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ENTIRE SOLUTIONS FOR A CLASS OF p-LAPLACE
EQUATIONS IN R2

ZHENG ZHOU

Abstract. We study the entire solutions of the p-Laplace equation

− div(|∇u|p−2∇u) + a(x, y)W ′(u(x, y)) = 0, (x, y) ∈ R2

where a(x, y) is a periodic in x and y, positive function. Here W : R → R is

a two well potential. Via variational methods, we show that there is layered

solution which is heteroclinic in x and periodic in y direction.

1. Introduction

In this paper we consider the p-Laplacian Allen-Cahn equation

−div(|∇u|p−2∇u) + a(x, y)W ′(u(x, y)) = 0, (x, y) ∈ R2

lim
x→±∞

u(x, y) = ±σ uniformly w.r.t. y ∈ R.
(1.1)

where we assume 2 < p < ∞ and
(H1) a(x, y) is Hölder continuous on R2, positive and

(i) a(x + 1, y) = a(x, y) = a(x, y + 1).
(ii) a(x, y) = a(x,−y).

(H2) W ∈ C2(R) satisfies
(i) 0 = W (±σ) < W (s) for any s ∈ R \ {±σ}, and W (s) = O(|s∓ σ|p) as

s → ±σ;
(ii) there exists R0 > σ such that W (s) > W (R0) for any |s| > R0.

For example, here we may take W (t) = p−1
p |σ2 − t2|p. This is similar with case

p = 2, where the typical examples of W are given by W (t) = 1
4

∏k
i=1(t−zi)2, where

zi, i = 1, 2, . . . k < ∞ are zeros of W (t). The case p = 2 can be viewed as stationary
Allen-Cahn equation introduced in 1979 by Allen and Cahn. We recall that the
Allen-Cahn equation is a model for phase transitions in binary metallic alloys which
corresponds to taking a constant function a and the double well potential W (t). The
function u in these models is considered as an order parameter describing pointwise
the state of the material. The global minima of W represent energetically favorite
pure phases and different values of u depict mixed configurations.
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In 1978, De Giorgi [11] formulated the following question. Assume N > 1 and
consider a solution u ∈ C2(RN ) of the scalar Ginzburg-Laudau equation:

∆u = u(u2 − 1) (1.2)

satisfying |u(x)| ≤ 1, ∂u
∂xN

> 0 for every x = (x′, xN ) ∈ RN and lim
xN→±∞

u(x′, xN ) =

±1. Then the level sets of u(x) must be hyperplanes; i.e., there exists g ∈ C2(R)
such that u(x) = g(ax′ − xn) for some fixed a ∈ RN−1. This conjecture was first
proved for N = 2 by Ghoussoub and Gui in [13] and for N = 3 by Ambrosio and
Cabré in [5]. For 4 ≤ N ≤ 8 and assuming an additional limiting condition on u,
the conjecture has been proved by Savin in [25] .

Alessio, Jeanjean and Montecchiari [2] studied the equation −4u+a(x)W ′(u) =
0 and obtained the existence of layered solutions based on the crucial condition that
there is some discrete structure of the solutions to the corresponding ODE.

In [3], when a(x, y) > 0 is periodic in x and y, the authors got the existence
of infinite multibump type solutions, where a(x, y) = a(x,−y) takes an important
role [3](see also [3, 20, 21, 22, 23, 24]).

Inherited from the above results, I wonder under what condition p-Laplace type
equation (1.1) would have two dimensional layered solutions periodical in y. Adapt-
ing the renormalized variational introduced in [2, 3] (see also [21, 22]) to the p-
Laplace case, we prove

Theorem 1.1. Assume (H1)–(H2). Then there exists entire solution for (1.1),
which behaves heteroclinic in x and periodic in y direction.

2. The periodic problem

To prove Theorem 1.1, we first consider the equation

−div(|∇u|p−2∇u) + a(x, y)W ′(u(x, y)) = 0, (x, y) ∈ R2

u(x, y) = u(x, y + 1)

lim
x→±∞

u(x, y) = ±σ uniformly w.r.t. y ∈ R.

(2.1)

The main feature of this problem is that it has mixed boundary conditions, requiring
the solution to be periodic in the y variable and of the heteroclinic type in the x
variable.

Letting S0 = R× [0, 1], we look for minima of the Euler-Lagrange functional

I(u) =
∫

S0

1
p
|∇u(x, y)|p + a(x, y)W (u(x, y)) dx dy

on the class

Γ = {u ∈ W 1,p
loc (S0) : ‖u(x, ·)∓ σ‖Lp(0,1) → 0. x → ±∞}

where ‖u(x1, ·)− u(x2, ·)‖p
Lp(0,1) =

∫ 1

0
|u(x1, y)− u(x2, y)|pdy. Setting

Γp = {u ∈ Γ : u(x, 0) = u(x, 1)for a.e. x ∈ R}
cp = inf

Γp

I and Kp = {u ∈ Γp : I(u) = cp}

Then we use the reversibility assumption (H1)-(ii) to show that the minima c on
Γ equals minima cp on Γp, and so solutions of (2.1).

Note the assumptions on a and W are sufficient to prove that I is lower semicon-
tinuous with respect to the weak convergence in W 1,p

loc (S0); i.e., if un → u weakly
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in W 1,p
loc (Ω) for any Ω relatively compact in S0, then I(u) ≤ lim infn→∞ I(un).

Moreover we have

Lemma 2.1. If (un) ⊂ W 1,p
loc (S0) is such that un → u weakly in W 1,p

loc (S0) and
I(un) → I(u), then I(u) ≤ lim infn→∞ un and∫

S0

a(x, y)W (un) dx dy →
∫

S0

a(x, y)W (u) dx dy∫
S0

|∇un|p dx dy →
∫

S0

|∇u|p dx dy

Proof. Since un → u weakly in W 1,p
loc (S0), ‖∇u‖Lp(S0) ≤ lim infn→∞ ‖∇un‖Lp(S0)

by the lower semicontinuous of the norm. By compact embedding theorem, we
have un → u in Lp

loc(S0), using pointwise convergence and Fatou lemma, we have∫
S0

a(x, y)W (u) dx dy ≤ lim infn→∞
∫

S0
a(x, y)W (un) dx dy, then∫

S0

a(x, y)W (u) dx dy ≤ lim sup
n→∞

∫
S0

a(x, y)W (un) dx dy

= lim sup
n→∞

[
I(un)−

∫
S0

1
p
|∇un|p dx dy

]
= I(u)− lim inf

n→∞

∫
S0

1
p
|∇un|p dx dy

≤
∫

S0

a(x, y)W (u) dx dy.

Thus,
∫

S0
a(x, y)W (un) dx dy →

∫
S0

a(x, y)W (u) dx dy, and since I(un) → I(u), we
have

∫
S0
|∇un|p dx dy →

∫
S0
|∇u|p dx dy. �

By Fubini’s Theorem, if u ∈ W 1,p
loc (S0), then u(x, ·) ∈ W 1,p(0, 1), and for all

x1, x2 ∈ R, we have∫ 1

0

|u(x1, y)− u(x2, y)|pdy =
∫ 1

0

|
∫ x2

x1

∂xu(x, y)dx|pdy

≤ |x1 − x2|p−1

∫ 1

0

∫ x2

x1

|∂xu(x, y)dx|p dx dy

≤ pI(u)|x1 − x2|p−1.

If I(u) < +∞, the function x → u(x, ·) is Hölder continuous from a dense subset
of R with values in Lp(0, 1) and so it can be extended to a continuous function on
R. Thus, any function u ∈ W 1,p

loc (S0) ∩ {I < +∞} defines a continuous trajectory
in Lp(0, 1) verifying

d(u(x1, ·), u(x2, ·))p =
∫ 1

0

|u(x1, y)− u(x2, y)|pdy

≤ pI(u)|x1 − x2|p−1,∀x1, x2 ∈ R.

(2.2)
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Lemma 2.2. For all r > 0, there exists µr > 0, such that if u ∈ W 1,p
loc (S0) satisfies

min ‖u(x, ·)± σ‖W 1,p(0,1) ≥ r for a.e. x ∈ (x1, x2), then∫ x2

x1

[ ∫ 1

0

1
p
|∇u|p + a(x, y)W (u(x, y))dy

]
dx

≥ 1
p(x2 − x1)p−1

d(u(x1, ·), u(x2, ·))p +
p− 1

p
µ

p
p−1
r (x2 − x1)

≥ µrd(u(x1, ·), u(x2, ·))

(2.3)

Proof. We define the functional

F (u(x, ·)) =
∫ 1

0

1
p
|∂yu(x, y)|p + aW (u(x, y))dy

on W 1,p(0, 1), where a = minR2 a(x, y) > 0. To prove the lemma, we first to claim
that:

For any r > 0, there exists µr > 0, such that if q(y) ∈ W 1,p(0, 1) is such that

min ‖q(y)± σ‖W 1,p(0,1) ≥ r, thenF (q(y)) ≥ p−1
p µ

p
p−1
r . Namely, if qn(·) ∈ W 1,p(0, 1)

and F (qn) → 0, then min ‖qn ± σ‖W 1,p(0,1) → 0.
Assume by contradiction that if F (qn) → 0 and min ‖qn ± σ‖L∞(0,1) ≥ ε0 > 0.

Then there exists a sequence (y1
n) ⊂ [0, 1] such that min |qn(y1

n) ± σ| ≥ ε0. Since∫ 1

0
aW (qn)dy → 0 there exists a sequence (y2

n) ⊂ [0, 1] such that |qn(y2
n)± σ| < ε0

2 .
Then

ε0

2
≤ |qn(y2

n)− qn(y1
n)|

≤ |
∫ y2

n

y1
n

|q̇n(t)|dt |

≤ |y2
n − y1

n|
1− 1

p

[ ∫ 1

0

|q̇n(t)|pdt
]1/p

≤ p
1
p (F (qn))1/p → 0.

It is a contradiction.
Since min ‖qn ± σ‖L∞(0,1) → 0 as F (qn) → 0, then

∫ 1

0
|q̇n(y)|pdy → 0, and it

follows that ‖qn − σ‖W 1,p(0,1) → 0 as F (qn) → 0.
Observe that if (x1, x2) ⊂ R and u ∈ W 1,p

loc (S0) are such that F (u(x, ·)) ≥
p−1

p µ
p

p−1
r for a.e. x ∈ (x1, x2), by Hölder’s and Yung’s inequalities we have∫ x2

x1

[ ∫ 1

0

1
p
|∇u|p + a(x, y)W (u(x, y))dy

]
dx

≥
∫ x2

x1

∫ 1

0

1
p
|∂xu|p dy dx +

∫ x2

x1

∫ 1

0

1
p
|∂yu|p + aW (u) dy dx

=
1
p

∫ 1

0

∫ x2

x1

|∂xu|p dx dy +
∫ x2

x1

F (u(x, ·))dx

≥ 1
p(x2 − x1)p−1

d(u(x1, ·), u(x2, ·))p +
p− 1

p
µ

p
p−1
r (x2 − x1)

≥ µrd(u(x1, ·), u(x2, ·)).
The proof is complete. �
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As a direct consequence of Lemma 2.2, we have the following result.

Lemma 2.3. If u ∈ W 1,p
loc (S0) ∩ {I < +∞}, then d

(
u(x, ·),±σ

)
→ 0 as x → ±∞.

Proof. Note that since

I(u) =
∫

S0

1
p
|∇u|p + a(x, y)W (u(x, y)) dx dy < +∞,

W (u(x, y)) → 0 as |x| → +∞. Then by Lemma 2.2, lim infx→+∞ d
(
u(x, ·), σ

)
=

0. Next we show that lim supx→+∞ d
(
u(x, ·), σ

)
= 0 by contradiction. We as-

sume that there exists r ∈ (0, σ/4) such that lim supx→+∞ d(u(x, ·), σ) > 2r,
by (2.2) there exists infinite intervals (pi, si), i ∈ N such that d

(
u(pi, ·), σ

)
= r,

d
(
u(si, ·), σ

)
= 2r and r ≤ d

(
u(x, ·), σ

)
≤ 2r for x ∈ ∪i(pi, si), i ∈ N by Lemma

2.2, this implies I(u) = +∞, it’s a contradiction. Similarly, we can prove that
limx→−∞ d

(
u(x, ·),−σ

)
= 0. �

Now we consider the functional on the class

Γ = {u ∈ W 1,p
loc (S0) : I(u) < +∞, d

(
u(x, ·),±σ

)
→ 0 as x → ±∞}

Let
c = inf

Γ
I and K = {u ∈ Γ : I(u) = c} (2.4)

We will show that K is not empty, and we start noting that the trajectory in Γ
with action close to the minima has some concentration properties.

For any δ > 0, we set

λδ =
1
p
δp + max

R2
a(x, y) · max

|s±σ|≤p1/pδ
W (s). (2.5)

Lemma 2.4. There exists δ̄0 ∈ (0, σ/2) such that for any δ ∈ (0, δ̄0) there exists
ρδ > 0 and lδ > 0, for which, if u ∈ Γ and I(u) ≤ c + λδ, then

(i) min ‖u(x, ·)± σ‖W 1,p(0,1) ≥ δ for a.e. x ∈ (s, p) then p− s ≤ lδ.
(ii) if ‖u(x−, ·) + σ‖W 1,p(0,1) ≤ δ, then d(u(x−, ·),−σ) ≤ ρδ for any x ≤ x−,

and if ‖u(x+, ·)− σ‖W 1,p(0,1) ≤ δ, then d(u(, ·), σ) ≤ ρδ for any x ≥ x+.

Proof. By Lemma 2.2, as in this case, there exists µδ > 0 such that∫ p

s

∫ 1

0

1
p
|∇u|p + a(x, y)W (u) dx dy ≥ µδ(p− s).

Since I(u) ≤ c + λδ there exists lδ < +∞ such that p− s < lδ.
To prove (ii), we first do some preparation, µrδ

≥ p−1
p λδ, ρδ = max{δ, rδ} +

3( p−1
pµrδ

)
p−1

p λδ. Let δ̄0 ∈ (0, σ/2) be such that ρδ < σ/2 for all δ ∈ (0, δ̄0). Let

δ ∈ (0, δ̄0), u ∈ Γ, I(u) ≤ +∞ and x− ∈ R be such that ‖u(x−, ·)+σ‖W 1,p(0,1) ≤ δ.
Define

u−(x, y) =


−1 if x < x− − 1,

x− x− + (x− x− + 1)u(x−, y) if x− − 1 ≤ x−,

u(x, y) if x ≥ x−.

and note that u− ∈ Γ and I(u−) ≥ c, then ‖u−+σ‖W 1,p(0,1) = |x−x−+1|·‖u(x−, ·)+
σ‖W 1,p(0,1) ≤ δ when x− − 1 ≤ x ≤ x−. Recall that ‖q‖L∞(0,1) ≤ p1/p‖q‖W 1,p(0,1)
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for any q ∈ W 1,p(0, 1), then ‖u− + σ‖L∞(0,1) ≤ p1/p‖u− + σ‖W 1,p(0,1) ≤ p1/pδ, by
definition (2.5) of λδ, we have∫ x−

x−−1

[
∫ 1

0

1
p
|∇u−|p + a(x, y)W (u−)dy]dx ≤ λδ.

Since

I(u−) = I(u)−
∫ x−

−∞

∫ 1

0

1
p
|∇u|p + a(x, y)W (u) dy dx

+
∫ x−

x−−1

∫ 1

0

1
p
|∇u−|p + a(x, y)W (u−) dy dx

we obtain ∫ x−

−∞

∫ 1

0

1
p
|∇u|p + a(x, y)W (u) dy dx ≤ 2λδ. (2.6)

Now, assume by contradiction that there exists x1 < x− such that d(u(x1, ·),−σ) ≥
ρδ, by (2.2) there exists x2 ∈ (x1, x−) such that d(u(x, ·),−σ) ≥ max{δ, rδ} for
x ∈ (x1, x2) and d(u(x1, ·), u(x1, ·)) ≥ ρδ −max{δ, rδ}. By Lemma 2.2, we have∫ x−

−∞

∫ 1

0

1
p
|∇u|p + a(x, y)W (u) dy dx ≥ (

pµrδ

p− 1
)

p−1
p

(
ρδ −max{δ, rδ}

)
≥ 3λδ

which contradicts (2.6). Thus d(u(x, ·),−σ) ≤ ρδ for any x ≤ x−. Analogously, we
can prove if ‖u(x+, ·)− σ‖W 1,p(0,1) ≤ δ, then d(u(x, ·), σ) ≤ ρδ as x ≥ x+. �

To exploit the compactness of I on Γ, we set the function X : W 1,p
loc (S0) →

R ∪ {+∞} given by

X(u) = sup{x : d(u(x, ·), σ)} ≥ σ/2.

Setting χ(s) = min |s± σ|, by(H3), there exist 0 < w1 < w2 such that

w1χ
p(s) ≤ W (s) ≤ w2χ

p(s) when χ(s) ≤ σ/2. (2.7)

Now, we can get the compactness of the minimizing sequence of I in Γ.

Lemma 2.5. If (un) ⊂ Γ is such that I(un) → c and X(un) → X0 ∈ R, then there
exists u0 ∈ K such that, along a sequence, un → u0 weakly in W 1,p(S0).

Proof. We now show that (un) is bounded in W 1,p
loc (S0), i.e., (un) is bounded in

Lp
loc(S0), (∇un) is bounded in Lp

loc(S0). Since I(un) → cand
∫

S0
|∇un|p dx dy ≤

pI(un), we have that (∇un) is bounded in Lp
loc(S0). If we can prove that un(x, ·)

is bounded in Lp(0, 1) for a.e. x ∈ R, then (un) is bounded in Lp
loc(S0).

Let Br = {q ∈ Lp(0, 1)/‖q‖Lp(0,1) ≤ r}, we assume by contradiction that for any
R > 2σ, there exists x̄ ∈ R such that u(x̄, ·) /∈ BR for u ∈ Γ∩{I(u) ≤ c+λ}, λ > 0,
such that ‖u(x̄, ·)‖Lp(0,1) ≥ R, then d(u(x̄, ·), σ) ≥ ‖u(x̄, ·)‖Lp(0,1) − ‖σ‖Lp(0,1) ≥
R−σ. Since d(u(x, ·),±σ) → 0 as x → ±∞, by continuity there exists x1 > x̄ such
that d(u(x1, ·), σ) ≤ σ/2 and d(u(x, ·), σ) ≥ σ/2 for x ∈ (x̄, x1). Using Lemma 2.2,
we get

c + λ ≥ I(u) ≥ µσ/2d(u(x1, ·), u(x̄, ·)) ≥ µσ/2(R− 3σ/2).
which is a contradiction for R large enough. We conclude that (un) is bounded in
W 1,p

loc (S0), thus there exists u0 ∈ W 1,p
loc (S0) such that up to a sequence, un → u0

weakly in W 1,p
loc (S0). We shall prove that u0 ∈ Γ; i.e., d(u0(x, ·),±σ) → 0 as

x → ±∞. First we claim that:
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For any small ε > 0, there exists λ(ε) ∈ (0, λδ̄) and l(ε) > lδ̄ such
that if u ∈ Γ ∩ {I(u) ≤ c + λ(ε)} then∫

|x−X(u)|≥l(ε)

∫ 1

0

W (u(x, y)) dy dx ≤ ε. (2.8)

Indeed, let δ < δ̄ be such that 3λδ ≤ aw1ε where a = minR2 a(x, y). Given any
u ∈ Γ ∩ {I(u) ≤ c + λδ}, by Lemma 2.4, there exists x− ∈ (X(u) − lδ, X(u))
and x+ ∈ (X(u), X(u) + lδ) such that ‖u(x−, ·) + σ)‖W 1,p(0,1) ≤ δ and ‖u(x+, ·)−
σ‖W 1,p(0,1) ≤ δ. We define the function

ũ(x, y) =



−σ if x < x− − 1,

σ(x− x−) + (x− x− + 1)u(x−, y) if x− − 1 ≤ x−,

u(x, y) if x− ≤ x ≤ x+,

(x+ − x + 1)u(x+, y) + σ(x− x+) if x+ ≤ x < x+ + 1,

σ if x > x+ + 1

which belongs to Γ, and I(ũ) ≥ c,∫
|x−X(u)|≥lδ

∫ 1

0

1
p
|∇u|p + a(x, y)W (u) dy dx

≤ I
x−
−∞(u) + I+∞

x+
(u)

= I(u)− I(ũ) + I
x−
x−−1(ũ) + Ix++1

x+
(ũ)

≤ 3λδ

then (2.8) follows setting l(ε) = lδ̄ and λ(ε) = λδ.
From (2.8) it is easy to see that u(x, y) → σ as x → +∞. Combining (2.8) and

(2.7) we obtain∫
|x−X(u)|≥l(ε)

∫ 1

0

w1|u(x, y)− σ|p dx dy ≤
∫
|x−X(u)|≥l(ε)

∫ 1

0

W (u(x, y)) dy dx ≤ ε;

i.e., d
(
u(x, ·), σ

)
→ 0 as x → +∞. Analogously, we can get that d

(
u(x, ·),−σ

)
→ 0

as x → −∞, it follows that u0 ∈ Γ. �

As a consequence, we get the following existence result.

Proposition 2.6. K 6= ∅ and any u ∈ K satisfies u ∈ C1,α(R2) is a solution of
−div(|∇u|p−2∇u) + a(x, y)W ′(u(x, y)) = 0 on S0 with ∂yu(x, 0) = ∂yu(x, 1) = 0
for all x ∈ R, and ‖u‖L∞(S0) ≤ R0. Finally, u(x, y) → ±σ as x → ±∞ uniformly
in y ∈ [0, 1].

Proof. By Lemma 2.5, the set K is not empty. By (H2), ‖u‖L∞(S0) ≤ R0. Indeed,
ũ = max{−R0,min{R0, u}} is a fortiori minimizer. Let η ∈ C∞0 (S0) and τ ∈ R,
then u + τη ∈ Γ and since u ∈ K, I(u + τη) is a C1 function of τ with a local
minima at τ = 0. Therefore,

I ′(u)η =
∫

S0

|∇u|p−2∇u∇η + aW ′(u)η dx dy = 0

for all such η, namely u is a weak solution of the equation −div(|∇u|p−2∇u) +
a(x, y)W ′(u(x, y)) = 0 on S0. Standard regularity arguments show that u ∈
C1,α(S0) for some α ∈ (0, 1) and satisfies the Neumann boundary condition (see
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[14][17][27]). Since ‖u‖L∞(S0) ≤ R0, there exists C > 0 such that ‖u‖C1,α(S0) ≤ C,
which guarantees that u satisfies the boundary conditions. Indeed, assume by con-
tradiction that u does not verify u(x, y) → −σ as x → −∞ uniformly with respect
to y ∈ [0, 1]. Then there exists δ > 0 and a sequence (xn, yn) ∈ S0 with xn → −∞
and |u(xn, yn) + σ| ≥ 2δ for all n ∈ N. The C1,α estimate of u implies that there
exists ρ > 0 such that |u(x, y) + σ| ≥ δ for ∀ (x, y) ∈ Bρ(xn, yn), n ∈ N. Along a
subsequence xn → −∞, yn → y0 ∈ [0, 1], |u(x, y)+σ| ≥ δ for (x, y) ∈ Bρ/2(xn, y0),
which contradicts with the fact that d(u(x, ·),−σ) → 0 as x → −∞ since u ∈ Γ.
The other case is similar. �

We shall explore the reversibility condition of (H1)-(ii), and we will prove that
the minimizer on Γ is in fact a solution of (2.1).

Lemma 2.7. cp = c.

Proof. Since Γp ⊂ Γ, cp ≥ c. Assume by contradiction that cp > c, then there
exists u ∈ Γ such that I(u) < cp. Writing

I(u) =
∫

R

[ ∫ 1/2

0

1
p
|∇u|p + aW (u)dy

]
dx +

∫
R

[ ∫ 1

1/2

1
p
|∇u|p + aW (u)dy

]
dx

= I1 + I2

it follows that min{I1, I2} <
cp

2 . Suppose for example I1 < cp/2, define

v(x, y) =

{
u(x, y) if x ∈ R and 0 ≤ y ≤ 1

2 ,

u(x, 1− y) if x ∈ R and 1
2 ≤ y ≤ 1.

Then v ∈ Γp, by condition (H1)-(ii), I(v) = 2I1 < cp, this is a contradiction. �

We shall prove that any u ∈ K is periodic in y.

Lemma 2.8. If u ∈ K then u(x, 0) = u(x, 1) for all x ∈ R.

Proof. Suppose u ∈ K and v as above, then v(x, y) = u(x, y) for y ∈ [0, 1/2]. By
(H1)-(ii), I(u) = c = cp = I(v), so v ∈ K. Then u and v are solutions of

−div(|∇u|p−2∇u) + aW ′(u(x, y)) = 0, on S0,

∂yu(x, 0) = ∂yu(x, 1) = 0 for all x ∈ R.
(2.9)

Since u = v for y ∈ [0, 1/2], by the principle of unique continuation (see [8]), we
have u = v in R× [0, 1]. i.e. u(x, 0) = u(x, 1). �

Remark 2.9. It is an open problem for the principle for p-harmonic functions in
case n ≥ 3 and p 6= 2. When p = ∞, the principle of unique continuation does not
hold.

Proof of Theorem 1.1. We now extend u periodically in y direction to the entire
space R2, and write it as U(x, y). As a consequence of the above lemmas and
proposition 2.6, U(x, y) is an entire solution of (1.1), which is heteroclinic in x and
1-periodic in y direction. �
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