Electronic Journal of Differential Equations, Vol. 2010(2010), No. 15, pp. 1–10. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

ENTIRE SOLUTIONS FOR A CLASS OF *p*-LAPLACE EQUATIONS IN \mathbb{R}^2

ZHENG ZHOU

ABSTRACT. We study the entire solutions of the *p*-Laplace equation

$$-\operatorname{div}(|\nabla u|^{p-2}\nabla u) + a(x,y)W'(u(x,y)) = 0, \quad (x,y) \in \mathbb{R}^2$$

where a(x, y) is a periodic in x and y, positive function. Here $W : \mathbb{R} \to \mathbb{R}$ is a two well potential. Via variational methods, we show that there is layered solution which is heteroclinic in x and periodic in y direction.

1. INTRODUCTION

In this paper we consider the *p*-Laplacian Allen-Cahn equation

$$-\operatorname{div}(|\nabla u|^{p-2}\nabla u) + a(x,y)W'(u(x,y)) = 0, \quad (x,y) \in \mathbb{R}^2$$
$$\lim_{x \to \pm\infty} u(x,y) = \pm \sigma \quad \text{uniformly w.r.t. } y \in \mathbb{R}.$$
(1.1)

where we assume 2 and

(H1) a(x, y) is Hölder continuous on \mathbb{R}^2 , positive and (i) a(x+1, y) = a(x, y) = a(x, y+1).

(i) a(x + 1, y) = a(x, -y).

- (H2) $W \in C^2(\mathbb{R})$ satisfies
 - (i) $0 = W(\pm \sigma) < W(s)$ for any $s \in \mathbb{R} \setminus \{\pm \sigma\}$, and $W(s) = O(|s \mp \sigma|^p)$ as $s \to \pm \sigma$;
 - (ii) there exists $R_0 > \sigma$ such that $W(s) > W(R_0)$ for any $|s| > R_0$.

For example, here we may take $W(t) = \frac{p-1}{p} |\sigma^2 - t^2|^p$. This is similar with case p = 2, where the typical examples of W are given by $W(t) = \frac{1}{4} \prod_{i=1}^{k} (t-z_i)^2$, where $z_i, i = 1, 2, \ldots, k < \infty$ are zeros of W(t). The case p = 2 can be viewed as stationary Allen-Cahn equation introduced in 1979 by Allen and Cahn. We recall that the Allen-Cahn equation is a model for phase transitions in binary metallic alloys which corresponds to taking a constant function a and the double well potential W(t). The function u in these models is considered as an order parameter describing pointwise the state of the material. The global minima of W represent energetically favorite pure phases and different values of u depict mixed configurations.

Variational methods.

²⁰⁰⁰ Mathematics Subject Classification. 35J60, 35B05, 35B40.

Key words and phrases. Entire solution; p-Laplace Allen-Cahn equation;

^{©2010} Texas State University - San Marcos.

Submitted September 15, 2009. Published January 21, 2010.

Z. ZHOU

In 1978, De Giorgi [11] formulated the following question. Assume N > 1 and consider a solution $u \in C^2(\mathbb{R}^N)$ of the scalar Ginzburg-Laudau equation:

$$\Delta u = u(u^2 - 1) \tag{1.2}$$

satisfying $|u(x)| \leq 1$, $\frac{\partial u}{\partial x_N} > 0$ for every $x = (x', x_N) \in \mathbb{R}^N$ and $\lim_{x_N \to \pm \infty} u(x', x_N) = \pm 1$. Then the level sets of u(x) must be hyperplanes; i.e., there exists $g \in C^2(\mathbb{R})$ such that $u(x) = g(ax' - x_n)$ for some fixed $a \in \mathbb{R}^{N-1}$. This conjecture was first proved for N = 2 by Ghoussoub and Gui in [13] and for N = 3 by Ambrosio and Cabré in [5]. For $4 \leq N \leq 8$ and assuming an additional limiting condition on u, the conjecture has been proved by Savin in [25].

Alessio, Jeanjean and Montecchiari [2] studied the equation $-\Delta u + a(x)W'(u) = 0$ and obtained the existence of layered solutions based on the crucial condition that there is some discrete structure of the solutions to the corresponding ODE.

In [3], when a(x, y) > 0 is periodic in x and y, the authors got the existence of infinite multibump type solutions, where a(x, y) = a(x, -y) takes an important role [3](see also [3, 20, 21, 22, 23, 24]).

Inherited from the above results, I wonder under what condition p-Laplace type equation (1.1) would have two dimensional layered solutions periodical in y. Adapting the renormalized variational introduced in [2, 3] (see also [21, 22]) to the p-Laplace case, we prove

Theorem 1.1. Assume (H1)–(H2). Then there exists entire solution for (1.1), which behaves heteroclinic in x and periodic in y direction.

2. The periodic problem

To prove Theorem 1.1, we first consider the equation

$$-\operatorname{div}(|\nabla u|^{p-2}\nabla u) + a(x,y)W'(u(x,y)) = 0, \quad (x,y) \in \mathbb{R}^{2}$$
$$u(x,y) = u(x,y+1)$$
$$\lim_{x \to \pm \infty} u(x,y) = \pm \sigma \quad \text{uniformly w.r.t. } y \in \mathbb{R}.$$
$$(2.1)$$

The main feature of this problem is that it has mixed boundary conditions, requiring the solution to be periodic in the y variable and of the heteroclinic type in the x variable.

Letting $S_0 = \mathbb{R} \times [0, 1]$, we look for minima of the Euler-Lagrange functional

$$I(u) = \int_{S_0} \frac{1}{p} |\nabla u(x, y)|^p + a(x, y) W(u(x, y)) \, dx \, dy$$

on the class

$$\begin{split} \Gamma &= \{ u \in W^{1,p}_{\text{loc}}(S_0) : \| u(x,\cdot) \mp \sigma \|_{L^p(0,1)} \to 0. \; x \to \pm \infty \} \\ \text{where } \| u(x_1,\cdot) - u(x_2,\cdot) \|_{L^p(0,1)}^p = \int_0^1 |u(x_1,y) - u(x_2,y)|^p dy. \; \text{Setting} \\ \Gamma_p &= \{ u \in \Gamma : u(x,0) = u(x,1) \text{for a.e. } x \in \mathbb{R} \} \\ c_p &= \inf_{\Gamma_p} I \quad \text{and} \quad \mathcal{K}_p = \{ u \in \Gamma_p : I(u) = c_p \} \end{split}$$

Then we use the reversibility assumption (H1)-(ii) to show that the minima c on Γ equals minima c_p on Γ_p , and so solutions of (2.1).

Note the assumptions on a and W are sufficient to prove that I is lower semicontinuous with respect to the weak convergence in $W_{\text{loc}}^{1,p}(S_0)$; i.e., if $u_n \to u$ weakly EJDE-2010/15

in $W_{\text{loc}}^{1,p}(\Omega)$ for any Ω relatively compact in S_0 , then $I(u) \leq \liminf_{n \to \infty} I(u_n)$. Moreover we have

Lemma 2.1. If $(u_n) \subset W^{1,p}_{\text{loc}}(S_0)$ is such that $u_n \to u$ weakly in $W^{1,p}_{\text{loc}}(S_0)$ and $I(u_n) \to I(u)$, then $I(u) \leq \liminf_{n \to \infty} u_n$ and

$$\int_{S_0} a(x,y)W(u_n) \, dx \, dy \to \int_{S_0} a(x,y)W(u) \, dx \, dy$$
$$\int_{S_0} |\nabla u_n|^p \, dx \, dy \to \int_{S_0} |\nabla u|^p \, dx \, dy$$

Proof. Since $u_n \to u$ weakly in $W_{\text{loc}}^{1,p}(S_0)$, $\|\nabla u\|_{L^p(S_0)} \leq \liminf_{n\to\infty} \|\nabla u_n\|_{L^p(S_0)}$ by the lower semicontinuous of the norm. By compact embedding theorem, we have $u_n \to u$ in $L_{\text{loc}}^p(S_0)$, using pointwise convergence and Fatou lemma, we have $\int_{S_0} a(x, y) W(u) \, dx \, dy \leq \liminf_{n\to\infty} \int_{S_0} a(x, y) W(u_n) \, dx \, dy$, then

$$\begin{split} \int_{S_0} a(x,y) W(u) \, dx \, dy &\leq \limsup_{n \to \infty} \int_{S_0} a(x,y) W(u_n) \, dx \, dy \\ &= \limsup_{n \to \infty} \left[I(u_n) - \int_{S_0} \frac{1}{p} |\nabla u_n|^p \, dx \, dy \right] \\ &= I(u) - \liminf_{n \to \infty} \int_{S_0} \frac{1}{p} |\nabla u_n|^p \, dx \, dy \\ &\leq \int_{S_0} a(x,y) W(u) \, dx \, dy. \end{split}$$

Thus, $\int_{S_0} a(x, y)W(u_n) dx dy \to \int_{S_0} a(x, y)W(u) dx dy$, and since $I(u_n) \to I(u)$, we have $\int_{S_0} |\nabla u_n|^p dx dy \to \int_{S_0} |\nabla u|^p dx dy$.

By Fubini's Theorem, if $u \in W^{1,p}_{\text{loc}}(S_0)$, then $u(x, \cdot) \in W^{1,p}(0,1)$, and for all $x_1, x_2 \in \mathbb{R}$, we have

$$\begin{split} \int_0^1 |u(x_1, y) - u(x_2, y)|^p dy &= \int_0^1 |\int_{x_1}^{x_2} \partial_x u(x, y) dx|^p dy \\ &\leq |x_1 - x_2|^{p-1} \int_0^1 \int_{x_1}^{x_2} |\partial_x u(x, y) dx|^p dx dy \\ &\leq pI(u) |x_1 - x_2|^{p-1}. \end{split}$$

If $I(u) < +\infty$, the function $x \to u(x, \cdot)$ is Hölder continuous from a dense subset of \mathbb{R} with values in $L^p(0, 1)$ and so it can be extended to a continuous function on \mathbb{R} . Thus, any function $u \in W^{1,p}_{\text{loc}}(S_0) \cap \{I < +\infty\}$ defines a continuous trajectory in $L^p(0, 1)$ verifying

$$d(u(x_1, \cdot), u(x_2, \cdot))^p = \int_0^1 |u(x_1, y) - u(x_2, y)|^p dy$$

$$\leq pI(u)|x_1 - x_2|^{p-1}, \forall x_1, x_2 \in \mathbb{R}.$$
(2.2)

Lemma 2.2. For all r > 0, there exists $\mu_r > 0$, such that if $u \in W^{1,p}_{\text{loc}}(S_0)$ satisfies $\min ||u(x, \cdot) \pm \sigma||_{W^{1,p}(0,1)} \ge r$ for a.e. $x \in (x_1, x_2)$, then

$$\int_{x_1}^{x_2} \left[\int_0^1 \frac{1}{p} |\nabla u|^p + a(x, y) W(u(x, y)) dy \right] dx$$

$$\geq \frac{1}{p(x_2 - x_1)^{p-1}} d(u(x_1, \cdot), u(x_2, \cdot))^p + \frac{p-1}{p} \mu_r^{\frac{p}{p-1}}(x_2 - x_1)$$

$$\geq \mu_r d(u(x_1, \cdot), u(x_2, \cdot))$$
(2.3)

Proof. We define the functional

$$F(u(x,\cdot)) = \int_0^1 \frac{1}{p} |\partial_y u(x,y)|^p + \underline{a} W(u(x,y)) dy$$

on $W^{1,p}(0,1)$, where $\underline{a} = \min_{\mathbb{R}^2} a(x,y) > 0$. To prove the lemma, we first to claim that:

For any r > 0, there exists $\mu_r > 0$, such that if $q(y) \in W^{1,p}(0,1)$ is such that $\min \|q(y) \pm \sigma\|_{W^{1,p}(0,1)} \ge r$, then $F(q(y)) \ge \frac{p-1}{p} \mu_r^{\frac{p}{p-1}}$. Namely, if $q_n(\cdot) \in W^{1,p}(0,1)$ and $F(q_n) \to 0$, then $\min \|q_n \pm \sigma\|_{W^{1,p}(0,1)} \to 0$. Assume by contradiction that if $F(q_n) \to 0$ and $\min \|q_n \pm \sigma\|_{L^{\infty}(0,1)} \ge \varepsilon_0 > 0$.

Assume by contradiction that if $F(q_n) \to 0$ and $\min ||q_n \pm \sigma||_{L^{\infty}(0,1)} \ge \varepsilon_0 > 0$. Then there exists a sequence $(y_n^1) \subset [0,1]$ such that $\min |q_n(y_n^1) \pm \sigma| \ge \varepsilon_0$. Since $\int_0^1 \underline{a} W(q_n) dy \to 0$ there exists a sequence $(y_n^2) \subset [0,1]$ such that $|q_n(y_n^2) \pm \sigma| < \frac{\varepsilon_0}{2}$. Then

$$\begin{aligned} &\frac{\varepsilon_0}{2} \le |q_n(y_n^2) - q_n(y_n^1)| \\ &\le |\int_{y_n^1}^{y_n^2} |\dot{q}_n(t)| dt | \\ &\le |y_n^2 - y_n^1|^{1 - \frac{1}{p}} \Big[\int_0^1 |\dot{q}_n(t)|^p dt \Big]^{1/p} \\ &\le p^{\frac{1}{p}} (F(q_n))^{1/p} \to 0. \end{aligned}$$

It is a contradiction.

Since $\min \|q_n \pm \sigma\|_{L^{\infty}(0,1)} \to 0$ as $F(q_n) \to 0$, then $\int_0^1 |\dot{q}_n(y)|^p dy \to 0$, and it follows that $\|q_n - \sigma\|_{W^{1,p}(0,1)} \to 0$ as $F(q_n) \to 0$. Observe that if $(x_1, x_2) \subset \mathbb{R}$ and $u \in W^{1,p}_{\text{loc}}(S_0)$ are such that $F(u(x, \cdot)) \geq 0$.

Observe that if $(x_1, x_2) \subset \mathbb{R}$ and $u \in W^{1,p}_{\text{loc}}(S_0)$ are such that $F(u(x, \cdot)) \geq \frac{p-1}{p}\mu_r^{\frac{p}{p-1}}$ for a.e. $x \in (x_1, x_2)$, by Hölder's and Yung's inequalities we have

$$\begin{split} &\int_{x_1}^{x_2} \left[\int_0^1 \frac{1}{p} |\nabla u|^p + a(x, y) W(u(x, y)) dy \right] dx \\ &\geq \int_{x_1}^{x_2} \int_0^1 \frac{1}{p} |\partial_x u|^p \, dy \, dx + \int_{x_1}^{x_2} \int_0^1 \frac{1}{p} |\partial_y u|^p + \underline{a} W(u) \, dy \, dx \\ &= \frac{1}{p} \int_0^1 \int_{x_1}^{x_2} |\partial_x u|^p \, dx \, dy + \int_{x_1}^{x_2} F(u(x, \cdot)) dx \\ &\geq \frac{1}{p(x_2 - x_1)^{p-1}} d(u(x_1, \cdot), u(x_2, \cdot))^p + \frac{p-1}{p} \mu_r^{\frac{p}{p-1}}(x_2 - x_1) \\ &\geq \mu_r d(u(x_1, \cdot), u(x_2, \cdot)). \end{split}$$

The proof is complete.

EJDE-2010/15

As a direct consequence of Lemma 2.2, we have the following result.

Lemma 2.3. If $u \in W^{1,p}_{\text{loc}}(S_0) \cap \{I < +\infty\}$, then $d(u(x, \cdot), \pm \sigma) \to 0$ as $x \to \pm \infty$. *Proof.* Note that since

$$I(u) = \int_{S_0} \frac{1}{p} |\nabla u|^p + a(x, y) W(u(x, y)) \, dx \, dy < +\infty,$$

 $W(u(x,y)) \to 0$ as $|x| \to +\infty$. Then by Lemma 2.2, $\liminf_{x\to+\infty} d(u(x,\cdot),\sigma) =$ 0. Next we show that $\limsup_{x\to+\infty} d(u(x,\cdot),\sigma) = 0$ by contradiction. We assume that there exists $r \in (0, \sigma/4)$ such that $\limsup_{x \to +\infty} d(u(x, \cdot), \sigma) > 2r$, by (2.2) there exists infinite intervals $(p_i, s_i), i \in \mathbb{N}$ such that $d(u(p_i, \cdot), \sigma) = r$, $d(u(s_i, \cdot), \sigma) = 2r$ and $r \leq d(u(x, \cdot), \sigma) \leq 2r$ for $x \in \bigcup_i (p_i, s_i), i \in \mathbb{N}$ by Lemma 2.2, this implies $I(u) = +\infty$, it's a contradiction. Similarly, we can prove that $\lim_{x \to -\infty} \mathrm{d}(u(x, \cdot), -\sigma) = 0.$

Now we consider the functional on the class

$$\Gamma = \{ u \in W^{1,p}_{\text{loc}}(S_0) : I(u) < +\infty, \ d(u(x, \cdot), \pm \sigma) \to 0 \text{ as } x \to \pm \infty \}$$

Let

$$c = \inf_{\Gamma} I \quad \text{and} \quad \mathcal{K} = \{ u \in \Gamma : I(u) = c \}$$
(2.4)

We will show that \mathcal{K} is not empty, and we start noting that the trajectory in Γ with action close to the minima has some concentration properties.

For any $\delta > 0$, we set

$$\lambda_{\delta} = \frac{1}{p} \delta^p + \max_{\mathbb{R}^2} a(x, y) \cdot \max_{|s \pm \sigma| \le p^{1/p} \delta} W(s).$$
(2.5)

Lemma 2.4. There exists $\overline{\delta}_0 \in (0, \sigma/2)$ such that for any $\delta \in (0, \overline{\delta}_0)$ there exists $\rho_{\delta} > 0$ and $l_{\delta} > 0$, for which, if $u \in \Gamma$ and $I(u) \leq c + \lambda_{\delta}$, then

- (i) $\min \|u(x,\cdot) \pm \sigma\|_{W^{1,p}(0,1)} \ge \delta$ for a.e. $x \in (s,p)$ then $p-s \le l_{\delta}$.
- (ii) if $\|u(x_-,\cdot) + \sigma\|_{W^{1,p}(0,1)} \leq \delta$, then $d(u(x_-,\cdot), -\sigma) \leq \rho_{\delta}$ for any $x \leq x_-$, and if $||u(x_+, \cdot) - \sigma||_{W^{1,p}(0,1)} \leq \delta$, then $d(u(, \cdot), \sigma) \leq \rho_{\delta}$ for any $x \geq x_+$.

Proof. By Lemma 2.2, as in this case, there exists $\mu_{\delta} > 0$ such that

$$\int_s^p \int_0^1 \frac{1}{p} |\nabla u|^p + a(x, y) W(u) \, dx \, dy \ge \mu_\delta(p-s).$$

Since $I(u) \leq c + \lambda_{\delta}$ there exists $l_{\delta} < +\infty$ such that $p - s < l_{\delta}$. To prove (ii), we first do some preparation, $\mu_{r_{\delta}} \geq \frac{p-1}{p}\lambda_{\delta}$, $\rho_{\delta} = \max\{\delta, r_{\delta}\} + \sum_{j=1}^{n} \lambda_{j}$ $3(\frac{p-1}{p\mu_{r_s}})^{\frac{p-1}{p}}\lambda_{\delta}$. Let $\bar{\delta}_0 \in (0, \sigma/2)$ be such that $\rho_{\delta} < \sigma/2$ for all $\delta \in (0, \bar{\delta}_0)$. Let $\delta \in (0, \overline{\delta}_0), \ u \in \Gamma, I(u) \leq +\infty \text{ and } x_- \in \mathbb{R} \text{ be such that } \|u(x_-, \cdot) + \sigma\|_{W^{1,p}(0,1)} \leq \delta.$ Define

$$u_{-}(x,y) = \begin{cases} -1 & \text{if } x < x_{-} - 1, \\ x - x_{-} + (x - x_{-} + 1)u(x_{-}, y) & \text{if } x_{-} - 1 \le x_{-}, \\ u(x,y) & \text{if } x \ge x_{-}. \end{cases}$$

and note that $u_{-} \in \Gamma$ and $I(u_{-}) \geq c$, then $\|u_{-} + \sigma\|_{W^{1,p}(0,1)} = |x - x_{-} + 1| \cdot \|u(x_{-}, \cdot) + v\|_{W^{1,p}(0,1)}$ $\sigma \|_{W^{1,p}(0,1)} \leq \delta$ when $x_{-} - 1 \leq x \leq x_{-}$. Recall that $\|q\|_{L^{\infty}(0,1)} \leq p^{1/p} \|q\|_{W^{1,p}(0,1)}$ for any $q \in W^{1,p}(0,1)$, then $||u_- + \sigma||_{L^{\infty}(0,1)} \leq p^{1/p} ||u_- + \sigma||_{W^{1,p}(0,1)} \leq p^{1/p} \delta$, by definition (2.5) of λ_{δ} , we have

$$\int_{x_{-}-1}^{x_{-}} \left[\int_{0}^{1} \frac{1}{p} |\nabla u_{-}|^{p} + a(x, y)W(u_{-})dy \right] dx \le \lambda_{\delta}.$$

Since

$$I(u_{-}) = I(u) - \int_{-\infty}^{x_{-}} \int_{0}^{1} \frac{1}{p} |\nabla u|^{p} + a(x, y)W(u) \, dy \, dx$$
$$+ \int_{x_{-}-1}^{x_{-}} \int_{0}^{1} \frac{1}{p} |\nabla u_{-}|^{p} + a(x, y)W(u_{-}) \, dy \, dx$$

we obtain

$$\int_{-\infty}^{x_{-}} \int_{0}^{1} \frac{1}{p} |\nabla u|^{p} + a(x, y) W(u) \, dy \, dx \le 2\lambda_{\delta}.$$
(2.6)

Now, assume by contradiction that there exists $x_1 < x_-$ such that $d(u(x_1, \cdot), -\sigma) \ge \rho_{\delta}$, by (2.2) there exists $x_2 \in (x_1, x_-)$ such that $d(u(x, \cdot), -\sigma) \ge \max\{\delta, r_{\delta}\}$ for $x \in (x_1, x_2)$ and $d(u(x_1, \cdot), u(x_1, \cdot)) \ge \rho_{\delta} - \max\{\delta, r_{\delta}\}$. By Lemma 2.2, we have

$$\int_{-\infty}^{x_{-}} \int_{0}^{1} \frac{1}{p} |\nabla u|^{p} + a(x, y) W(u) \, dy \, dx \ge \left(\frac{p\mu_{r_{\delta}}}{p-1}\right)^{\frac{p-1}{p}} \left(\rho_{\delta} - \max\{\delta, r_{\delta}\}\right) \ge 3\lambda_{\delta}$$

which contradicts (2.6). Thus $d(u(x, \cdot), -\sigma) \leq \rho_{\delta}$ for any $x \leq x_{-}$. Analogously, we can prove if $||u(x_{+}, \cdot) - \sigma||_{W^{1,p}(0,1)} \leq \delta$, then $d(u(x, \cdot), \sigma) \leq \rho_{\delta}$ as $x \geq x_{+}$. \Box

To exploit the compactness of I on Γ , we set the function $X : W^{1,p}_{\text{loc}}(S_0) \to \mathbb{R} \cup \{+\infty\}$ given by

$$X(u) = \sup\{x : d(u(x, \cdot), \sigma)\} \ge \sigma/2.$$

Setting $\chi(s) = \min |s \pm \sigma|$, by (H_3) , there exist $0 < w_1 < w_2$ such that

$$w_1\chi^p(s) \le W(s) \le w_2\chi^p(s) \text{ when } \chi(s) \le \sigma/2.$$
(2.7)

Now, we can get the compactness of the minimizing sequence of I in Γ .

Lemma 2.5. If $(u_n) \subset \Gamma$ is such that $I(u_n) \to c$ and $X(u_n) \to X_0 \in \mathbb{R}$, then there exists $u_0 \in \mathcal{K}$ such that, along a sequence, $u_n \to u_0$ weakly in $W^{1,p}(S_0)$.

Proof. We now show that (u_n) is bounded in $W_{\text{loc}}^{1,p}(S_0)$, i.e., (u_n) is bounded in $L_{\text{loc}}^p(S_0)$, (∇u_n) is bounded in $L_{\text{loc}}^p(S_0)$. Since $I(u_n) \to \text{cand } \int_{S_0} |\nabla u_n|^p \, dx \, dy \leq pI(u_n)$, we have that (∇u_n) is bounded in $L_{\text{loc}}^p(S_0)$. If we can prove that $u_n(x, \cdot)$ is bounded in $L^p(0, 1)$ for a.e. $x \in \mathbb{R}$, then (u_n) is bounded in $L_{\text{loc}}^p(S_0)$.

Let $B_r = \{q \in L^p(0,1)/||q||_{L^p(0,1)} \leq r\}$, we assume by contradiction that for any $R > 2\sigma$, there exists $\bar{x} \in \mathbb{R}$ such that $u(\bar{x}, \cdot) \notin B_R$ for $u \in \Gamma \cap \{I(u) \leq c+\lambda\}, \lambda > 0$, such that $||u(\bar{x}, \cdot)||_{L^p(0,1)} \geq R$, then $d(u(\bar{x}, \cdot), \sigma) \geq ||u(\bar{x}, \cdot)||_{L^p(0,1)} - ||\sigma||_{L^p(0,1)} \geq R - \sigma$. Since $d(u(x, \cdot), \pm \sigma) \to 0$ as $x \to \pm \infty$, by continuity there exists $x_1 > \bar{x}$ such that $d(u(x_1, \cdot), \sigma) \leq \sigma/2$ and $d(u(x, \cdot), \sigma) \geq \sigma/2$ for $x \in (\bar{x}, x_1)$. Using Lemma 2.2, we get

 $c + \lambda \ge I(u) \ge \mu_{\sigma/2} \mathrm{d}(u(x_1, \cdot), u(\bar{x}, \cdot)) \ge \mu_{\sigma/2}(R - 3\sigma/2).$

which is a contradiction for R large enough. We conclude that (u_n) is bounded in $W_{\text{loc}}^{1,p}(S_0)$, thus there exists $u_0 \in W_{\text{loc}}^{1,p}(S_0)$ such that up to a sequence, $u_n \to u_0$ weakly in $W_{\text{loc}}^{1,p}(S_0)$. We shall prove that $u_0 \in \Gamma$; i.e., $d(u_0(x,\cdot), \pm \sigma) \to 0$ as $x \to \pm \infty$. First we claim that:

EJDE-2010/15

For any small $\varepsilon > 0$, there exists $\lambda(\varepsilon) \in (0, \lambda_{\overline{\delta}})$ and $l(\varepsilon) > l_{\overline{\delta}}$ such that if $u \in \Gamma \cap \{I(u) \le c + \lambda(\varepsilon)\}$ then

$$\int_{|x-X(u)| \ge l(\varepsilon)} \int_0^1 W(u(x,y)) \, dy \, dx \le \varepsilon.$$
(2.8)

Indeed, let $\delta < \overline{\delta}$ be such that $3\lambda_{\delta} \leq \underline{a}w_{1}\varepsilon$ where $\underline{a} = \min_{\mathbb{R}^{2}} a(x, y)$. Given any $u \in \Gamma \cap \{I(u) \leq c + \lambda_{\delta}\}$, by Lemma 2.4, there exists $x_{-} \in (X(u) - l_{\delta}, X(u))$ and $x_{+} \in (X(u), X(u) + l_{\delta})$ such that $\|u(x_{-}, \cdot) + \sigma\|_{W^{1,p}(0,1)} \leq \delta$ and $\|u(x_{+}, \cdot) - \sigma\|_{W^{1,p}(0,1)} \leq \delta$. We define the function

$$\tilde{u}(x,y) = \begin{cases} -\sigma & \text{if } x < x_{-} - 1, \\ \sigma(x - x_{-}) + (x - x_{-} + 1)u(x_{-}, y) & \text{if } x_{-} - 1 \le x_{-}, \\ u(x,y) & \text{if } x_{-} \le x \le x_{+}, \\ (x_{+} - x + 1)u(x_{+}, y) + \sigma(x - x_{+}) & \text{if } x_{+} \le x < x_{+} + 1, \\ \sigma & \text{if } x > x_{+} + 1 \end{cases}$$

which belongs to Γ , and $I(\tilde{u}) \geq c$,

$$\int_{|x-X(u)| \ge l_{\delta}} \int_{0}^{1} \frac{1}{p} |\nabla u|^{p} + a(x, y)W(u) \, dy \, dx$$

$$\leq I_{-\infty}^{x_{-}}(u) + I_{x_{+}}^{+\infty}(u)$$

$$= I(u) - I(\tilde{u}) + I_{x_{-}-1}^{x_{-}}(\tilde{u}) + I_{x_{+}}^{x_{+}+1}(\tilde{u})$$

$$< 3\lambda_{\delta}$$

then (2.8) follows setting $l(\varepsilon) = l_{\bar{\delta}}$ and $\lambda(\varepsilon) = \lambda_{\delta}$.

From (2.8) it is easy to see that $u(x, y) \to \sigma$ as $x \to +\infty$. Combining (2.8) and (2.7) we obtain

$$\int_{|x-X(u)|\ge l(\varepsilon)} \int_0^1 w_1 |u(x,y) - \sigma|^p \, dx \, dy \le \int_{|x-X(u)|\ge l(\varepsilon)} \int_0^1 W(u(x,y)) \, dy \, dx \le \varepsilon;$$

i.e., $d(u(x, \cdot), \sigma) \to 0$ as $x \to +\infty$. Analogously, we can get that $d(u(x, \cdot), -\sigma) \to 0$ as $x \to -\infty$, it follows that $u_0 \in \Gamma$.

As a consequence, we get the following existence result.

Proposition 2.6. $\mathcal{K} \neq \emptyset$ and any $u \in \mathcal{K}$ satisfies $u \in C^{1,\alpha}(\mathbb{R}^2)$ is a solution of $-\operatorname{div}(|\nabla u|^{p-2}\nabla u) + a(x,y)W'(u(x,y)) = 0$ on S_0 with $\partial_y u(x,0) = \partial_y u(x,1) = 0$ for all $x \in \mathbb{R}$, and $||u||_{L^{\infty}}(S_0) \leq R_0$. Finally, $u(x,y) \to \pm \sigma$ as $x \to \pm \infty$ uniformly in $y \in [0,1]$.

Proof. By Lemma 2.5, the set \mathcal{K} is not empty. By (H_2) , $||u||_{L^{\infty}(S_0)} \leq R_0$. Indeed, $\tilde{u} = \max\{-R_0, \min\{R_0, u\}\}$ is a fortiori minimizer. Let $\eta \in C_0^{\infty}(S_0)$ and $\tau \in \mathbb{R}$, then $u + \tau \eta \in \Gamma$ and since $u \in \mathcal{K}$, $I(u + \tau \eta)$ is a C^1 function of τ with a local minima at $\tau = 0$. Therefore,

$$I'(u)\eta = \int_{S_0} |\nabla u|^{p-2} \nabla u \nabla \eta + aW'(u)\eta \, dx \, dy = 0$$

for all such η , namely u is a weak solution of the equation $-\operatorname{div}(|\nabla u|^{p-2}\nabla u) + a(x,y)W'(u(x,y)) = 0$ on S_0 . Standard regularity arguments show that $u \in C^{1,\alpha}(S_0)$ for some $\alpha \in (0,1)$ and satisfies the Neumann boundary condition (see

Z. ZHOU

[14][17][27]). Since $||u||_{L^{\infty}(S_0)} \leq R_0$, there exists C > 0 such that $||u||_{C^{1,\alpha}(S_0)} \leq C$, which guarantees that u satisfies the boundary conditions. Indeed, assume by contradiction that u does not verify $u(x, y) \to -\sigma$ as $x \to -\infty$ uniformly with respect to $y \in [0, 1]$. Then there exists $\delta > 0$ and a sequence $(x_n, y_n) \in S_0$ with $x_n \to -\infty$ and $|u(x_n, y_n) + \sigma| \geq 2\delta$ for all $n \in \mathbb{N}$. The $C^{1,\alpha}$ estimate of u implies that there exists $\rho > 0$ such that $|u(x, y) + \sigma| \geq \delta$ for $\forall (x, y) \in B_{\rho}(x_n, y_n), n \in \mathbb{N}$. Along a subsequence $x_n \to -\infty$, $y_n \to y_0 \in [0, 1]$, $|u(x, y) + \sigma| \geq \delta$ for $(x, y) \in B_{\rho/2}(x_n, y_0)$, which contradicts with the fact that $d(u(x, \cdot), -\sigma) \to 0$ as $x \to -\infty$ since $u \in \Gamma$. The other case is similar.

We shall explore the reversibility condition of (H1)-(ii), and we will prove that the minimizer on Γ is in fact a solution of (2.1).

Lemma 2.7. $c_p = c$.

Proof. Since $\Gamma_p \subset \Gamma$, $c_p \geq c$. Assume by contradiction that $c_p > c$, then there exists $u \in \Gamma$ such that $I(u) < c_p$. Writing

$$I(u) = \int_{\mathbb{R}} \left[\int_{0}^{1/2} \frac{1}{p} |\nabla u|^{p} + aW(u)dy \right] dx + \int_{\mathbb{R}} \left[\int_{1/2}^{1} \frac{1}{p} |\nabla u|^{p} + aW(u)dy \right] dx$$

= $I_{1} + I_{2}$

it follows that $\min\{I_1, I_2\} < \frac{c_p}{2}$. Suppose for example $I_1 < c_p/2$, define

$$v(x,y) = \begin{cases} u(x,y) & \text{if } x \in \mathbb{R} \text{ and } 0 \le y \le \frac{1}{2}, \\ u(x,1-y) & \text{if } x \in \mathbb{R} \text{ and } \frac{1}{2} \le y \le 1. \end{cases}$$

Then $v \in \Gamma_p$, by condition (H1)-(ii), $I(v) = 2I_1 < c_p$, this is a contradiction. \Box

We shall prove that any $u \in \mathcal{K}$ is periodic in y.

Lemma 2.8. If $u \in \mathcal{K}$ then u(x, 0) = u(x, 1) for all $x \in \mathbb{R}$.

Proof. Suppose $u \in \mathcal{K}$ and v as above, then v(x, y) = u(x, y) for $y \in [0, 1/2]$. By (H_1) -(ii), $I(u) = c = c_p = I(v)$, so $v \in \mathcal{K}$. Then u and v are solutions of

$$-\operatorname{div}(|\nabla u|^{p-2}\nabla u) + aW'(u(x,y)) = 0, \quad \text{on } S_0,$$

$$\partial_y u(x,0) = \partial_y u(x,1) = 0 \quad \text{for all } x \in \mathbb{R}.$$
(2.9)

Since u = v for $y \in [0, 1/2]$, by the principle of unique continuation (see [8]), we have u = v in $\mathbb{R} \times [0, 1]$. i.e. u(x, 0) = u(x, 1).

Remark 2.9. It is an open problem for the principle for p-harmonic functions in case $n \ge 3$ and $p \ne 2$. When $p = \infty$, the principle of unique continuation does not hold.

Proof of Theorem 1.1. We now extend u periodically in y direction to the entire space \mathbb{R}^2 , and write it as U(x, y). As a consequence of the above lemmas and proposition 2.6, U(x, y) is an entire solution of (1.1), which is heteroclinic in x and 1-periodic in y direction.

References

- G. Alberti, L. Ambrosio and X. Cabré, On a long-standing conjecture of E. De Giorgi: symmetry in 3D for general nonlinearities and a local minimality property, Acta Applicandae Mathematicae, 65 (2001), 9–33.
- [2] F. Alessio, L. Jeanjean and P. Montecchiari, Stationary layered solutions in ℝ² for a class of non autonomous Allen-Cahn equations, Calc. Var. Partial Differ. Equ., **11** (2000), 177–202.
- [3] F. Alessio, L. Jeanjean and P. Montecchiari, Existence of infinitely many stationary layered solutions in ℝ² for a class of periodic Allen-Cahn Equations, Comm. Partial Differ. Equations, 27 (2002), 1537–1574.
- [4] F. Alessio, and P. Montecchiari, Brake orbits type solutions to some class of semilinear elliptic equations, Calc.Var.Partial Differ.Equ., 30 (2007), 51–83.
- [5] L. Ambrosio and X. Cabré, Entire solutions of semilinear elliptic equations in R³ and a conjecture of De Giorgi, J. Amer. Math.Soc, 13 (2000), 725–739.
- [6] M. T. Barlow, R. R. Bass and C. Gui, The Liouville property and a conjecture of De Giorgi, Comm. Pure Appl. Math., 53 (2000), 1007–1038.
- [7] H. Berestycki, F. Hamel and R. Monneau, One-dimensional symmetry for some bounded entire solutions of some elliptic equations, Duke Math.J., 103 (2000), 375–396.
- [8] B. Bojarski, T. Iwaniec, p-harmonic equation and quasiregular mappings, Partial Diff. Equs(Warsaw 1984), 19 (1987), 25–38.
- [9] L. Caffarelli, N. Garofalo, and F. Segala, A gradient bound for entire solutions of quasi-linear equations and its consequences, Comm. Pure Appl. Math., 47 (1994),1457–1473.
- [10] L. Damascelli and B. Sciunzi, Regularity, monotonicity and symmetry positive solutions of m-Laplace equations, J. Differential Equations, 206 (2004), 483–515.
- [11] E. DeGiorgi, Convergence problems for functionals and operators, Pro.Int.Meet. on Recent Methods in Nonlinear Analysis, Rome,1978, E.De Giorge, E.Magenes, U,Mosco, eds., Pitagora Bologna, (1979), 131–188.
- [12] A. Farina, Some remarks on a conjecture of De Giorgi, Calc.Var.,8,(1999), 233-245.
- [13] N. Ghoussoub and C. Gui, On a conjecture of De Giorgi and some related problems, Math. Ann., 311 (1998), 481–491.
- [14] D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, Springer.
- [15] T. Iwaniec and J. Manfredi, Regularity of p-harmonic functions in the plane, Revista Matematica Iberoamericana, 5 (1989), 1–19.
- [16] P. Lindqvist, On the growth of the solutions of the equation $div(|\nabla u|^{p-2}\nabla u) = 0$ in ndimensional space, Journal of Differential Equations, **58** (1985), 307–317.
- [17] P. Lindqvist, Regularity for the gradient of the solution to a nonlinear obstacle problem with degenerate ellipticity, Nonlinear Analysis, 12 (1998), 1245–1255.
- [18] J. Manfredi, p-harmonic functions in the plane, Proceedings of the American Mathematical Society, 103 (1988), 473–479.
- [19] J. Manfredi, Isolated singularities of p-harmonic functions in the plane, SIAM Journal on Mathematical Analysis, 22 (1991), 424–439.
- [20] P. H. Rabinowitz, Multibump solutions for an almost periodically forced singular hamiltonian system, Electronic Journal of Differential Equations, 12 (1995), 1–21.
- [21] P. H. Rabinowitz, Solutions of heteroclinic type for some classes of semilinear elliptic partial differential equations, J.Math.Sci.Univ.Tokio, 1 (1994), 525–550.
- [22] P. H. Rabinowitz, Heteroclinic for reversible Hamiltonian system, Ergod.Th.and Dyn.Sys., 14 (1994), 817–829.
- [23] P. H. Rabinowitz and E. Stredulinsky, Mixed states for an Allen-Cahn type equation, Commun. Pure Appl. Math. 56, No.8 (2003), 1078-1134.
- [24] P. H. Rabinowitz and E. Stredulinsky, Mixed states for an Allen-Cahn type equation II, Calc. Var. Partial Differ. Equ. 21, No. 2 (2004), 157-207.
- [25] O. Savin, Phase Transition: Regularity of Flat Level Sets, PhD. Thesis, University of Texas at Austin, (2003).
- [26] J. Serrin and H. Zou, Symmetry of ground states of quasilinear elitic equations, Arch.Rational Mech.Anal., 148 (1999), 265–290.
- [27] P. Tolksdorf, Regularity for a more general class of quasilinear elliptic equations, J. Differential Equations, 51 (1984), 126–150.

Zheng Zhou

 $\label{eq:college} \mbox{College of Mathematics and Econometrics, Hunan University, Changsha, China $E-mail address: zzzhhoou@yahoo.com.cn} \label{eq:college}$

10