then, for $n \geq N_{0}$,

$$
\left|T_{2} x_{n}^{(u)}-T_{2} x_{n}\right| \leq \sum_{t_{1}=N_{0}}^{\infty} \sum_{t_{2}=t_{1}}^{\infty} \cdots \sum_{t_{k}=t_{k-1}}^{\infty} \sum_{t=t_{k}}^{\infty} \frac{\left|\sum_{j=1}^{s} p_{j t} \| f_{j}\left(x_{t-r_{j t}}^{(u)}\right)-f_{j}\left(x_{t-r_{j t}}\right)\right|}{\left|\prod_{i=1}^{k} a_{i t_{i}}\right|}
$$

Since

$$
\begin{aligned}
\frac{\left|\sum_{j=1}^{s} p_{j t} \| f_{j}\left(x_{t-r_{j t}}^{(u)}\right)-f_{j}\left(x_{t-r_{j t}}\right)\right|}{\left|\prod_{i=1}^{k} a_{i t_{i}}\right|} & \leq \frac{\left|\sum_{j=1}^{s} p_{j t}\right|\left(\left|f_{j}\left(x_{t-r_{j t}}^{(u)}\right)\right|+\left|f_{j}\left(x_{t-r_{j t}}\right)\right|\right)}{\left|\prod_{i=1}^{k} a_{i t_{i}}\right|} \\
& \leq \frac{2 F\left|\sum_{j=1}^{s} p_{j t}\right|}{\left|\prod_{i=1}^{k} a_{i t_{i}}\right|}
\end{aligned}
$$

and $\left|f_{j}\left(x_{t-r_{j t}}^{(u)}\right)-f_{j}\left(x_{t-r_{j t}}\right)\right| \rightarrow 0$ as $u \rightarrow \infty$ for $j=1,2, \ldots, s$, it follows from 2.2 and the Lebesgue dominated convergence theorem that $\lim _{u \rightarrow \infty}\left\|T_{2} x^{(u)}-T_{2} x\right\|=0$, which means that T_{2} is continuous.

Next, we show that $T_{2} A(M, N)$ is relatively compact. By 2.2 , for any $\varepsilon>0$, take $N_{1} \geq N_{0}$ large enough,

$$
\begin{equation*}
\sum_{t_{1}=N_{1}}^{\infty} \sum_{t_{2}=t_{1}}^{\infty} \cdots \sum_{t_{k}=t_{k-1}}^{\infty} \sum_{t=t_{k}}^{\infty} \frac{F\left|\sum_{j=1}^{s} p_{j t}\right|+\left|q_{t}\right|}{\left|\prod_{i=1}^{k} a_{i t_{i}}\right|}<\frac{\varepsilon}{2} \tag{2.7}
\end{equation*}
$$

Then, for any $x=\left\{x_{n}\right\} \in A(M, N)$ and $n_{1}, n_{2} \geq N_{1}$, 2.7) ensures that

$$
\begin{aligned}
\left|T_{2} x_{n_{1}}-T_{2} x_{n_{2}}\right| \leq & \sum_{t_{1}=n_{1}}^{\infty} \sum_{t_{2}=t_{1}}^{\infty} \ldots \sum_{t_{k}=t_{k-1}}^{\infty} \sum_{t=t_{k}}^{\infty} \frac{\left|\sum_{j=1}^{s} p_{j t} f_{j}\left(y_{t-r_{j t}}\right)-q_{t}\right|}{\left|\prod_{i=1}^{k} a_{i t_{i}}\right|} \\
& +\sum_{t_{1}=n_{2}}^{\infty} \sum_{t_{2}=t_{1}}^{\infty} \cdots \sum_{t_{k}=t_{k-1}}^{\infty} \sum_{t=t_{k}}^{\infty} \frac{\left|\sum_{j=1}^{s} p_{j t} f_{j}\left(y_{t-r_{j t}}\right)-q_{t}\right|}{\left|\prod_{i=1}^{k} a_{i t_{i}}\right|} \\
\leq & \sum_{t_{1}=N_{1}}^{\infty} \sum_{t_{2}=t_{1}}^{\infty} \cdots \sum_{t_{k}=t_{k-1}}^{\infty} \sum_{t=t_{k}}^{\infty} \frac{F\left|\sum_{j=1}^{s} p_{j t}\right|+\left|q_{t}\right|}{\left|\prod_{i=1}^{k} a_{i t_{i}}\right|} \\
& +\sum_{t_{1}=N_{1}}^{\infty} \sum_{t_{2}=t_{1}}^{\infty} \cdots \sum_{t_{k}=t_{k-1}}^{\infty} \sum_{t=t_{k}}^{\infty} \frac{F\left|\sum_{j=1}^{s} p_{j t}\right|+\left|q_{t}\right|}{\left|\prod_{i=1}^{k} a_{i t_{i}}\right|} \\
< & \frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon,
\end{aligned}
$$

which implies $T_{2} A(M, N)$ begin uniformly Cauchy. Therefore, by Lemma 1.3 , the set $T_{2} A(M, N)$ is relatively compact. By Lemma 1.1. there exists $x=\left\{x_{n}\right\} \in$ $A(M, N)$ such that $T_{1} x+T_{2} x=x$, which is a bounded non-oscillatory solution to (1.11). This completes the proof.

Theorem 2.2. If (2.2 holds,

$$
\begin{equation*}
b_{n} \geq 0 \text { eventually, } 0 \leq \underline{b} \leq \bar{b}<1 \tag{2.8}
\end{equation*}
$$

and there exist constants M and N with $N>\frac{2-\underline{b}}{1-\bar{b}} M>0$ then 1.11 has a nonoscillatory solution in $A(M, N)$.
Proof. Choose $L \in\left(M+\frac{1+\bar{b}}{2} N, N+\frac{b}{2} M\right)$. By 2.2) and (2.8), an integer $N_{0}>$ $n_{0}+d+|\alpha|$ can be chosen such that

$$
\begin{equation*}
\frac{b}{2} \leq b_{n} \leq \frac{1+\bar{b}}{2}, \forall n \geq N_{0} \tag{2.9}
\end{equation*}
$$

and

$$
\begin{align*}
& \sum_{t_{1}=N_{0}}^{\infty} \sum_{t_{2}=t_{1}}^{\infty} \ldots \sum_{t_{k}=t_{k-1}}^{\infty} \sum_{t=t_{k}}^{\infty} \frac{F\left|\sum_{j=1}^{s} p_{j t}\right|+\left|q_{t}\right|}{\left|\prod_{i=1}^{k} a_{i t_{i}}\right|} \tag{2.10}\\
& \leq \min \left\{L-M-\frac{1+\bar{b}}{2} N, N-L+\frac{b}{2} M\right\}
\end{align*}
$$

where $F=\max _{M \leq x \leq N}\left\{f_{j}(x): 1 \leq j \leq s\right\}$. Then define $T_{1}, T_{2}: A(M, N) \rightarrow X$ as 2.5 and 2.6). The rest proof is similar to that of Theorem 2.1. and it is omitted.

Theorem 2.3. If 2.2 holds,

$$
\begin{equation*}
b_{n} \leq 0 \text { eventually, } \quad-1<\underline{b} \leq \bar{b} \leq 0, \tag{2.11}
\end{equation*}
$$

and there exist constants M and N with $N>\frac{2+\bar{b}}{1+\underline{b}} M>0$, then 1.11 has a nonoscillatory solution in $A(M, N)$.
Proof. Choose $L \in\left(\frac{2+\bar{b}}{2} M, \frac{1+\underline{b}}{2} N\right)$. By 2.2 and 2.11), an integer $N_{0}>n_{0}+d+|\alpha|$ can be chosen such that

$$
\begin{equation*}
\frac{\underline{b}-1}{2} \leq b_{n} \leq \frac{\bar{b}}{2}, \forall n \geq N_{0} \tag{2.12}
\end{equation*}
$$

and

$$
\begin{align*}
& \sum_{t_{1}=N_{0}}^{\infty} \sum_{t_{2}=t_{1}}^{\infty} \cdots \sum_{t_{k}=t_{k-1}}^{\infty} \sum_{t=t_{k}}^{\infty} \frac{F\left|\sum_{j=1}^{s} p_{j t}\right|+\left|q_{t}\right|}{\left|\prod_{i=1}^{k} a_{i t_{i}}\right|} \tag{2.13}\\
& \leq \min \left\{L-\frac{2+\bar{b}}{2} M, \frac{1+\underline{b}}{2} N-L\right\},
\end{align*}
$$

where $F=\max _{M \leq x \leq N}\left\{f_{j}(x): 1 \leq j \leq s\right\}$. Then define $T_{1}, T_{2}: A(M, N) \rightarrow X$ by 2.5 and 2.6). The rest proof is similar to that of Theorem 2.1. and is omitted.

Theorem 2.4. If (2.2) holds,

$$
\begin{equation*}
b_{n}>1 \text { eventually, } \quad 1<\underline{b}, \text { and } \bar{b}<\underline{b}^{2}<+\infty, \tag{2.14}
\end{equation*}
$$

and there exist constants M and N with $N>\frac{b\left(\bar{b}^{2}-b\right)}{\overline{\bar{b}}\left(\underline{b}^{2}-\overline{\bar{b}}\right)} M>0$, then 1.11) has a non-oscillatory solution in $A(M, N)$.
Proof. Take $\varepsilon \in(0, \underline{b}-1)$ sufficiently small satisfying

$$
\begin{equation*}
1<\underline{b}-\varepsilon<\bar{b}+\varepsilon<(\underline{b}-\varepsilon)^{2} \tag{2.15}
\end{equation*}
$$

and

$$
\begin{equation*}
\left((\bar{b}+\varepsilon)(\underline{b}-\varepsilon)^{2}-(\bar{b}+\varepsilon)^{2}\right) N>\left((\bar{b}+\varepsilon)^{2}(\underline{b}-\varepsilon)-(\underline{b}-\varepsilon)^{2}\right) M \tag{2.16}
\end{equation*}
$$

Choose $L \in\left((\bar{b}+\varepsilon) M+\frac{\bar{b}+\varepsilon}{\underline{b}-\varepsilon} N,(\underline{b}-\varepsilon) N+\frac{b}{\bar{b}+\varepsilon} M\right)$. By 2.2) and 2.15, an integer $N_{0}>n_{0}+d+|\alpha|$ can be chosen such that

$$
\begin{equation*}
\underline{b}-\varepsilon<b_{n}<\bar{b}+\varepsilon, \quad \forall b \geq N_{0} \tag{2.17}
\end{equation*}
$$

and

$$
\begin{align*}
& \sum_{t_{1}=N_{0}}^{\infty} \sum_{t_{2}=t_{1}}^{\infty} \cdots \sum_{t_{k}=t_{k-1}}^{\infty} \sum_{t=t_{k}}^{\infty} \frac{F\left|\sum_{j=1}^{s} p_{j t}\right|+\left|q_{t}\right|}{\left|\prod_{i=1}^{k} a_{i t_{i}}\right|} \tag{2.18}\\
& \leq \min \left\{\frac{\underline{b}-\varepsilon}{\bar{b}+\varepsilon} L-(\underline{b}-\varepsilon) M-N, \frac{b}{\bar{b}+\varepsilon} M+(\underline{b}-\varepsilon) N-L\right\}
\end{align*}
$$

where $F=\max _{M \leq x \leq N}\left\{f_{j}(x): 1 \leq j \leq s\right\}$. Define two mappings T_{1}, T_{2} : $A(M, N) \rightarrow X$ by

$$
\begin{gather*}
\left(T_{1} x\right)_{n}= \begin{cases}\frac{L}{b_{n+d}}-\frac{x_{n+d}}{b_{n+d}}, & n \geq N_{0}, \\
\left(T_{1} x\right)_{N_{0}}, & \beta \leq n<N_{0}\end{cases} \tag{2.19}\\
\left.T_{2} x\right)_{n}= \begin{cases}\frac{(-1)^{k}}{b_{n+d}} \sum_{t_{1}=n}^{\infty} \sum_{t_{2}=t_{1}}^{\infty} \ldots & \beta \leq n<N_{0} \\
\sum_{t_{k}=t_{k-1}}^{\infty} \sum_{t=t_{k}}^{\infty} \frac{\sum_{j=1}^{s} p_{j t} f_{j}\left(x_{t-r_{j t}}\right)-q_{t}}{\prod_{i=1}^{k} a_{i t_{i}}}, & n \geq N_{0}, \\
\left(T_{2} x\right)_{N_{0}}, & \end{cases} \tag{2.20}
\end{gather*}
$$

for all $x \in A(M, N)$. The rest proof is similar to that in Theorem 2.1, and is omitted.

Theorem 2.5. If (2.2) holds,

$$
\begin{equation*}
b_{n}<-1 \text { eventually, } \quad-\infty<\underline{b}, \bar{b}<-1 \tag{2.21}
\end{equation*}
$$

and there exist constants M and N with $N>\frac{1+\underline{b}}{1+\overline{\bar{b}}} M>0$, then 1.11 has a nonoscillatory solution in $A(M, N)$.

Proof. Take $\epsilon \in(0,-(1+\bar{b}))$ sufficiently small satisfying

$$
\begin{equation*}
\underline{b}-\epsilon<\bar{b}+\epsilon<-1 \tag{2.22}
\end{equation*}
$$

and

$$
\begin{equation*}
(1+\bar{b}+\epsilon) N<(1+\underline{b}-\epsilon) M \tag{2.23}
\end{equation*}
$$

Choose $L \in((1+\bar{b}+\epsilon) N,(1+\underline{b}-\epsilon) M)$. By 2.2) and 2.22), an integer $N_{0}>$ $n_{0}+d+|\alpha|$ can be chosen such that

$$
\begin{equation*}
\underline{b}-\epsilon<b_{n}<\bar{b}+\epsilon, \quad \forall n \geq N_{0} \tag{2.24}
\end{equation*}
$$

and

$$
\begin{align*}
& \sum_{t_{1}=N_{0}}^{\infty} \sum_{t_{2}=t_{1}}^{\infty} \cdots \sum_{t_{k}=t_{k-1}}^{\infty} \sum_{t=t_{k}}^{\infty} \frac{F\left|\sum_{j=1}^{s} p_{j t}\right|+\left|q_{t}\right|}{\left|\prod_{i=1}^{k} a_{i t_{i}}\right|} \tag{2.25}\\
& \leq \min \left\{\left(\bar{b}+\epsilon+\frac{\bar{b}+\epsilon}{\underline{b}-\epsilon}\right) M-\frac{\bar{b}+\epsilon}{\underline{b}-\epsilon} L, L-(1+\bar{b}+\epsilon) N\right\}
\end{align*}
$$

where $F=\max _{M \leq x \leq N}\left\{f_{j}(x): 1 \leq j \leq s\right\}$. Then define $T_{1}, T_{2}: A(M, N) \rightarrow X$ as 2.19) and 2.20). The rest proof is similar to that in Theorem 2.1. and is omitted.

Remark 2.6. Theorems 2.1 2.5 extend the results in Cheng [6, Theorem 1], Liu, Xu and Kang [8, Theorems 2.3-2.7], Zhou and Huang [16. Theorems 1-5] and corresponding theorems in [3, 4, 9, 10, 11, 12, 13, 14, 15].

Acknowledgments. The authors are grateful to the anonymous referees for their careful reading, editing, and valuable comments and suggestions.

References

[1] R. P. Agarwal; Difference equations and inequalities, 2nd ed., Dekker, New York (2000).
[2] R. P. Agarwal, S. R. Grace, D. O'Regan; Oscillation theory for difference and functional differential equations, Kulwer Academic (2000).
[3] R. P. Agarwal, E. Thandapani, P. J. Y. Wong; Oscillations of higher-order neutral difference equations, Appl. Math. Lett. 10 (1997), 71-78.
[4] R. P. Agarwal, S. R. Grace; The oscillation of higher-order nonlinear difference equations of neutral type, JAppl. Math. Lett. 12 (1999), 77-83.
[5] S. S. Cheng, W. T. Patula; An existence theorem for a nonlinear difference equation, Nonlinear Anal. 20 (1993), 193-203.
[6] J. F. Cheng; Existence of a nonoscillatory solution of a second-order linear neutral difference equation, Appl. Math. Lett. 20 (2007), 892-899.
[7] I. Gyori and G. Ladas; Oscillation theory for delay differential equations with applications, Oxford Univ. Press, London (1991).
[8] Z. Liu, Y. Xu, S. M. Kang; Global solvability for a second order nonlinear neutral delay difference equation, Comput. Math. Appl. 57 (2009), 587-595.
[9] Q. Meng, J. Yan, Bounded oscillation for second-order nonlinear difference equations in critical and non-critical states, J. Comput. Appl. Math. 211 (2008), 156-172
[10] M. Migda, J. Migda; Asymptotic properties of solutions of second-order neutral difference equations, Nonlinear Anal. 63 (2005), 789-799.
[11] E. Thandapani, M. M. S. Manuel, J. R. Graef, P. W. Spikes; Monotone properties of certain classes of solutions of second-order difference equations, Comput. Math. Appl. 36 (2001), 291-297.
[12] F. Yang, J. Liu; Positive solution of even order nonlinear neutral difference equations with variable delay, J. Systems Sci. Math. Sci. 22 (2002), 85-89.
[13] B. G. Zhang, B. Yang; Oscillation of higher order linear difference equation, Chinese Ann. Math. 20 (1999), 71-80.
[14] Z. G. Zhang, Q. L. Li; Oscillation theorems for second-order advanced functional difference equations, Comput. Math. Appl. 36 (1998), 11-18.
[15] Y. Zhou; Existence of nonoscillatory solutions of higher-order neutral difference equations with general coefficients, Appl. Math. Lett. 15 (2002), 785-791.
[16] Y. Zhou, Y. Q. Huang; Existence for nonoscillatory solutions of higher-order nonlinear neutral difference equations, J. Math. Anal. Appl. 280 (2003), 63-76.
[17] Y. Zhou, B. G. Zhang; Existence of nonoscillatory solutions of higher-order neutral delay difference equations with variable coefficients, Comput. Math. Appl. 45 (2003), 991-1000.

Zhenyu Guo
School of Sciences, Liaoning Shihua University, Fushun, Liaoning 113001, China
E-mail address: guozy@163.com
Min Liu
School of Sciences, Liaoning Shihua University, Fushun, Liaoning 113001, China
E-mail address: min_liu@yeah.net

[^0]: 2000 Mathematics Subject Classification. 34K15, 34C10.
 Key words and phrases. Nonoscillatory solution; neutral difference equation; Krasnoselskii fixed point theorem.
 (C) 2010 Texas State University - San Marcos.

 Submitted July 30, 2010. Published October 14, 2010.

