Electronic Journal of Differential Equations, Vol. 2010(2010), No. 15, pp. 1-10. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

ENTIRE SOLUTIONS FOR A CLASS OF p-LAPLACE EQUATIONS IN \mathbb{R}^{2}

ZHENG ZHOU

Abstract. We study the entire solutions of the p-Laplace equation

$$
-\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)+a(x, y) W^{\prime}(u(x, y))=0, \quad(x, y) \in \mathbb{R}^{2}
$$

where $a(x, y)$ is a periodic in x and y, positive function. Here $W: \mathbb{R} \rightarrow \mathbb{R}$ is a two well potential. Via variational methods, we show that there is layered solution which is heteroclinic in x and periodic in y direction.

1. Introduction

In this paper we consider the p-Laplacian Allen-Cahn equation

$$
\begin{gather*}
-\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)+a(x, y) W^{\prime}(u(x, y))=0, \quad(x, y) \in \mathbb{R}^{2} \\
\lim _{x \rightarrow \pm \infty} u(x, y)= \pm \sigma \quad \text { uniformly w.r.t. } y \in \mathbb{R} . \tag{1.1}
\end{gather*}
$$

where we assume $2<p<\infty$ and
(H1) $a(x, y)$ is Hölder continuous on \mathbb{R}^{2}, positive and
(i) $a(x+1, y)=a(x, y)=a(x, y+1)$.
(ii) $a(x, y)=a(x,-y)$.
(H2) $W \in C^{2}(\mathbb{R})$ satisfies
(i) $0=W(\pm \sigma)<W(s)$ for any $s \in \mathbb{R} \backslash\{ \pm \sigma\}$, and $W(s)=O\left(|s \mp \sigma|^{p}\right)$ as $s \rightarrow \pm \sigma ;$
(ii) there exists $R_{0}>\sigma$ such that $W(s)>W\left(R_{0}\right)$ for any $|s|>R_{0}$.

For example, here we may take $W(t)=\frac{p-1}{p}\left|\sigma^{2}-t^{2}\right|^{p}$. This is similar with case $p=2$, where the typical examples of W are given by $W(t)=\frac{1}{4} \prod_{i=1}^{k}\left(t-z_{i}\right)^{2}$, where $z_{i}, i=1,2, \ldots k<\infty$ are zeros of $W(t)$. The case $p=2$ can be viewed as stationary Allen-Cahn equation introduced in 1979 by Allen and Cahn. We recall that the Allen-Cahn equation is a model for phase transitions in binary metallic alloys which corresponds to taking a constant function a and the double well potential $W(t)$. The function u in these models is considered as an order parameter describing pointwise the state of the material. The global minima of W represent energetically favorite pure phases and different values of u depict mixed configurations.

[^0]In 1978, De Giorgi 11 formulated the following question. Assume $N>1$ and consider a solution $u \in C^{2}\left(\mathbb{R}^{N}\right)$ of the scalar Ginzburg-Laudau equation:

$$
\begin{equation*}
\Delta u=u\left(u^{2}-1\right) \tag{1.2}
\end{equation*}
$$

satisfying $|u(x)| \leq 1, \frac{\partial u}{\partial x_{N}}>0$ for every $x=\left(x^{\prime}, x_{N}\right) \in \mathbb{R}^{N}$ and $\lim _{x_{N} \rightarrow \pm \infty} u\left(x^{\prime}, x_{N}\right)=$ ± 1. Then the level sets of $u(x)$ must be hyperplanes; i.e., there exists $g \in C^{2}(\mathbb{R})$ such that $u(x)=g\left(a x^{\prime}-x_{n}\right)$ for some fixed $a \in \mathbb{R}^{N-1}$. This conjecture was first proved for $N=2$ by Ghoussoub and Gui in [13] and for $N=3$ by Ambrosio and Cabré in [5]. For $4 \leq N \leq 8$ and assuming an additional limiting condition on u, the conjecture has been proved by Savin in [25] .

Alessio, Jeanjean and Montecchiari [2] studied the equation $-\triangle u+a(x) W^{\prime}(u)=$ 0 and obtained the existence of layered solutions based on the crucial condition that there is some discrete structure of the solutions to the corresponding ODE.

In [3], when $a(x, y)>0$ is periodic in x and y, the authors got the existence of infinite multibump type solutions, where $a(x, y)=a(x,-y)$ takes an important role [3] (see also [3, 20, 21, 22, 23, 24]).

Inherited from the above results, I wonder under what condition p-Laplace type equation (1.1) would have two dimensional layered solutions periodical in y. Adapting the renormalized variational introduced in [2, 3] (see also [21, 22]) to the pLaplace case, we prove
Theorem 1.1. Assume (H1)-(H2). Then there exists entire solution for (1.1), which behaves heteroclinic in x and periodic in y direction.

2. The periodic problem

To prove Theorem 1.1, we first consider the equation

$$
\begin{gather*}
-\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)+a(x, y) W^{\prime}(u(x, y))=0, \quad(x, y) \in \mathbb{R}^{2} \\
u(x, y)=u(x, y+1) \tag{2.1}\\
\lim _{x \rightarrow \pm \infty} u(x, y)= \pm \sigma \quad \text { uniformly w.r.t. } y \in \mathbb{R} .
\end{gather*}
$$

The main feature of this problem is that it has mixed boundary conditions, requiring the solution to be periodic in the y variable and of the heteroclinic type in the x variable.

Letting $S_{0}=\mathbb{R} \times[0,1]$, we look for minima of the Euler-Lagrange functional

$$
I(u)=\int_{S_{0}} \frac{1}{p}|\nabla u(x, y)|^{p}+a(x, y) W(u(x, y)) d x d y
$$

on the class

$$
\Gamma=\left\{u \in W_{\mathrm{loc}}^{1, p}\left(S_{0}\right):\|u(x, \cdot) \mp \sigma\|_{L^{p}(0,1)} \rightarrow 0 . x \rightarrow \pm \infty\right\}
$$

where $\left\|u\left(x_{1}, \cdot\right)-u\left(x_{2}, \cdot\right)\right\|_{L^{p}(0,1)}^{p}=\int_{0}^{1}\left|u\left(x_{1}, y\right)-u\left(x_{2}, y\right)\right|^{p} d y$. Setting

$$
\begin{aligned}
\Gamma_{p} & =\{u \in \Gamma: u(x, 0)=u(x, 1) \text { for a.e. } x \in \mathbb{R}\} \\
c_{p} & =\inf _{\Gamma_{p}} I \quad \text { and } \quad \mathcal{K}_{p}=\left\{u \in \Gamma_{p}: I(u)=c_{p}\right\}
\end{aligned}
$$

Then we use the reversibility assumption (H1)-(ii) to show that the minima c on Γ equals minima c_{p} on Γ_{p}, and so solutions of (2.1).

Note the assumptions on a and W are sufficient to prove that I is lower semicontinuous with respect to the weak convergence in $W_{\text {loc }}^{1, p}\left(S_{0}\right)$; i.e., if $u_{n} \rightarrow u$ weakly
in $W_{\text {loc }}^{1, p}(\Omega)$ for any Ω relatively compact in S_{0}, then $I(u) \leq \liminf _{n \rightarrow \infty} I\left(u_{n}\right)$. Moreover we have

Lemma 2.1. If $\left(u_{n}\right) \subset W_{\operatorname{loc}}^{1, p}\left(S_{0}\right)$ is such that $u_{n} \rightarrow u$ weakly in $W_{\operatorname{loc}}^{1, p}\left(S_{0}\right)$ and $I\left(u_{n}\right) \rightarrow I(u)$, then $I(u) \leq \liminf _{n \rightarrow \infty} u_{n}$ and

$$
\begin{aligned}
\int_{S_{0}} a(x, y) W\left(u_{n}\right) d x d y & \rightarrow \int_{S_{0}} a(x, y) W(u) d x d y \\
\int_{S_{0}}\left|\nabla u_{n}\right|^{p} d x d y & \rightarrow \int_{S_{0}}|\nabla u|^{p} d x d y
\end{aligned}
$$

Proof. Since $u_{n} \rightarrow u$ weakly in $W_{\mathrm{loc}}^{1, p}\left(S_{0}\right),\|\nabla u\|_{L^{p}\left(S_{0}\right)} \leq \liminf _{n \rightarrow \infty}\left\|\nabla u_{n}\right\|_{L^{p}\left(S_{0}\right)}$ by the lower semicontinuous of the norm. By compact embedding theorem, we have $u_{n} \rightarrow u$ in $L_{\text {loc }}^{p}\left(S_{0}\right)$, using pointwise convergence and Fatou lemma, we have $\int_{S_{0}} a(x, y) W(u) d x d y \leq \liminf _{n \rightarrow \infty} \int_{S_{0}} a(x, y) W\left(u_{n}\right) d x d y$, then

$$
\begin{aligned}
\int_{S_{0}} a(x, y) W(u) d x d y & \leq \limsup _{n \rightarrow \infty} \int_{S_{0}} a(x, y) W\left(u_{n}\right) d x d y \\
& =\limsup _{n \rightarrow \infty}\left[I\left(u_{n}\right)-\int_{S_{0}} \frac{1}{p}\left|\nabla u_{n}\right|^{p} d x d y\right] \\
& =I(u)-\liminf _{n \rightarrow \infty} \int_{S_{0}} \frac{1}{p}\left|\nabla u_{n}\right|^{p} d x d y \\
& \leq \int_{S_{0}} a(x, y) W(u) d x d y
\end{aligned}
$$

Thus, $\int_{S_{0}} a(x, y) W\left(u_{n}\right) d x d y \rightarrow \int_{S_{0}} a(x, y) W(u) d x d y$, and since $I\left(u_{n}\right) \rightarrow I(u)$, we have $\int_{S_{0}}\left|\nabla u_{n}\right|^{p} d x d y \rightarrow \int_{S_{0}}|\nabla u|^{p} d x d y$.

By Fubini's Theorem, if $u \in W_{\text {loc }}^{1, p}\left(S_{0}\right)$, then $u(x, \cdot) \in W^{1, p}(0,1)$, and for all $x_{1}, x_{2} \in \mathbb{R}$, we have

$$
\begin{aligned}
\int_{0}^{1}\left|u\left(x_{1}, y\right)-u\left(x_{2}, y\right)\right|^{p} d y & =\int_{0}^{1}\left|\int_{x_{1}}^{x_{2}} \partial_{x} u(x, y) d x\right|^{p} d y \\
& \leq\left|x_{1}-x_{2}\right|^{p-1} \int_{0}^{1} \int_{x_{1}}^{x_{2}}\left|\partial_{x} u(x, y) d x\right|^{p} d x d y \\
& \leq p I(u)\left|x_{1}-x_{2}\right|^{p-1}
\end{aligned}
$$

If $I(u)<+\infty$, the function $x \rightarrow u(x, \cdot)$ is Hölder continuous from a dense subset of \mathbb{R} with values in $L^{p}(0,1)$ and so it can be extended to a continuous function on \mathbb{R}. Thus, any function $u \in W_{\text {loc }}^{1, p}\left(S_{0}\right) \cap\{I<+\infty\}$ defines a continuous trajectory in $L^{p}(0,1)$ verifying

$$
\begin{align*}
\mathrm{d}\left(u\left(x_{1}, \cdot\right), u\left(x_{2}, \cdot\right)\right)^{p} & =\int_{0}^{1}\left|u\left(x_{1}, y\right)-u\left(x_{2}, y\right)\right|^{p} d y \tag{2.2}\\
& \leq p I(u)\left|x_{1}-x_{2}\right|^{p-1}, \forall x_{1}, x_{2} \in \mathbb{R}
\end{align*}
$$

Lemma 2.2. For all $r>0$, there exists $\mu_{r}>0$, such that if $u \in W_{\mathrm{loc}}^{1, p}\left(S_{0}\right)$ satisfies $\min \|u(x, \cdot) \pm \sigma\|_{W^{1, p}(0,1)} \geq r$ for a.e. $x \in\left(x_{1}, x_{2}\right)$, then

$$
\begin{align*}
& \int_{x_{1}}^{x_{2}}\left[\int_{0}^{1} \frac{1}{p}|\nabla u|^{p}+a(x, y) W(u(x, y)) d y\right] d x \\
& \geq \frac{1}{p\left(x_{2}-x_{1}\right)^{p-1}} \mathrm{~d}\left(u\left(x_{1}, \cdot\right), u\left(x_{2}, \cdot\right)\right)^{p}+\frac{p-1}{p} \mu_{r}^{\frac{p}{p-1}}\left(x_{2}-x_{1}\right) \tag{2.3}\\
& \geq \mu_{r} \mathrm{~d}\left(u\left(x_{1}, \cdot\right), u\left(x_{2}, \cdot\right)\right)
\end{align*}
$$

Proof. We define the functional

$$
F(u(x, \cdot))=\int_{0}^{1} \frac{1}{p}\left|\partial_{y} u(x, y)\right|^{p}+\underline{a} W(u(x, y)) d y
$$

on $W^{1, p}(0,1)$, where $\underline{a}=\min _{\mathbb{R}^{2}} a(x, y)>0$. To prove the lemma, we first to claim that:

For any $r>0$, there exists $\mu_{r}>0$, such that if $q(y) \in W^{1, p}(0,1)$ is such that $\min \|q(y) \pm \sigma\|_{W^{1, p}(0,1)} \geq r, \operatorname{then} F(q(y)) \geq \frac{p-1}{p} \mu_{r}^{\frac{p}{p-1}}$. Namely, if $q_{n}(\cdot) \in W^{1, p}(0,1)$ and $F\left(q_{n}\right) \rightarrow 0$, then $\min \left\|q_{n} \pm \sigma\right\|_{W^{1, p}(0,1)} \rightarrow 0$.

Assume by contradiction that if $F\left(q_{n}\right) \rightarrow 0$ and $\min \left\|q_{n} \pm \sigma\right\|_{L^{\infty}(0,1)} \geq \varepsilon_{0}>0$. Then there exists a sequence $\left(y_{n}^{1}\right) \subset[0,1]$ such that $\min \left|q_{n}\left(y_{n}^{1}\right) \pm \sigma\right| \geq \varepsilon_{0}$. Since $\int_{0}^{1} \underline{a} W\left(q_{n}\right) d y \rightarrow 0$ there exists a sequence $\left(y_{n}^{2}\right) \subset[0,1]$ such that $\left|q_{n}\left(y_{n}^{2}\right) \pm \sigma\right|<\frac{\varepsilon_{0}}{2}$. Then

$$
\begin{aligned}
\frac{\varepsilon_{0}}{2} & \leq\left|q_{n}\left(y_{n}^{2}\right)-q_{n}\left(y_{n}^{1}\right)\right| \\
& \leq\left|\int_{y_{n}^{1}}^{y_{n}^{2}}\right| \dot{q}_{n}(t)|d t| \\
& \leq\left|y_{n}^{2}-y_{n}^{1}\right|^{1-\frac{1}{p}}\left[\int_{0}^{1}\left|\dot{q}_{n}(t)\right|^{p} d t\right]^{1 / p} \\
& \leq p^{\frac{1}{p}}\left(F\left(q_{n}\right)\right)^{1 / p} \rightarrow 0 .
\end{aligned}
$$

It is a contradiction.
Since $\min \left\|q_{n} \pm \sigma\right\|_{L^{\infty}(0,1)} \rightarrow 0$ as $F\left(q_{n}\right) \rightarrow 0$, then $\int_{0}^{1}\left|\dot{q}_{n}(y)\right|^{p} d y \rightarrow 0$, and it follows that $\left\|q_{n}-\sigma\right\|_{W^{1, p}(0,1)} \rightarrow 0$ as $F\left(q_{n}\right) \rightarrow 0$.

Observe that if $\left(x_{1}, x_{2}\right) \subset \mathbb{R}$ and $u \in W_{\text {loc }}^{1, p}\left(S_{0}\right)$ are such that $F(u(x, \cdot)) \geq$ $\frac{p-1}{p} \mu_{r}^{\frac{p}{p-1}}$ for a.e. $x \in\left(x_{1}, x_{2}\right)$, by Hölder's and Yung's inequalities we have

$$
\begin{aligned}
& \int_{x_{1}}^{x_{2}}\left[\int_{0}^{1} \frac{1}{p}|\nabla u|^{p}+a(x, y) W(u(x, y)) d y\right] d x \\
& \geq \int_{x_{1}}^{x_{2}} \int_{0}^{1} \frac{1}{p}\left|\partial_{x} u\right|^{p} d y d x+\int_{x_{1}}^{x_{2}} \int_{0}^{1} \frac{1}{p}\left|\partial_{y} u\right|^{p}+\underline{a} W(u) d y d x \\
& =\frac{1}{p} \int_{0}^{1} \int_{x_{1}}^{x_{2}}\left|\partial_{x} u\right|^{p} d x d y+\int_{x_{1}}^{x_{2}} F(u(x, \cdot)) d x \\
& \geq \frac{1}{p\left(x_{2}-x_{1}\right)^{p-1}} \mathrm{~d}\left(u\left(x_{1}, \cdot\right), u\left(x_{2}, \cdot\right)\right)^{p}+\frac{p-1}{p} \mu_{r}^{\frac{p}{p-1}}\left(x_{2}-x_{1}\right) \\
& \geq \mu_{r} \mathrm{~d}\left(u\left(x_{1}, \cdot\right), u\left(x_{2}, \cdot\right)\right)
\end{aligned}
$$

The proof is complete.

As a direct consequence of Lemma 2.2, we have the following result.
Lemma 2.3. If $u \in W_{\text {loc }}^{1, p}\left(S_{0}\right) \cap\{I<+\infty\}$, then $\mathrm{d}(u(x, \cdot), \pm \sigma) \rightarrow 0$ as $x \rightarrow \pm \infty$.
Proof. Note that since

$$
I(u)=\int_{S_{0}} \frac{1}{p}|\nabla u|^{p}+a(x, y) W(u(x, y)) d x d y<+\infty
$$

$W(u(x, y)) \rightarrow 0$ as $|x| \rightarrow+\infty$. Then by Lemma 2.2, $\liminf _{x \rightarrow+\infty} \mathrm{d}(u(x, \cdot), \sigma)=$ 0 . Next we show that $\lim \sup _{x \rightarrow+\infty} \mathrm{d}(u(x, \cdot), \sigma)=0$ by contradiction. We assume that there exists $r \in(0, \sigma / 4)$ such that $\limsup _{x \rightarrow+\infty} \mathrm{d}(u(x, \cdot), \sigma)>2 r$, by (2.2) there exists infinite intervals $\left(p_{i}, s_{i}\right), i \in \mathbb{N}$ such that $\mathrm{d}\left(u\left(p_{i}, \cdot\right), \sigma\right)=r$, $\mathrm{d}\left(u\left(s_{i}, \cdot\right), \sigma\right)=2 r$ and $r \leq \mathrm{d}(u(x, \cdot), \sigma) \leq 2 r$ for $x \in \cup_{i}\left(p_{i}, s_{i}\right), i \in \mathbb{N}$ by Lemma 2.2 this implies $I(u)=+\infty$, it's a contradiction. Similarly, we can prove that $\lim _{x \rightarrow-\infty} \mathrm{d}(u(x, \cdot),-\sigma)=0$.

Now we consider the functional on the class

$$
\Gamma=\left\{u \in W_{\mathrm{loc}}^{1, p}\left(S_{0}\right): I(u)<+\infty, \mathrm{d}(u(x, \cdot), \pm \sigma) \rightarrow 0 \text { as } \mathrm{x} \rightarrow \pm \infty\right\}
$$

Let

$$
\begin{equation*}
c=\inf _{\Gamma} I \quad \text { and } \quad \mathcal{K}=\{u \in \Gamma: I(u)=c\} \tag{2.4}
\end{equation*}
$$

We will show that \mathcal{K} is not empty, and we start noting that the trajectory in Γ with action close to the minima has some concentration properties.

For any $\delta>0$, we set

$$
\begin{equation*}
\lambda_{\delta}=\frac{1}{p} \delta^{p}+\max _{\mathbb{R}^{2}} a(x, y) \cdot \max _{|s \pm \sigma| \leq p^{1 / p} \delta} W(s) . \tag{2.5}
\end{equation*}
$$

Lemma 2.4. There exists $\bar{\delta}_{0} \in(0, \sigma / 2)$ such that for any $\delta \in\left(0, \bar{\delta}_{0}\right)$ there exists $\rho_{\delta}>0$ and $l_{\delta}>0$, for which, if $u \in \Gamma$ and $I(u) \leq c+\lambda_{\delta}$, then
(i) $\min \|u(x, \cdot) \pm \sigma\|_{W^{1, p}(0,1)} \geq \delta$ for a.e. $x \in(s, p)$ then $p-s \leq l_{\delta}$.
(ii) if $\left\|u\left(x_{-}, \cdot\right)+\sigma\right\|_{W^{1, p}(0,1)} \leq \delta$, then $\mathrm{d}\left(u\left(x_{-}, \cdot\right),-\sigma\right) \leq \rho_{\delta}$ for any $x \leq x_{-}$, and if $\left\|u\left(x_{+}, \cdot\right)-\sigma\right\|_{W^{1, p}(0,1)} \leq \delta$, then $\mathrm{d}(u(, \cdot), \sigma) \leq \rho_{\delta}$ for any $x \geq x_{+}$.
Proof. By Lemma 2.2, as in this case, there exists $\mu_{\delta}>0$ such that

$$
\int_{s}^{p} \int_{0}^{1} \frac{1}{p}|\nabla u|^{p}+a(x, y) W(u) d x d y \geq \mu_{\delta}(p-s) .
$$

Since $I(u) \leq c+\lambda_{\delta}$ there exists $l_{\delta}<+\infty$ such that $p-s<l_{\delta}$.
To prove (ii), we first do some preparation, $\mu_{r_{\delta}} \geq \frac{p-1}{p} \lambda_{\delta}, \rho_{\delta}=\max \left\{\delta, r_{\delta}\right\}+$ $3\left(\frac{p-1}{p \mu_{r_{\delta}}}\right)^{\frac{p-1}{p}} \lambda_{\delta}$. Let $\bar{\delta}_{0} \in(0, \sigma / 2)$ be such that $\rho_{\delta}<\sigma / 2$ for all $\delta \in\left(0, \bar{\delta}_{0}\right)$. Let $\delta \in\left(0, \bar{\delta}_{0}\right), u \in \Gamma, I(u) \leq+\infty$ and $x_{-} \in \mathbb{R}$ be such that $\left\|u\left(x_{-}, \cdot\right)+\sigma\right\|_{W^{1, p}(0,1)} \leq \delta$. Define

$$
u_{-}(x, y)= \begin{cases}-1 & \text { if } x<x_{-}-1 \\ x-x_{-}+\left(x-x_{-}+1\right) u\left(x_{-}, y\right) & \text { if } x_{-}-1 \leq x_{-} \\ u(x, y) & \text { if } x \geq x_{-}\end{cases}
$$

and note that $u_{-} \in \Gamma$ and $I\left(u_{-}\right) \geq c$, then $\left\|u_{-}+\sigma\right\|_{W^{1, p}(0,1)}=\left|x-x_{-}+1\right| \cdot \| u\left(x_{-}, \cdot\right)+$ $\sigma \|_{W^{1, p}(0,1)} \leq \delta$ when $x_{-}-1 \leq x \leq x_{-}$. Recall that $\|q\|_{L^{\infty}(0,1)} \leq p^{1 / p}\|q\|_{W^{1, p}(0,1)}$
for any $q \in W^{1, p}(0,1)$, then $\left\|u_{-}+\sigma\right\|_{L^{\infty}(0,1)} \leq p^{1 / p}\left\|u_{-}+\sigma\right\|_{W^{1, p}(0,1)} \leq p^{1 / p} \delta$, by definition 2.5 of λ_{δ}, we have

$$
\int_{x_{-}-1}^{x_{-}}\left[\int_{0}^{1} \frac{1}{p}\left|\nabla u_{-}\right|^{p}+a(x, y) W\left(u_{-}\right) d y\right] d x \leq \lambda_{\delta}
$$

Since

$$
\begin{aligned}
I\left(u_{-}\right)= & I(u)-\int_{-\infty}^{x_{-}} \int_{0}^{1} \frac{1}{p}|\nabla u|^{p}+a(x, y) W(u) d y d x \\
& +\int_{x_{-}-1}^{x_{-}} \int_{0}^{1} \frac{1}{p}\left|\nabla u_{-}\right|^{p}+a(x, y) W\left(u_{-}\right) d y d x
\end{aligned}
$$

we obtain

$$
\begin{equation*}
\int_{-\infty}^{x_{-}} \int_{0}^{1} \frac{1}{p}|\nabla u|^{p}+a(x, y) W(u) d y d x \leq 2 \lambda_{\delta} \tag{2.6}
\end{equation*}
$$

Now, assume by contradiction that there exists $x_{1}<x_{-}$such that $\mathrm{d}\left(u\left(x_{1}, \cdot\right),-\sigma\right) \geq$ ρ_{δ}, by 2.2 there exists $x_{2} \in\left(x_{1}, x_{-}\right)$such that $\mathrm{d}(u(x, \cdot),-\sigma) \geq \max \left\{\delta, r_{\delta}\right\}$ for $x \in\left(x_{1}, x_{2}\right)$ and $\mathrm{d}\left(u\left(x_{1}, \cdot\right), u\left(x_{1}, \cdot\right)\right) \geq \rho_{\delta}-\max \left\{\delta, r_{\delta}\right\}$. By Lemma 2.2, we have

$$
\int_{-\infty}^{x_{-}} \int_{0}^{1} \frac{1}{p}|\nabla u|^{p}+a(x, y) W(u) d y d x \geq\left(\frac{p \mu_{r_{\delta}}}{p-1}\right)^{\frac{p-1}{p}}\left(\rho_{\delta}-\max \left\{\delta, r_{\delta}\right\}\right) \geq 3 \lambda_{\delta}
$$

which contradicts 2.6). Thus $\mathrm{d}(u(x, \cdot),-\sigma) \leq \rho_{\delta}$ for any $x \leq x_{-}$. Analogously, we can prove if $\left\|u\left(x_{+}, \cdot\right)-\sigma\right\|_{W^{1, p}(0,1)} \leq \delta$, then $\mathrm{d}(u(x, \cdot), \sigma) \leq \rho_{\delta}$ as $x \geq x_{+}$.

To exploit the compactness of I on Γ, we set the function $X: W_{\text {loc }}^{1, p}\left(S_{0}\right) \rightarrow$ $\mathbb{R} \cup\{+\infty\}$ given by

$$
X(u)=\sup \{x: \mathrm{d}(u(x, \cdot), \sigma)\} \geq \sigma / 2
$$

Setting $\chi(s)=\min |s \pm \sigma|$, by $\left(H_{3}\right)$, there exist $0<w_{1}<w_{2}$ such that

$$
\begin{equation*}
w_{1} \chi^{p}(s) \leq W(s) \leq w_{2} \chi^{p}(s) \text { when } \chi(s) \leq \sigma / 2 \tag{2.7}
\end{equation*}
$$

Now, we can get the compactness of the minimizing sequence of I in Γ.
Lemma 2.5. If $\left(u_{n}\right) \subset \Gamma$ is such that $I\left(u_{n}\right) \rightarrow c$ and $X\left(u_{n}\right) \rightarrow X_{0} \in \mathbb{R}$, then there exists $u_{0} \in \mathcal{K}$ such that, along a sequence, $u_{n} \rightarrow u_{0}$ weakly in $W^{1, p}\left(S_{0}\right)$.
Proof. We now show that $\left(u_{n}\right)$ is bounded in $W_{\text {loc }}^{1, p}\left(S_{0}\right)$, i.e., $\left(u_{n}\right)$ is bounded in $L_{\mathrm{loc}}^{p}\left(S_{0}\right),\left(\nabla u_{n}\right)$ is bounded in $L_{\mathrm{loc}}^{p}\left(S_{0}\right)$. Since $I\left(u_{n}\right) \rightarrow$ cand $\int_{S_{0}}\left|\nabla u_{n}\right|^{p} d x d y \leq$ $p I\left(u_{n}\right)$, we have that $\left(\nabla u_{n}\right)$ is bounded in $L_{\mathrm{loc}}^{p}\left(S_{0}\right)$. If we can prove that $u_{n}(x, \cdot)$ is bounded in $L^{p}(0,1)$ for a.e. $x \in \mathbb{R}$, then $\left(u_{n}\right)$ is bounded in $L_{\mathrm{loc}}^{p}\left(S_{0}\right)$.

Let $B_{r}=\left\{q \in L^{p}(0,1) /\|q\|_{L^{p}(0,1)} \leq r\right\}$, we assume by contradiction that for any $R>2 \sigma$, there exists $\bar{x} \in \mathbb{R}$ such that $u(\bar{x}, \cdot) \notin B_{R}$ for $u \in \Gamma \cap\{I(u) \leq c+\lambda\}, \lambda>0$, such that $\|u(\bar{x}, \cdot)\|_{L^{p}(0,1)} \geq R$, then $\mathrm{d}(u(\bar{x}, \cdot), \sigma) \geq\|u(\bar{x}, \cdot)\|_{L^{p}(0,1)}-\|\sigma\|_{L^{p}(0,1)} \geq$ $R-\sigma$. Since $\mathrm{d}(u(x, \cdot), \pm \sigma) \rightarrow 0$ as $x \rightarrow \pm \infty$, by continuity there exists $x_{1}>\bar{x}$ such that $\mathrm{d}\left(u\left(x_{1}, \cdot\right), \sigma\right) \leq \sigma / 2$ and $\mathrm{d}(u(x, \cdot), \sigma) \geq \sigma / 2$ for $x \in\left(\bar{x}, x_{1}\right)$. Using Lemma 2.2, we get

$$
c+\lambda \geq I(u) \geq \mu_{\sigma / 2} \mathrm{~d}\left(u\left(x_{1}, \cdot\right), u(\bar{x}, \cdot)\right) \geq \mu_{\sigma / 2}(R-3 \sigma / 2)
$$

which is a contradiction for R large enough. We conclude that $\left(u_{n}\right)$ is bounded in $W_{\text {loc }}^{1, p}\left(S_{0}\right)$, thus there exists $u_{0} \in W_{\text {loc }}^{1, p}\left(S_{0}\right)$ such that up to a sequence, $u_{n} \rightarrow u_{0}$ weakly in $W_{\text {loc }}^{1, p}\left(S_{0}\right)$. We shall prove that $u_{0} \in \Gamma$; i.e., $\mathrm{d}\left(u_{0}(x, \cdot), \pm \sigma\right) \rightarrow 0$ as $x \rightarrow \pm \infty$. First we claim that:

For any small $\varepsilon>0$, there exists $\lambda(\varepsilon) \in\left(0, \lambda_{\bar{\delta}}\right)$ and $l(\varepsilon)>l_{\bar{\delta}}$ such that if $u \in \Gamma \cap\{I(u) \leq c+\lambda(\varepsilon)\}$ then

$$
\begin{equation*}
\int_{|x-X(u)| \geq l(\varepsilon)} \int_{0}^{1} W(u(x, y)) d y d x \leq \varepsilon \tag{2.8}
\end{equation*}
$$

Indeed, let $\delta<\bar{\delta}$ be such that $3 \lambda_{\delta} \leq \underline{a} w_{1} \varepsilon$ where $\underline{a}=\min _{\mathbb{R}^{2}} a(x, y)$. Given any $u \in \Gamma \cap\left\{I(u) \leq c+\lambda_{\delta}\right\}$, by Lemma 2.4, there exists $x_{-} \in\left(X(u)-l_{\delta}, X(u)\right)$ and $x_{+} \in\left(X(u), X(u)+l_{\delta}\right)$ such that $\left.\| u\left(x_{-}, \cdot\right)+\sigma\right) \|_{W^{1, p}(0,1)} \leq \delta$ and $\| u\left(x_{+}, \cdot\right)-$ $\sigma \|_{W^{1, p}(0,1)} \leq \delta$. We define the function

$$
\tilde{u}(x, y)= \begin{cases}-\sigma & \text { if } x<x_{-}-1 \\ \sigma\left(x-x_{-}\right)+\left(x-x_{-}+1\right) u\left(x_{-}, y\right) & \text { if } x_{-}-1 \leq x_{-} \\ u(x, y) & \text { if } x_{-} \leq x \leq x_{+} \\ \left(x_{+}-x+1\right) u\left(x_{+}, y\right)+\sigma\left(x-x_{+}\right) & \text {if } x_{+} \leq x<x_{+}+1 \\ \sigma & \text { if } x>x_{+}+1\end{cases}
$$

which belongs to Γ, and $I(\tilde{u}) \geq c$,

$$
\begin{aligned}
& \int_{|x-X(u)| \geq l_{\delta}} \int_{0}^{1} \frac{1}{p}|\nabla u|^{p}+a(x, y) W(u) d y d x \\
& \leq I_{-\infty}^{x_{-}}(u)+I_{x_{+}}^{+\infty}(u) \\
& =I(u)-I(\tilde{u})+I_{x_{--1}}^{x_{-}}(\tilde{u})+I_{x_{+}}^{x_{+}+1}(\tilde{u}) \\
& \leq 3 \lambda_{\delta}
\end{aligned}
$$

then (2.8) follows setting $l(\varepsilon)=l_{\bar{\delta}}$ and $\lambda(\varepsilon)=\lambda_{\delta}$.
From (2.8) it is easy to see that $u(x, y) \rightarrow \sigma$ as $x \rightarrow+\infty$. Combining (2.8) and (2.7) we obtain

$$
\int_{|x-X(u)| \geq l(\varepsilon)} \int_{0}^{1} w_{1}|u(x, y)-\sigma|^{p} d x d y \leq \int_{|x-X(u)| \geq l(\varepsilon)} \int_{0}^{1} W(u(x, y)) d y d x \leq \varepsilon
$$

i.e., $\mathrm{d}(u(x, \cdot), \sigma) \rightarrow 0$ as $x \rightarrow+\infty$. Analogously, we can get that $\mathrm{d}(u(x, \cdot),-\sigma) \rightarrow 0$ as $x \rightarrow-\infty$, it follows that $u_{0} \in \Gamma$.

As a consequence, we get the following existence result.
Proposition 2.6. $\mathcal{K} \neq \emptyset$ and any $u \in \mathcal{K}$ satisfies $u \in C^{1, \alpha}\left(\mathbb{R}^{2}\right)$ is a solution of $-\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)+a(x, y) W^{\prime}(u(x, y))=0$ on S_{0} with $\partial_{y} u(x, 0)=\partial_{y} u(x, 1)=0$ for all $x \in \mathbb{R}$, and $\|u\|_{L^{\infty}}\left(S_{0}\right) \leq R_{0}$. Finally, $u(x, y) \rightarrow \pm \sigma$ as $x \rightarrow \pm \infty$ uniformly in $y \in[0,1]$.
Proof. By Lemma 2.5, the set \mathcal{K} is not empty. By $\left(H_{2}\right),\|u\|_{L^{\infty}\left(S_{0}\right)} \leq R_{0}$. Indeed, $\tilde{u}=\max \left\{-R_{0}, \min \left\{R_{0}, u\right\}\right\}$ is a fortiori minimizer. Let $\eta \in C_{0}^{\infty}\left(S_{0}\right)$ and $\tau \in \mathbb{R}$, then $u+\tau \eta \in \Gamma$ and since $u \in \mathcal{K}, I(u+\tau \eta)$ is a C^{1} function of τ with a local minima at $\tau=0$. Therefore,

$$
I^{\prime}(u) \eta=\int_{S_{0}}|\nabla u|^{p-2} \nabla u \nabla \eta+a W^{\prime}(u) \eta d x d y=0
$$

for all such η, namely u is a weak solution of the equation $-\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)+$ $a(x, y) W^{\prime}(u(x, y))=0$ on S_{0}. Standard regularity arguments show that $u \in$ $C^{1, \alpha}\left(S_{0}\right)$ for some $\alpha \in(0,1)$ and satisfies the Neumann boundary condition (see
[14] [17] [27]. Since $\|u\|_{L^{\infty}\left(S_{0}\right)} \leq R_{0}$, there exists $C>0$ such that $\|u\|_{C^{1, \alpha}\left(S_{0}\right)} \leq C$, which guarantees that u satisfies the boundary conditions. Indeed, assume by contradiction that u does not verify $u(x, y) \rightarrow-\sigma$ as $x \rightarrow-\infty$ uniformly with respect to $y \in[0,1]$. Then there exists $\delta>0$ and a sequence $\left(x_{n}, y_{n}\right) \in S_{0}$ with $x_{n} \rightarrow-\infty$ and $\left|u\left(x_{n}, y_{n}\right)+\sigma\right| \geq 2 \delta$ for all $n \in \mathbb{N}$. The $C^{1, \alpha}$ estimate of u implies that there exists $\rho>0$ such that $|u(x, y)+\sigma| \geq \delta$ for $\forall(x, y) \in B_{\rho}\left(x_{n}, y_{n}\right), n \in \mathbb{N}$. Along a subsequence $x_{n} \rightarrow-\infty, y_{n} \rightarrow y_{0} \in[0,1],|u(x, y)+\sigma| \geq \delta$ for $(x, y) \in B_{\rho / 2}\left(x_{n}, y_{0}\right)$, which contradicts with the fact that $\mathrm{d}(u(x, \cdot),-\sigma) \rightarrow 0$ as $x \rightarrow-\infty$ since $u \in \Gamma$. The other case is similar.

We shall explore the reversibility condition of (H1)-(ii), and we will prove that the minimizer on Γ is in fact a solution of 2.1 .

Lemma 2.7. $c_{p}=c$.
Proof. Since $\Gamma_{p} \subset \Gamma, c_{p} \geq c$. Assume by contradiction that $c_{p}>c$, then there exists $u \in \Gamma$ such that $I(u)<c_{p}$. Writing

$$
\begin{aligned}
I(u) & =\int_{\mathbb{R}}\left[\int_{0}^{1 / 2} \frac{1}{p}|\nabla u|^{p}+a W(u) d y\right] d x+\int_{\mathbb{R}}\left[\int_{1 / 2}^{1} \frac{1}{p}|\nabla u|^{p}+a W(u) d y\right] d x \\
& =I_{1}+I_{2}
\end{aligned}
$$

it follows that $\min \left\{I_{1}, I_{2}\right\}<\frac{c_{p}}{2}$. Suppose for example $I_{1}<c_{p} / 2$, define

$$
v(x, y)= \begin{cases}u(x, y) & \text { if } x \in \mathbb{R} \text { and } 0 \leq y \leq \frac{1}{2} \\ u(x, 1-y) & \text { if } x \in \mathbb{R} \text { and } \frac{1}{2} \leq y \leq 1\end{cases}
$$

Then $v \in \Gamma_{p}$, by condition (H1)-(ii), $I(v)=2 I_{1}<c_{p}$, this is a contradiction.
We shall prove that any $u \in \mathcal{K}$ is periodic in y.
Lemma 2.8. If $u \in \mathcal{K}$ then $u(x, 0)=u(x, 1)$ for all $x \in \mathbb{R}$.
Proof. Suppose $u \in \mathcal{K}$ and v as above, then $v(x, y)=u(x, y)$ for $y \in[0,1 / 2]$. By $\left(H_{1}\right)$-(ii), $I(u)=c=c_{p}=I(v)$, so $v \in \mathcal{K}$. Then u and v are solutions of

$$
\begin{gather*}
-\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)+a W^{\prime}(u(x, y))=0, \quad \text { on } S_{0} \\
\partial_{y} u(x, 0)=\partial_{y} u(x, 1)=0 \quad \text { for all } x \in \mathbb{R} \tag{2.9}
\end{gather*}
$$

Since $u=v$ for $y \in[0,1 / 2]$, by the principle of unique continuation (see [8), we have $u=v$ in $\mathbb{R} \times[0,1]$. i.e. $u(x, 0)=u(x, 1)$.

Remark 2.9. It is an open problem for the principle for p -harmonic functions in case $n \geq 3$ and $p \neq 2$. When $p=\infty$, the principle of unique continuation does not hold.

Proof of Theorem 1.1. We now extend u periodically in y direction to the entire space \mathbb{R}^{2}, and write it as $U(x, y)$. As a consequence of the above lemmas and proposition 2.6, $U(x, y)$ is an entire solution of 1.1 , which is heteroclinic in x and 1-periodic in y direction.

References

[1] G. Alberti, L. Ambrosio and X. Cabré, On a long-standing conjecture of E. De Giorgi: symmetry in 3D for general nonlinearities and a local minimality property, Acta Applicandae Mathematicae, 65 (2001), 9-33.
[2] F. Alessio, L. Jeanjean and P. Montecchiari, Stationary layered solutions in \mathbb{R}^{2} for a class of non autonomous Allen-Cahn equations, Calc. Var. Partial Differ. Equ., 11 (2000), 177-202.
[3] F. Alessio, L. Jeanjean and P. Montecchiari, Existence of infinitely many stationary layered solutions in \mathbb{R}^{2} for a class of periodic Allen-Cahn Equations, Comm. Partial Differ. Equations, 27 (2002), 1537-1574.
[4] F. Alessio, and P. Montecchiari, Brake orbits type solutions to some class of semilinear elliptic equations, Calc.Var.Partial Differ.Equ., 30 (2007), 51-83.
[5] L. Ambrosio and X. Cabré, Entire solutions of semilinear ellipticequations in R^{3} and a conjecture of De Giorgi, J. Amer. Math.Soc, 13 (2000), 725-739.
[6] M. T. Barlow, R. R. Bass and C. Gui, The Liouville property and a conjecture of De Giorgi, Comm. Pure Appl. Math., 53 (2000), 1007-1038.
[7] H. Berestycki, F. Hamel and R. Monneau, One-dimensional symmetry for some bounded entire solutions of some elliptic equations, Duke Math.J., 103 (2000), 375-396.
[8] B. Bojarski, T. Iwaniec, p-harmonic equation and quasiregular mappings, Partial Diff. Equs(Warsaw 1984), 19 (1987), 25-38.
[9] L. Caffarelli, N. Garofalo, and F. Segala, A gradient bound for entire solutions of quasi-linear equations and its consequences, Comm. Pure Appl. Math., 47 (1994),1457-1473.
[10] L. Damascelli and B. Sciunzi, Regularity, monotonicity and symmetryof positive solutions of m-Laplace equations, J. Differential Equations, 206 (2004), 483-515.
[11] E. DeGiorgi, Convergence problems for functionals and operators, Pro.Int.Meet. on Recent Methods in Nonlinear Analysis, Rome,1978, E.De Giorge, E.Magenes, U,Mosco, eds., Pitagora Bologna, (1979), 131-188.
[12] A. Farina, Some remarks on a conjecture of De Giorgi, Calc.Var., 8,(1999), 233-245.
[13] N. Ghoussoub and C. Gui, On a conjecture of De Giorgi and some related problems, Math. Ann., 311 (1998), 481-491.
[14] D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, Springer.
[15] T. Iwaniec and J. Manfredi, Regularity of p-harmonic functions in the plane, Revista Matematica Iberoamericana, 5 (1989), 1-19.
[16] P. Lindqvist, On the growth of the solutions of the equation $\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)=0$ in $\mathrm{n}-$ dimensional space, Journal of Differential Equations, 58 (1985), 307-317.
[17] P. Lindqvist, Regularity for the gradient of the solution to a nonlinear obstacle problem with degenerate ellipticity, Nonlinear Analysis, 12 (1998), 1245-1255.
[18] J. Manfredi, p-harmonic functions in the plane, Proceedings of the American Mathematical Society, 103 (1988), 473-479.
[19] J. Manfredi, Isolated singularities of p-harmonic functions in the plane, SIAM Journal on Mathematical Analysis, 22 (1991), 424-439.
[20] P. H. Rabinowitz, Multibump solutions for an almost periodically forced singular hamiltonian system, Electronic Journal of Differential Equations, 12 (1995), 1-21.
[21] P. H. Rabinowitz, Solutions of heteroclinic type for some classes of semilinear elliptic partial differential equations, J.Math.Sci.Univ.Tokio, 1 (1994), 525-550.
[22] P. H. Rabinowitz, Heteroclinic for reversible Hamiltonian system, Ergod.Th.and Dyn.Sys., 14 (1994), 817-829.
[23] P. H. Rabinowitz and E. Stredulinsky, Mixed states for an Allen-Cahn type equation, Commun. Pure Appl. Math. 56, No. 8 (2003), 1078-1134.
[24] P. H. Rabinowitz and E. Stredulinsky, Mixed states for an Allen-Cahn type equation II, Calc. Var. Partial Differ. Equ. 21, No. 2 (2004), 157-207.
[25] O. Savin, Phase Transition: Regularity of Flat Level Sets, PhD. Thesis, University of Texas at Austin, (2003).
[26] J. Serrin and H. Zou, Symmetry of ground states of quasilinear elitic equations, Arch.Rational Mech.Anal., 148 (1999), 265-290.
[27] P. Tolksdorf, Regularity for a more general class of quasilinear elliptic equations, J. Differential Equations, 51 (1984), 126-150.

Zheng Zhou
College of Mathematics and Econometrics, Hunan University, Changsha, China
E-mail address: zzzzhhhoou@yahoo.com.cn

[^0]: 2000 Mathematics Subject Classification. 35J60, 35B05, 35B40.
 Key words and phrases. Entire solution; p-Laplace Allen-Cahn equation;
 Variational methods.
 (C) 2010 Texas State University - San Marcos.

 Submitted September 15, 2009. Published January 21, 2010.

