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EXISTENCE OF NON-OSCILLATORY SOLUTIONS FOR A
HIGHER-ORDER NONLINEAR NEUTRAL DIFFERENCE

EQUATION

ZHENYU GUO, MIN LIU

Abstract. This article concerns the solvability of the higher-order nonlinear

neutral delay difference equation

∆
“
akn . . . ∆

`
a2n∆(a1n∆(xn + bnxn−d))

´”
+

sX
j=1

pjnfj(xn−rjn ) = qn,

where n ≥ n0 ≥ 0, d, k, j, s are positive integers, fj : R → R and xfj(x) ≥ 0

for x 6= 0. Sufficient conditions for the existence of non-oscillatory solutions

are established by using Krasnoselskii fixed point theorem. Five theorems are
stated according to the range of the sequence {bn}.

1. Introduction and preliminaries

Interest in the solvability of difference equations has increased lately, as inferred
from the number of related publications; see for example the references in this article
and their references. Authors have examined various types difference equations, as
follows:

∆(an∆xn) + pnxg(n) = 0, n ≥ 0, in [14], (1.1)

∆(an∆xn) = qnxn+1, ∆(an∆xn) = qnf(xn+1), n ≥ 0, in [11], (1.2)

∆2(xn + pxn−m) + pnxn−k − qnxn−l = 0, n ≥ n0, in [6], (1.3)

∆2(xn + pxn−k) + f(n, xn) = 0, n ≥ 1, in [10], (1.4)

∆2(xn − pxn−τ ) =
m∑

i=1

qifi(xn−σi
), n ≥ n0, in [9], (1.5)

∆(an∆(xn + bxn−τ )) + f(n, xn−d1n
, xn−d2n

, . . . , xn−dkn
) = cn,

n ≥ n0, in [8], (1.6)

∆m(xn + cxn−k) + pnxn−r = 0, n ≥ n0, in [15], (1.7)

∆m(xn + cnxn−k) + pnf(xn−r) = 0, n ≥ n0, in [3, 4, 12, 13], (1.8)
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∆m(xn + cxn−k) +
u∑

s=1

ps
nfs(xn−rs

) = qn, n ≥ n0, in [16], (1.9)

∆m(xn + cxn−k) + pnxn−r − qnxn−l = 0, n ≥ n0, in [17]. (1.10)

Motivated by the above publications, we investigate the higher-order nonlinear
neutral difference equation

∆
(
akn . . .∆

(
a2n∆(a1n∆(xn + bnxn−d))

))
+

s∑
j=1

pjnfj(xn−rjn) = qn, (1.11)

where n ≥ n0 ≥ 0, d, k, j, s are positive integers, {ain}n≥n0 (i = 1, 2, . . . , k),
{bn}n≥n0 , {pjn}n≥n0 (1 ≤ j ≤ s) and {qn}n≥n0 are sequences of real numbers,
rjn ∈ Z (1 ≤ j ≤ s, n0 ≤ n), fj : R → R and xfj(x) ≥ 0 for x 6= 0 (j = 1, 2, . . . , s).
Clearly, difference equations (1.1)–(1.10) are special cases of (1.11), for which we
use Krasnoselskii fixed point theorem to obtain non-oscillatory solutions.

Lemma 1.1 (Krasnoselskii Fixed Point Theorem). Let Ω be a bounded closed con-
vex subset of a Banach space X and T1, T2 : S → X satisfy T1x + T2y ∈ Ω for
each x, y ∈ Ω. If T1 is a contraction mapping and T2 is a completely continuous
mapping, then the equation T1x + T2x = x has at least one solution in Ω.

As usual, the forward difference ∆ is defined as ∆xn = xn+1 − xn, and for a
positive integer m the higher-order difference is defined as

∆mxn = ∆(∆m−1xn), ∆0xn = xn.

In this article, R = (−∞,+∞), N is the set of positive integers, Z is the sets
of all integers, α = inf{n − rjn : 1 ≤ j ≤ s, n0 ≤ n}, β = min{n0 − d, α},
limn→∞(n − rjn) = +∞, 1 ≤ j ≤ s, l∞β denotes the set of real-valued bounded
sequences x = {xn}n≥β . It is well known that l∞β is a Banach space under the
supremum norm ‖x‖ = supn≥β |xn|.

For N > M > 0, let

A(M,N) =
{
x = {xn}n≥β ∈ l∞β : M ≤ xn ≤ N,n ≥ β

}
.

Obviously, A(M,N) is a bounded closed and convex subset of l∞β . Put

b = lim sup
n→∞

bn and b = lim inf
n→∞

bn.

Definition 1.2 ([5]). A set Ω of sequences in l∞β is uniformly Cauchy (or equi-
Cauchy) if for every ε > 0, there exists an integer N0 such that

|xi − xj | < ε,

whenever i, j > N0 for any x = xk in Ω.

Lemma 1.3 (Discrete Arzela-Ascoli’s theorem [5]). A bounded, uniformly Cauchy
subset Ω of l∞β is relatively compact.

By a solution of (1.11), we mean a sequence {xn}n≥β with a positive integer
N0 ≥ n0 + d + |α| such that (1.11) is satisfied for all n ≥ N0. As is customary, a
solution of (1.11) is said to be oscillatory about zero, or simply oscillatory, if the
terms xn of the sequence {xn}n≥β are neither eventually all positive nor eventually
all negative. Otherwise, the solution is called non-oscillatory.
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2. Existence of non-oscillatory solutions

In this section, we will give five sufficient conditions of the existence of non-
oscillatory solutions of (1.11).

Theorem 2.1. If there exist constants M and N with N > M > 0 and such that

|bn| ≤ b <
N −M

2N
, eventually, (2.1)

∞∑
t=n0

max
{ 1
|ait|

, |pjt|, |qt| : 1 ≤ i ≤ k, 1 ≤ j ≤ s
}

< +∞, (2.2)

then (1.11) has a non-oscillatory solution in A(M,N).

Proof. Choose L ∈ (M + bN, N − bN). By (2.1) and (2.2), an integer N0 >
n0 + d + |α| can be chosen such that

|bn| ≤ b <
N −M

2N
, ∀n ≥ N0, (2.3)

and
∞∑

t1=N0

∞∑
t2=t1

· · ·
∞∑

tk=tk−1

∞∑
t=tk

F
∣∣ ∑s

j=1 pjt

∣∣ + |qt|∣∣ ∏k
i=1 aiti

∣∣ ≤ min{L− bN −M,N − bN − L},

(2.4)
where F = maxM≤x≤N{fj(x) : 1 ≤ j ≤ s}. Define two mappings T1, T2 :
A(M,N) → X by

(T1x)n =

{
L− bnxn−d, n ≥ N0,

(T1x)N0 , β ≤ n < N0,
(2.5)

(T2x)n =


(−1)k

∑∞
t1=n

∑∞
t2=t1

. . .∑∞
tk=tk−1

∑∞
t=tk

Ps
j=1 pjtfj(xt−rjt

)−qtQk
i=1 aiti

, n ≥ N0,

(T2x)N0 , β ≤ n < N0,

(2.6)

for all x ∈ A(M,N).
(i) Note that T1x + T2y ∈ A(M,N) for all x, y ∈ A(M,N). In fact, for every

x, y ∈ A(M,N) and n ≥ N0, by (2.4), we have

(T1x + T2y)n ≥ L− bN −
∞∑

t1=n

∞∑
t2=t1

· · ·
∞∑

tk=tk−1

∞∑
t=tk

∣∣ ∑s
j=1 pjtfj(yt−rjt)− qt

∣∣∣∣ ∏k
i=1 aiti

∣∣
≥ L− bN −

∞∑
t1=N0

∞∑
t2=t1

· · ·
∞∑

tk=tk−1

∞∑
t=tk

F
∣∣ ∑s

j=1 pjt

∣∣ + |qt|∣∣ ∏k
i=1 aiti

∣∣ ≥ M

and

(T1x + T2y)n ≤ L + bN +
∞∑

t1=N0

∞∑
t2=t1

· · ·
∞∑

tk=tk−1

∞∑
t=tk

F
∣∣ ∑s

j=1 pjt

∣∣ + |qt|∣∣ ∏k
i=1 aiti

∣∣
≤ N.

That is, (T1x + T2y)(A(M,N)) ⊆ A(M,N).
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(ii) W show that T1 is a contraction mapping on A(M,N). For any x, y ∈
A(M,N) and n ≥ N0, it is easy to derive that∣∣(T1x)n − (T1y)n

∣∣ ≤ |bn‖xn−d − yn−d| ≤ b‖x− y‖,
which implies

‖T1x− T1y‖ ≤ b‖x− y‖.
Then b < N−M

2N < 1 ensures that T1 is a contraction mapping on A(M,N).
(iii) We show that T2 is completely continuous. First, we show T2 that is contin-

uous. Let x(u) = {x(u)
n } ∈ A(M,N) be a sequence such that x

(u)
n → xn as u →∞.

Since A(M,N) is closed, x = {xn} ∈ A(M,N). Then, for n ≥ N0,∣∣T2x
(u)
n − T2xn

∣∣ ≤ ∞∑
t1=N0

∞∑
t2=t1

· · ·
∞∑

tk=tk−1

∞∑
t=tk

∣∣ ∑s
j=1 pjt

∥∥fj(x
(u)
t−rjt

)− fj(xt−rjt)|∣∣ ∏k
i=1 aiti

∣∣ .

Since∣∣ ∑s
j=1 pjt

∥∥fj(x
(u)
t−rjt

)− fj(xt−rjt)|∣∣ ∏k
i=1 aiti

∣∣ ≤
∣∣ ∑s

j=1 pjt

∣∣(|fj(x
(u)
t−rjt

)|+ |fj(xt−rjt)|
)∣∣ ∏k

i=1 aiti

∣∣
≤

2F
∣∣ ∑s

j=1 pjt

∣∣∣∣ ∏k
i=1 aiti

∣∣
and |fj(x

(u)
t−rjt

)− fj(xt−rjt)| → 0 as u →∞ for j = 1, 2, . . . , s, it follows from (2.2)
and the Lebesgue dominated convergence theorem that limu→∞ ‖T2x

(u)−T2x‖ = 0,
which means that T2 is continuous.

Next, we show that T2A(M,N) is relatively compact. By (2.2), for any ε > 0,
take N1 ≥ N0 large enough,

∞∑
t1=N1

∞∑
t2=t1

· · ·
∞∑

tk=tk−1

∞∑
t=tk

F
∣∣ ∑s

j=1 pjt

∣∣ + |qt|∣∣ ∏k
i=1 aiti

∣∣ <
ε

2
. (2.7)

Then, for any x = {xn} ∈ A(M,N) and n1, n2 ≥ N1, (2.7) ensures that∣∣T2xn1 − T2xn2

∣∣ ≤ ∞∑
t1=n1

∞∑
t2=t1

· · ·
∞∑

tk=tk−1

∞∑
t=tk

∣∣ ∑s
j=1 pjtfj(yt−rjt

)− qt

∣∣∣∣ ∏k
i=1 aiti

∣∣
+

∞∑
t1=n2

∞∑
t2=t1

· · ·
∞∑

tk=tk−1

∞∑
t=tk

∣∣ ∑s
j=1 pjtfj(yt−rjt)− qt

∣∣∣∣ ∏k
i=1 aiti

∣∣
≤

∞∑
t1=N1

∞∑
t2=t1

· · ·
∞∑

tk=tk−1

∞∑
t=tk

F
∣∣ ∑s

j=1 pjt

∣∣ + |qt|∣∣ ∏k
i=1 aiti

∣∣
+

∞∑
t1=N1

∞∑
t2=t1

· · ·
∞∑

tk=tk−1

∞∑
t=tk

F
∣∣ ∑s

j=1 pjt

∣∣ + |qt|∣∣ ∏k
i=1 aiti

∣∣
<

ε

2
+

ε

2
= ε,

which implies T2A(M,N) begin uniformly Cauchy. Therefore, by Lemma 1.3, the
set T2A(M,N) is relatively compact. By Lemma 1.1, there exists x = {xn} ∈
A(M,N) such that T1x + T2x = x, which is a bounded non-oscillatory solution to
(1.11). This completes the proof. �
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Theorem 2.2. If (2.2) holds,

bn ≥ 0 eventually, 0 ≤ b ≤ b < 1, (2.8)

and there exist constants M and N with N > 2−b

1−b
M > 0 then (1.11) has a non-

oscillatory solution in A(M,N).

Proof. Choose L ∈ (M + 1+b
2 N,N + b

2M). By (2.2) and (2.8), an integer N0 >
n0 + d + |α| can be chosen such that

b

2
≤ bn ≤

1 + b

2
, ∀n ≥ N0 (2.9)

and
∞∑

t1=N0

∞∑
t2=t1

· · ·
∞∑

tk=tk−1

∞∑
t=tk

F
∣∣ ∑s

j=1 pjt

∣∣ + |qt|∣∣ ∏k
i=1 aiti

∣∣
≤ min

{
L−M − 1 + b

2
N,N − L +

b

2
M

}
,

(2.10)

where F = maxM≤x≤N{fj(x) : 1 ≤ j ≤ s}. Then define T1, T2 : A(M,N) → X
as (2.5) and (2.6). The rest proof is similar to that of Theorem 2.1, and it is
omitted. �

Theorem 2.3. If (2.2) holds,

bn ≤ 0 eventually, −1 < b ≤ b ≤ 0, (2.11)

and there exist constants M and N with N > 2+b
1+bM > 0, then (1.11) has a non-

oscillatory solution in A(M,N).

Proof. Choose L ∈ ( 2+b
2 M, 1+b

2 N). By (2.2) and (2.11), an integer N0 > n0+d+|α|
can be chosen such that

b− 1
2

≤ bn ≤
b

2
, ∀n ≥ N0, (2.12)

and
∞∑

t1=N0

∞∑
t2=t1

· · ·
∞∑

tk=tk−1

∞∑
t=tk

F
∣∣ ∑s

j=1 pjt

∣∣ + |qt|∣∣ ∏k
i=1 aiti

∣∣
≤ min

{
L− 2 + b

2
M,

1 + b

2
N − L

}
,

(2.13)

where F = maxM≤x≤N{fj(x) : 1 ≤ j ≤ s}. Then define T1, T2 : A(M,N) → X by
(2.5) and (2.6). The rest proof is similar to that of Theorem 2.1, and is omitted. �

Theorem 2.4. If (2.2) holds,

bn > 1 eventually, 1 < b, and b < b2 < +∞, (2.14)

and there exist constants M and N with N > b(b
2−b)

b(b2−b)
M > 0, then (1.11) has a

non-oscillatory solution in A(M,N).

Proof. Take ε ∈ (0, b− 1) sufficiently small satisfying

1 < b− ε < b + ε < (b− ε)2 (2.15)

and (
(b + ε)(b− ε)2 − (b + ε)2

)
N >

(
(b + ε)2(b− ε)− (b− ε)2

)
M. (2.16)
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Choose L ∈
(
(b + ε)M + b+ε

b−εN, (b− ε)N + b−ε

b+ε
M

)
. By (2.2) and (2.15), an integer

N0 > n0 + d + |α| can be chosen such that

b− ε < bn < b + ε, ∀b ≥ N0 (2.17)

and
∞∑

t1=N0

∞∑
t2=t1

· · ·
∞∑

tk=tk−1

∞∑
t=tk

F
∣∣ ∑s

j=1 pjt

∣∣ + |qt|∣∣ ∏k
i=1 aiti

∣∣
≤ min

{b− ε

b + ε
L− (b− ε)M −N,

b− ε

b + ε
M + (b− ε)N − L

}
,

(2.18)

where F = maxM≤x≤N{fj(x) : 1 ≤ j ≤ s}. Define two mappings T1, T2 :
A(M,N) → X by

(T1x)n =

{
L

bn+d
− xn+d

bn+d
, n ≥ N0,

(T1x)N0 , β ≤ n < N0,
(2.19)

T2x)n =


(−1)k

bn+d

∑∞
t1=n

∑∞
t2=t1

. . .∑∞
tk=tk−1

∑∞
t=tk

Ps
j=1 pjtfj(xt−rjt

)−qtQk
i=1 aiti

, n ≥ N0,

(T2x)N0 , β ≤ n < N0,

(2.20)

for all x ∈ A(M,N). The rest proof is similar to that in Theorem 2.1, and is
omitted. �

Theorem 2.5. If (2.2) holds,

bn < −1 eventually, −∞ < b, b < −1 (2.21)

and there exist constants M and N with N > 1+b

1+b
M > 0, then (1.11) has a non-

oscillatory solution in A(M,N).

Proof. Take ε ∈
(
0,−(1 + b)

)
sufficiently small satisfying

b− ε < b + ε < −1 (2.22)

and
(1 + b + ε)N < (1 + b− ε)M. (2.23)

Choose L ∈
(
(1 + b + ε)N, (1 + b − ε)M

)
. By (2.2) and (2.22), an integer N0 >

n0 + d + |α| can be chosen such that

b− ε < bn < b + ε, ∀n ≥ N0, (2.24)

and
∞∑

t1=N0

∞∑
t2=t1

· · ·
∞∑

tk=tk−1

∞∑
t=tk

F
∣∣ ∑s

j=1 pjt

∣∣ + |qt|∣∣ ∏k
i=1 aiti

∣∣
≤ min

{(
b + ε +

b + ε

b− ε

)
M − b + ε

b− ε
L, L− (1 + b + ε)N

}
,

(2.25)

where F = maxM≤x≤N{fj(x) : 1 ≤ j ≤ s}. Then define T1, T2 : A(M,N) → X
as (2.19) and (2.20). The rest proof is similar to that in Theorem 2.1, and is
omitted. �
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Remark 2.6. Theorems 2.1–2.5 extend the results in Cheng [6, Theorem 1], Liu,
Xu and Kang [8, Theorems 2.3-2.7], Zhou and Huang [16, Theorems 1-5] and cor-
responding theorems in [3, 4, 9, 10, 11, 12, 13, 14, 15].
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