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ASYMPTOTIC AND NUMERICAL DESCRIPTION OF THE
KINK/ANTIKINK INTERACTION

GEORGII A. OMEL’YANOV, ISRAEL SEGUNDO-CABALLERO

Abstract. We consider a class of semi-linear wave equations with a small pa-
rameter and nonlinearities which provide the equations having exact kink-type

solutions. We declare sufficient conditions for the nonlinearities under which

the kink-kink and kink-antikink collisions occur, in the asymptotic sense, with-
out changing the shape of the waves and with only some shifts of the solitary

wave trajectories. Furthermore, we create an absolutely stable finite differ-

ences scheme to simulate the solution of the Cauchy problem and obtain some
numerical results for two-wave interaction. We present also some unexpected

results about three-wave interaction.

1. Introduction

We consider the semilinear wave equation

ε2(utt − uxx) + F ′(u) = 0, x ∈ R1, t > 0 (1.1)

with some smooth nonlinearities F (u) and the parameter ε → 0. It is well known
[1] that the unique completely integrable representative of the family (1.1) is the
sine-Gordon equation (see e.g. [2])

ε2(utt − uxx) + sin(u) = 0. (1.2)

At the seme time, there are many nonlinearities F (u) such that the equation (1.1)
admits exact travelling wave solutions of the kink/antikink type:

u(x, t, ε) = ω
(
± β

x− V t

ε

)
, β = (1− V 2)−1/2, ω(η) ∈ C∞(R),

ω(η) → 0 for η → −∞, ω(η) → 1 for η → +∞.
(1.3)

It is easy to check that the conditions

(A) F (z) ∈ C∞(R), F (z) > 0 for z ∈ (0, 1),
(B) F (i)(z0) = 0, i = 0, 1, . . . , k, F (k+1)(z0) > 0, where z0 = 0 and z0 = 1, and

k = 1 or k = 3,
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are sufficient for the existence of kink/antikink solutions such that

|ω(η)| ≤ c1η
−2 as η → −∞, |ω(η)− 1| ≤ c2η

−2 as η →∞.

Moreover, under the periodicity condition
(C) F (z + 1) = F (z)

any combination of kink-antikink waves

uΣ =
N∑

i=1

ω
(
± βi

x− Vit− x0
i

ε

)
, x0

i+1 − x0
i > 1, 0 < t� 1 (1.4)

will approximate sufficiently well the exact solution of the corresponding Cauchy
problem. This bring up the question about the character of interaction between
the entities (1.3).

There are some known asymptotic results about the interaction character for the
equation (1.1) with a small parameter ε. Namely, there are constructed asymptotic
in the weak sense solutions of the equation (1.1) to describe the interaction of two
kinks [3] and the kink–antikink pair [4]. As a result, in the cited articles are found
sufficient conditions for F (u) and Vi, i = 1, 2, under which the interaction of two
solitary waves (1.3) preserves the sine-Gordon scenario (see Sec. 2). This means
that the interaction occurs without changing the shape of the waves and with shifts
of the trajectories. The main tool there was the weak asymptotic method ( see
e.g. [5, 6, 3, 4] and references therein). The main advantage of this approach
is the possibility to reduce the problem of describing nonlinear waves interaction
to a qualitative analysis of some ordinary differential equations (instead of partial
differential equations). This method takes into account the fact that kinks (as well
as solitons [7, 6]) which are smooth for ε > 0 become non-smooth in the limit as
ε→ 0. So it is possible to treat such solutions as a mapping C∞(0, T ; C∞(R1

x)) for
ε > 0 and only as C(0, T ;D′(R1

x)) uniformly in ε ≥ 0. Accordingly, the remainder
should be small in the weak sense. This sufficiently trivial observation allowed
to reach a progress for some old problems about nonlinear wave interaction for
nonintegrable equations.

However, the constructed asymptotics are formal only. Moreover, it is clear
that the conditions [3, 4] are excessively restrictive. For this reason we created
an absolutely stable finite differences scheme for the equation (1.1) (Sec. 3) and
applied it to some nonintegrable versions of (1.1). The numerical results (Sec. 4)
show that the kink–kink and kink–antikink pairs interact without changing the
shape of the waves including the case when the conditions [3, 4] are violated.

At the same time it turns out that the multi–wave situation is more unex-
pected. The point is that there is a hypotheses (Vladimir Danilov et alii [8], Boris
Dubrovin’s, private communication) that there are sufficiently many equations with
sine-Gordon scenario of two solitary waves interaction, but three waves can inter-
act in the same manner for the completely integrable equations only. Apparently,
we can not be such categorical: our numerical results show that three kinks can
interact preserving the sine-Gordon scenario (see Conclusion).

2. Asymptotic solution

For essentially nonintegrable interaction problems it is impossible to construct
either explicit solutions (classical or weak) or asymptotics in the classical sense.
However, it is possible to construct an asymptotic solution in the weak sense [6].
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It should be noted that there is an obstacle to apply the standard D′ construction.
Indeed, in the D′ sense, the differential terms of the equation (1.1) are subordinated
to the nonlinear term. Moreover, the left-hand side of (1.1) is of the value O(ε2)
in the weak sense for any u of the form (1.4) and t � 1. Obviously, this prevents
the construction of the correct asymptotics for the Cauchy problem. To overcome
this obstacle, in [3] has been constructed a new definition of asymptotic solutions,
which involves in the leading term the derivatives of u with arguments x/ε and t/ε:

Definition 2.1. A sequence u(t, x, ε), belonging to C∞(0, T ; C∞(R1
x)) for ε a pos-

itive constant and belonging to C(0, T ;D′(R1
x)) uniformly in ε, is called a weak

asymptotic mod OD′(ε2) solution of (1.1) if the relation

2
d

dt

∫ ∞

−∞
ε2utuxψdx+

∫ ∞

−∞
{(εut)2 + (εux)2 − 2F (u)}ψxdx = O(ε2) (2.1)

holds for any test function ψ = ψ(x) ∈ D(R1).

Here the right-hand side is a C∞-function for ε = const > 0 and a piecewise
continuous function uniformly in ε ≥ 0. The estimate is understood in the C(0, T )
sense:

g(t, ε) = O(εk) ↔ max
t∈[0,T ]

|g(t, ε)| ≤ cεk.

The left-hand side of (2.1) is the result of multiplication of (1.1) by ψ(x)ux and
integration by parts in the case of smooth u. Therefore, it is zero for any exact
solution. On the other hand, the relation (2.1) is just the orthogonality condition
which appears for single-phase asymptotics [9, 10]. This condition guarantees both
the first correction existence and allows to find an equation for the distorted kink’s
front motion.

Definition 2.2. A function v(t, x, ε) is said to be of the value OD′(εk) if the relation∫ ∞

−∞
v(t, x, ε)ψ(x)dx = O(εk)

holds for any test function ψ ∈ D(R1
x).

Let us consider the interaction of two kinks,

u|t=0 =
2∑

i=1

ω(βi
x− x0

i

ε
), ε

∂u

∂t

∣∣∣
t=0

= −
2∑

i=1

βiViω
′(βi

x− x0
i

ε
), (2.2)

where βi = 1/
√

1− V 2
i , |Vi| ∈ (0, 1), and the initial front positions x0

i are such that
x0

2−x0
1 > 1. Obviously, it is assumed that the trajectories x = Vit+x0

i have a joint
point x = x∗ at a time instant t = t∗.

The asymptotic anzatz for the problem (1.1), (2.2) has the following form:

u =
2∑

i=1

{
ω
(
βi
x− Φi(t, τ, ε)

ε

)
+Ai(τ)U

(
βi
x− Φi(t, τ, ε)

µ2ε

)}
. (2.3)

Here Φi = φi0(t) + εφi1(τ), φi0 = Vit + x0
i are the trajectories of noninteracting

kinks, τ = ψ0(t)/ε denotes the ”fast time”, ψ0(t) = φ20(t) − φ10(t), the phase
corrections φi1 are smooth functions such that

φi1 → 0 as τ → −∞, φi1 → φ∞i1 = consti as τ → +∞ (2.4)
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with a rate not less than 1/|τ |. Furthermore, Ai(τ) ∈ C∞ are exponentially vanish-
ing as |τ | → ∞ functions, µ is a sufficiently small parameter, ε < µ� 1, and

U(η) =
dmU0(η)
dηm

,

where m ≥ 1 is an arbitrary number and U0(η) ∈ C∞ is a sufficiently fast vanishing
function as |η| → ∞.

The main result, which is known for the problem (1.1), (2.2), is the following.

Theorem 2.3. Assume (A)–(C). Set the additional assumptions
(D) F (1/2 + z) = F (1/2− z),
(E) Let the function F (z) be such that the inequality∫ ∞

−∞
F (ω(η) + ω(θη)) dη ≤

∫ ∞

−∞

{√
F (ω(η)) +

√
F (ω(θη))

}2

dη (2.5)

holds uniformly in θ ∈ (0,∞). Then the interaction of kinks in the problem (1.1),
(2.2) preserves the sine-Gordon scenario with accuracy OD′(ε2) in the sense of
Definition 2.1. The weak asymptotic solution of (1.1), (2.2) has the form (2.3)
with a special choice of the amplitudes Ai and of the parameter µ.

Remark 2.4. The symmetry (D) has been assumed to simplify the asymptotic
analysis and it is not very important.

Remark 2.5. The sense of the assumption (E) is the following. The phase cor-
rections φi1 are solutions of a 2 × 2-dynamical system with a singularity which
support divides the phase plane into two parts with the possible exception of the
point (0, 0). The assumptions (2.4) are satisfied (consequently, the sine-Gordon
scenario takes place) if and only if there exists a specific trajectory which goes from
one half-plane to the other one trough the point (0, 0). When Ai in (2.3) are equal
to zero, the existence of the trajectory implies the appearance of an additional very
complicated assumption. This condition can be made more coarse and transformed
to the simplest form (2.5). Such version can be treated as an admissible one since
it is satisfied for the sine-Gordon equation for any velocities Vi, i = 1, 2. The same
is true for the nonlinearity

F (u) = sin4(πu). (2.6)
Taking into account a freedom in the choice of the amplitudes Ai, i = 1, 2, the
assumption (2.5) can be made weaker. However, the dynamical system with Ai 6= 0,
i = 1, 2, is very complicated and it’s complete analysis remains undone.

Obviously, all stated above remains true for the antikink-antikink interaction.
Let us focus attention to the kink-antikink interaction, that is to the equation

(1.1) with the initial data

u|t=0 =
2∑

i=1

ω
(
Siβi

x− x0
i

ε

)
, ε

∂u

∂t

∣∣∣
t=0

= −
2∑

i=1

SiβiViω
′
(
Siβi

x− x0
i

ε

)
, (2.7)

where S1 = 1, S2 = −1, and the notation βi, Vi, x0
i is the same as in (2.2).

The asymptotic anzatz for the solution of the problem (1.1), (2.7) differs a little
bit from (2.3), namely

u =
2∑

i=1

{
ω
(
Siβi

x− Φi(t, τ, ε)
ε

)
+Ai(τ)U

(
Siµβi

x− Φi(t, τ, ε)
ε

)}
(2.8)
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with the same notation and the assumption (2.4).
Technically, the construction of (2.8) is similar to the kink–kink case. However,

the resulting dynamical system for the phase corrections becomes much more com-
plicated. Moreover, it is impossible to simplify the additional assumption, which
appears here also, without lose of the adequacy. For this reason, to present the
additional condition, we should define some entities:

λ0
1 =

1
a2

∫ ∞

−∞
ω′(η)ω′(θη)dη, a2 =

∫ ∞

−∞

(
ω′(η)

)2
dη,

λ2(σ) =
1
a2

∫ ∞

−∞
ηω′(η)ω′(θη + σ)dη, λ̄2(σ) =

1
a2θ

∫ ∞

−∞
ηω′(η)ω′

(η − σ

θ

)
dη,

L(σ) = σ − λ̄2(σ) + θλ2(σ), L1 = L′|σ=0,

B0
4 =

2
a2

∫ ∞

−∞

{
F

(
ω(η)− ω(θη)

)
− F

(
ω(η)

)
− F

(
ω(θη)

)}
dη,

F0 = (1 + θ − 2θλ0
1)
−1, N = (λ0

1 + 2θλ′2|σ=0)(b2 + θb1),

ν = V2 − V1, bi =
Vi

ν
, θ =

β1

β2
, M = 2L1 − 1 + θλ0

1
2
,

R = 1− 2λ0
1(b

2
2 + θb21)−

2
ν2F0

(
λ0

1 +
B0
4

2β1β2

)
.

Theorem 2.6. Assume (A)–(D). Moreover, let
(E1) θ 6= 1 and N2 +MR > 0,
(E2) L1 6= 0 and L(σ) > 0 for σ > 0.

Then the kink and antikink preserve mod OD′(ε2) their forms after the interaction.
The weak asymptotic solution of (1.1), (2.7) has the form (2.8) with a special choice
of the amplitudes Ai and of the parameter µ.

Remark 2.7. Apparently, kink and antikink interact in the case θ = 1 preserving
the sine-Gordon scenario. However, this case should be investigated separately.

Remark 2.8. The condition (E1) is much more restrictive than (E). In particular,
for the sine-Gordon equation it is satisfied for |θ−1| � 1. Moreover, (E1) is satisfied
in the cases √

π(2− π/4)− 1 < −V1 < 1 if θ � 1 and V2 > 0,√
π(2− π/4)− 1 < V2 < 1 if θ � 1,

and (E1) violates when the last inequalities are broken. Furthermore, for the non-
linearity (2.6) this condition is violated for any velocities Vi, i = 1, 2. We note also
that the actual sufficient condition should be much less restrictive than (E1) (see
Remark 2). However, it remains unknown until now.

Remark 2.9. Assumption (E2) prevents the appearance of another singularity. It
is verified for all examples under our consideration.

Finally we note that there is a correspondence between weak asymptotic solutions
and energy relations for the equation (1.1).

Theorem 2.10. Let the assumptions of the theorem 2.3 (the theorem 2.6) hold.
Then two kinks (2.3) (kink–antikink pair (2.8)) preserve mod OD′(ε2) their forms
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after the interaction if and only if they satisfy the conservation law

d

dt

∫ ∞

−∞
utuxdx = 0

and the energy relation

2
d

dt

∫ ∞

−∞
xε2utuxdx+

∫ ∞

−∞

{
(εut)2 + (εux)2 − 2F (u)

}
dx = 0.

3. Finite differences scheme

The actual numerical simulation for the problem (1.1), (2.2) or (1.1), (2.7) is
realized for a finite x-interval, x ∈ [0, L]. For this reason we simulate the Cauchy
problem by the following mixed problem:

ε2(utt − uxx) + F ′(u) = 0, x ∈ (0, L), t ∈ (0, T ),

u
∣∣
x=0

= ν`, u
∣∣
x=L

= νr,

u
∣∣
t=0

= u0
(x
ε

)
, ε

∂u

∂t

∣∣
t=0

= u1
(x
ε

)
,

(3.1)

where u0 is a kink-kink or kink-antikink combination of the form (2.2) or (2.7),
and u1 is the corresponding time derivative, ν` = u0|x=0, νr = u0|x=L. To simulate
by (3.1) the interaction phenomena, we assume that L, T , and the initial front
positions x0

i , i = 1, 2, are such that the intersection point of the solitary wave
fronts belongs to QT = (0, L)× (0, T ). Furthermore, let L, T , and x0

i be such that
uniformly in t ≤ T ,∣∣uΣ|x∈[0,δ] − ν`

∣∣ ≤ cε2,
∣∣uΣ|x∈[L−δ,L] − νr

∣∣ ≤ cε2

for some sufficiently small δ > 0. Here uΣ is the combination of solitary waves of
the form (1.4) corresponded to the initial value u0.

Since it is impossible to create any finite difference scheme for the problem (3.1),
which remains stable uniformly in ε → 0 and t ∈ (0, T ), T = const, we will treat
ε as a small but fixed constant. However, we will fix any relation between ε and
finite differences scheme parameters.

To create a finite differences scheme for the equation (3.1) we should choose
appropriate approximations for the differential terms and for the nonlinear term.
Let us do it separately.

3.1. Preliminary nonlinear “scheme”. As usual, we define a mesh QT,τ,h =
{(xi, tj) = (ih, jτ), i = 0, . . . , I, j = 0, . . . , J} over QT and denote

yj
i = u(xi, tj), yj

it =
yj+1

i − yj
i

τ
, yj

it̄ =
yj

i − yj−1
i

τ
,

yj
ix =

yj
i+1 − yj

i

h
, yj

ix̄ =
yj

i − yj
i−1

h
, yj

itt̄ = (yj
it)t̄, yj

ixx̄ = (yj
ix)x̄.

Let us consider the system of nonlinear equations

ε2(yj
itt̄ − yj+1

ixx̄ ) + F ′(yj+1
i ) = 0, i = 1, . . . , I − 1, j = 2, 3, . . . ,

yj
0 = ν`, yj

I = νr, j = 0, 1, . . . ,

y0
i = u0

(xi

ε

)
, εy0

it = ũ1
(xi

ε
, τ

)
, i = 0, . . . , I,

(3.2)
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where ũ1(xi/ε, τ) is such that last equality in (3.1) is approximated with accuracy
O(τ2). Obviously, the local approximation accuracy of (3.2) is O(τ2 + h2).

To simplify notation, we will write

y := yj
i , ŷ := yj+1

i , y̌ := yj−1
i .

So the short form of the equation (3.2) is

ε2(ytt̄ − ŷxx̄) + F ′(ŷ) = 0. (3.3)

Our first result consists in obtaining of the boundedness condition for the problem
(3.2) solution.

Lemma 3.1. Let ε be a sufficiently small constant and let
τ

ε2
≤ const. (3.4)

Suppose that the system (3.2) is solvable for any j = 2, . . . J . Then uniformly in j,

‖εyt‖2 + ‖εŷx‖2 + 2‖
√
F (ŷ)‖2 +

τ

ε2
{
‖|ε2ytt̄‖|2(j) + ‖|ε2yxx̄‖|2(j)

}
≤

{
‖εy0

t ‖2 + ‖εy1
x‖2 + 2‖

√
F (y1)‖2

}
ec tjτ/ε2

(1 +O(τ)),
(3.5)

where ‖ · ‖ and ‖| · ‖|(j) are the L2 norms, namely

‖f‖2 = h
I−1∑
i=1

|fi|2, ‖|f‖|2(j) = τ

j∑
k=1

‖fk‖2.

Here and in what follows c denotes any const > 0 which does not depend on h, τ ,
and ε.

For the proof see Appendix. As a consequence of this lemma and the identity

yj
i = y0

i + τ

j−1∑
k=0

yk
it

we obtain the inequality

‖yj‖2 ≤ 2‖y0‖2 + 2tjτ
j−1∑
k=0

‖yk
t ‖2 ≤ 2‖y0‖2 + 2

t2j
ε2
c0, (3.6)

where c0 > 0 denotes the right-hand side in (3.5). Obviously, this estimate is very
rough. However, it can be improved a little for the specific initial data (2.2) and
(2.7).

Lemma 3.2. Let the assumptions of Lemma 3.1 be satisfied. Then for the initial
data u0(xi/ε), ũ1(xi/ε, τ), which approximate the Cauchy data (2.2) or (2.7), the
following estimate holds uniformly in j,

√
ε
{
‖yj

t ‖+ ‖yj
x‖+ ‖yj‖

}
≤ c. (3.7)

For the proof it is sufficient to note that the L2-norms of εy0
t , εy1

x, and
√
F (y1)

are of the value O(
√
ε).

Furthermore, to investigate the stability let us consider the auxiliary problem:

ε2(zj
itt̄ − zj+1

ixx̄ ) + F ′(yj+1
i + zj+1

i )− F ′(yj+1
i ) = Fj

i , (3.8)
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zj
0 = 0, zj

I = 0, z0
i = ψ1

i , εz0
it = ψ2

i ,

where ψl
i, F

j
i are such that

‖εψ1
x‖2 ≤ cµk1 , ‖ψ2‖2 + ‖τψ2

x‖2 ≤ cµk2 , ε−1/2 max
j
‖Fj‖2 ≤ cµk3 .

Lemma 3.3. Let the assumptions of Lemma 3.2 be satisfied. Then uniformly in
j,

‖εzj
t ‖2 + ‖εzj+1

x ‖2 ≤ c max
l=1,2,3

µkl ec tj/ε3/2
. (3.9)

For the proof see Appendix.

3.2. Linearization. Now we should verify the solvability of the equations in (3.2)
for any fixed j ≥ 1, that is, of the equation

yj+1 − τ2yj+1
xx̄ +

τ2

ε2
F ′(yj+1) = Gj , Gj = yj + τyj

t̄ , (3.10)

as well as select a way to linearize the nonlinearity. To this aim let us construct
the sequence of functions ϕ(s) := {ϕ0(s), . . . , ϕI(s)}, s ≥ 0, such that ϕ(0) = yj

and ϕ(s) for s ≥ 1 satisfies the equation

ϕ(s)− τ2ϕxx̄(s)

+
τ2

ε2

{
F ′

(
ϕ(s− 1)

)
+ F ′′

(
ϕ(s− 1)

)(
ϕ(s)− ϕ(s− 1)

)}
= Gj ,

ϕ0(s) = ν`, ϕI(s) = νr.

(3.11)

The solvability of the algebraic system (3.11) is obvious for sufficiently small τ
and τ/ε2 ≤ const. To simplify the notation we write ϕ := ϕ(s), ϕ̄ := ϕ(s − 1),
¯̄ϕ := ϕ(s− 2). Let also

w := ϕ− ϕ̄, w̄ := ϕ̄− ¯̄ϕ.

In view of the identity

F ′(ϕ) = F ′(ϕ̄) + F ′′(ϕ̄)w +
1
2
F ′′′(ϑi)w2,

where ϑi is an intermediate point between ϕi and ϕ̄i, we rewrite (3.11) as

ϕ− τ2ϕxx̄ +
τ2

ε2
{F ′(ϕ)− 1

2
F ′′′(ϑi)w2} = Gj . (3.12)

Next let us assume the existence of the exact solutions yk of (3.10) for all k =
2, 3, . . . , j. Moreover, for the specific initial data (2.2) and (2.7) we can assume also
that y0 and y1 satisfy the equation (3.10) (in fact, it is not so important). Then,
subtracting one equation (3.12) from the another, we obtain the following equations
for the sequence of the auxiliary functions w ≡ w(s):

w − τ2wxx̄ +
τ2

ε2
F ′′(ϕ̄)w =

τ2

2ε2
F ′′′(ϑi)w̄2 for s > 1, (3.13)

w − τ2wxx̄ +
τ2

ε2
F ′′(y)w = τf for s = 1, (3.14)

where f = 2yj
t̄ − yj−1

t̄ . Applying the standard techniques we verify the estimates
for ϕ and w (for the proof see Appendix).
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Lemma 3.4. Let the assumption (3.4) be satisfied and τ be sufficiently small. Then

‖ϕ‖2 +
τ2

ε2
‖εϕx‖2 ≤ (1 + cτ)

{
‖yj‖2 + c

√
τ(‖yj‖2 + ‖εyj

t ‖2)
}

+ c
{
‖w‖2 + τ2‖wx‖2

}2
,

(3.15)

g(1) ≤ cτ3/2, g(s) ≤ cτg2(s− 1) for s > 1, (3.16)

where
g(s) := ‖w(s)‖2 + τ2‖wx(s)‖2,

and c > 0 denotes a constant which dos not depend on h, τ , or ε.

Combining the estimates (3.16), we immediately conclude that the terms of the
w-sequence vanish very rapidly,

‖w(1)‖2 ≤ cτ3/2, ‖w(2)‖2 ≤ cτ4, ‖w(3)‖2 ≤ cτ9, . . . (3.17)

By (3.15), the terms of ϕ-sequence are bounded uniformly in s, and

‖ϕ(s)‖2 ≤ ‖yj‖2
(
1 +O(

√
τ)

)
. (3.18)

Furthermore, for any n > 0,

‖ϕ(s+ n)− ϕ(s)‖ ≤
n∑

i=1

‖ws+i‖ ≤ ‖ws+1‖
∞∑

i=1

‖ws+i‖
‖ws+1‖

≤ c‖ws+1‖.

This implies the main statement of this subsection.

Theorem 3.5. Let assumption (3.4) be satisfied and ε = const. Then for suf-
ficiently small τ the sequence ϕ converges in the L2

h sense to the solution of the
equation (3.10). Moreover,

‖yj+1 − ϕ(2)‖ ≤ cτ9/2, (3.19)

where c > 0 dos not depend on h, τ , or ε.

3.3. Algorithm for the numerical simulation. Since the accuracy O(τ9/2) is
much less than the accuracy of the finite differences scheme (3.2), we obtain the
following algorithm for the numerical simulation of the problem (3.1) solution:

For a fixed j = 1, 2, . . . , [T/τ ], T = const:
(i) define ϕ(0) := yj ,
(ii) calculate ϕ(s), s = 1, 2, accordingly with (3.11),
(iii) define yj+1 := ϕ(2), redefine j := j + 1, and come back to (i).
By the estimates (3.7) and (3.19), this algorithm allows to calculate a bounded

in L2(QT,h,τ ) numerical solution of problem (3.1).
Note that this result can be improved. Moreover, it turns out that the algorithm

is absolutely stable. To prove this we state firstly the proposition (for the sketch
see Appendix)

Lemma 3.6. Let assumption (3.4) be satisfied and ε = const. Then, uniformly in
s,

‖εϕt(s)‖ ≤ const, ‖εϕx(s)‖ ≤ const. (3.20)
Moreover, uniformly in j,

‖ε2yj
xt‖+ ‖ε2yj+1

xx̄ ‖ ≤ c√
ε
, (3.21)
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where c does not depend on τ , h, ε, and

‖εyj+1
t − εϕt(s)‖ ≤ cεp(s), ‖εyj+1

x − εϕx(s)‖ ≤ cεp(s) (3.22)

with some p(s) which tends to infinity as s→∞.

An immediate consequence of lemmas 3.1–3.6 is the following result.

Theorem 3.7. Let assumption (3.4) be satisfied and ε = const. Then the solution
by the above described finite differences scheme converges to the solution of (3.1)
as τ, h→ 0, in the W 1

2 (QT ) sense.

Finally, in view of the boundedness of the sequence ϕj(s), s = 1, 2, j = 2, 3, . . . ,
it is easy to establish our last statement.

Theorem 3.8. Under the assumptions of Theorem 3.7 the above described finite
differences scheme is stable in the W 1

2 (ΩT,τ,h) sense.

4. Results of numerical simulation

The numerical algorithm has been implemented as a program and tested using
the sine-Gordon equation in the cases of one, two, and three solitary waves.

Example 4.1. Let us apply the above described algorithm to the equation (1.1)
with the nonlinearity (2.6). The kink type solution can be found explicitly in this
case,

ω(η) =
1
π

arccot
(
−
√

2πη
)
. (4.1)

For the kink–kink interaction we consider the mixed problem (3.1) with ε = 0.1
over the space interval [0.5, 2]. The first kink (at the left) is specified by β1 = 15
and it moves to the right with the velocity V1 =

√
1− (1/15)2 ≈ 0.99778. The

second kink (at the right) is specified by β2 = 20 and it moves to the left with the
velocity V2 = −

√
1− (1/20)2 ≈ −0.99875. The initial front positions are x0

1 = 1
and x0

2 = 1.5. All calculations have been done for the mesh with the parameters
h = 7.5 · 10−5 and τ = 2 · 10−5. To explain the selection of h and τ so small,
let us note that the single kink of the sine-Gordon equation varies over [0, h] as
exp(β2h/ε) = exp(200h). So the selected node density implies the variation like
exp(1.5 · 10−2). Such range is a little bit excessively small for the single kink
movement, but it is adequate for the process of interaction. For the same argument
we set τ ≈ h/4.

The result of the numerical simulation is depicted in Fig. 1. It is easy to
see that the solitary waves preserve the kink shape during all the time except a
small neighborhood of the time instant of interaction. Let us note finally that the
sufficient condition E) is satisfied for the nonlinearity (2.6) for any parameters V1

and V2.
We now turn the problem of kink-antikink interaction. One can prove that

the condition E1) is violated for the nonlinearity (2.6) for any velocities V1, V2.
However, our hypothesis that E1) is excessively restrictive, is verified numerically
for some pairs of the parameters V1, V2. The plot in Fig. 2 depicts the evolution
of the kink–antikink pair with the same parameters as above. Again, the solitary
waves preserve their forms during all the time except a small neighborhood of the
time instant t∗ = 0.5/(V1 − V2) of the interaction. In fact, the waves lose the kink
shape at t ≈ 0.25 and give it back at t ≈ 0.26 (see Fig. 3).
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Figure 1. Evolution of the kink-kink pair

Figure 2. Evolution of the kink-antikink pair

1.2 1.25 1.30

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

t = 0.24 t  =  0.25

t = 0.26

V1 2V

V12V

t  =  0.2

t = 0.3

Figure 3. Evolution of the kink-antikink pair for some values of time

Example 4.2. For the nonlinearity

F (u) =
1

4π2
{2− cos(2πu)− cos(4πu)} (4.2)
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the explicit kink type solution does not have any representation in elementary
functions. By this reason we solve numerically the Cauchy problem

dω

dη
=

√
2F (ω), η > 0, ω|η=0 =

1
2

(4.3)

and, by the condition C), define ω with negative argument as ω(η) = 1−ω(−η). To
calculate the solution of (4.3) we use the Runge-Kutta method of the forth order
with the mesh step hη = 0.01.

Next we set the same as above Cauchy problems for the kink–kink and kink-
antikink pairs and apply the numerical algorithm with similar mesh parameters.
Numerically, the results of calculations for the nonlinearities (4.2) and (2.6) are a
little bit different. However, at first sight they are the same and we refer the readers
again to the plots in Figures 1-3.

5. Conclusion

Summarizing all stated above, we can deduce that there exists a class of non-
linearities such that kink–kink and kink–antikink pairs preserve the sine-Gordon
scenario of interaction at least in the leading term in the asymptotic sense. Appar-
ently, this class can be specified by the assumptions A) - C).

Figure 4. Evolution of the kink-kink–antikink triplet

As for multi-wave interactions, the situation is more complicated and much more
interesting (we thank Vladimir Danilov for the suggestion to investigate this prob-
lem more in detail). According to the popular hypothesis (see Introduction), we
expected that two kinks and one antikink will lose the structure after the triple
interaction. This has been realized and the plot in Fig. 4 depicts the evolution of
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Figure 5. Evolution of the kink–kink and kink–antikink pairs

Figure 6. Evolution of the kink triplet

such solution for the nonlinearity (2.6). The initial positions and the velocities of
the solitary waves are the following: x0

1 = 0.5, V1 = 0.99999, x0
2 = 1, V2 = 0.15,

x0
3 = 1.5, V3 = −0.69999. The first unexpected phenomenon appeared when we

checked coupled interactions of the same waves (that is for trajectories which inter-
sect by pairs). It turns out that the solution structure goes to ruin after the second
interaction (see Fig. 5). Since the pairs of the same waves interact preserving the
structure, this result seems to be very strange and we can not explain it.

Moreover, it turned out that three kinks interact according the sine-Gordon
scenario. We refer the readers to the plots in Fig. 6 and Fig. 7 which depict
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0.5 1 1.25 1.5−0.5

0

0.5

1

1.5

2

2.5

3

3.5

V1 V3

V2

V3 V1

V2
1

2

3

Figure 7. The profile evolution before (curve 1), after (curve 3)
and at the time instant of interaction (curve 2)

the evolution of the kinks with the parameters x0
1 = 0.5, V1 = 0.99999, x0

2 = 1,
V2 = 0.15, x0

3 = 1.5, V3 = −0.69999.
So it is clear now that the problem of multi–wave interaction for the sine-Gordon

type equation should be investigated more in detail. It will be done later.

6. Appendix

In what follows we use the notation

‖f‖p =
(
h

I−1∑
i=1

|fi|p
) 1

p

, ‖f‖(`) =
(
‖f‖22 + ‖∂`

xf‖22
) 1

2

for the discrete analogs of the Lp(0, L) andW l
2(0, L) norms, whereW l

2 is the Sobolev
space. Again, for simplicity we write ‖f‖ := ‖f‖p if p = 2.

Our main tools are the discrete versions of the Hölder inequality

h
∣∣∣ N∑

i=0

figi

∣∣∣ ≤ ‖f‖p‖g‖q,
1
p

+
1
q

= 1, 1 < p, q <∞

and the Gagliardo-Nirenberg inequality

‖∂r
xf‖p ≤ c‖f‖1−θ

2 ‖f‖θ
(`), θ` =

1
2

+ r − 1
p
, (6.1)

which is the multiplicative form of the embedding theorem for x ∈ R1 (see e.g.
[11]). Here c is a constant which does not depend on h.

Proof of Lemma 3.1. Let us multiply the equation (3.3) by hyt and use the equal-
ities

2ytt̄yt = (y2
t )t̄ + τ(ytt̄)2, 2ŷxyxt = (y2

x)t + τ(yxt)2.
Then, summing over i the result of the multiplication and “integrating by parts”
we obtain the identity

ε2
{
∂t̄‖yt‖2 + ∂t‖yx‖2 + τ‖ytt̄‖2 + τ‖yxt‖2

}
+ 2h

I−1∑
i=1

F ′(ŷi)yit = 0. (6.2)

Next, taking into account the Taylor formula, we write

F ′(ŷ)yt = ∂t(F (y))− τ

2
F ′′(ϑj

i )y
2
t ,
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where ϑj
i is an intermediate point between yj

i and yj+1
i . In view of the assumptions

A), C), the derivatives of F are bounded by a constant. Therefore, summing over
j, we transform (6.2) to the following inequality:

‖εyj
t ‖2 + ‖εyj+1

x ‖2 + 2h
I−1∑
i=1

F (yj+1
i ) +

τ

ε2
‖|ε2ytt̄‖|2(j) +

τ

ε2
‖|ε2yxt‖|2(j)

≤ c0 +
τ2

ε2
c1

j∑
k=1

‖εyk
t ‖2,

(6.3)

where c1 > 0 and

c0 = ‖εy0
t ‖2 + ‖εy1

x‖2 + 2h
I−1∑
i=1

F (y1
i ).

Applying the finite differences version of the Gronwall’s lemma, we arrive at the
estimate (3.5). �

Proof of Lemma 3.3. Obviously, it is sufficient to consider the nonlinear term in
(3.8). We write:

τ

j∑
k=1

h
I−1∑
i=1

|F ′(yj+1
i + zj+1

i )− F ′(yj+1
i )| |zj

it|

≤ τ

j∑
k=1

‖zj
t ‖ ‖F ′′(θjyj+1 + (1− θj)zj+1)‖max

i
|zj+1

i |

≤ c
√
ετ

j∑
k=1

‖zj
t ‖ ‖zj+1

x ‖,

where the specificity of the initial data (2.2), (2.7) has been used. �

The rate ctj/ε3/2 of the exponent in (3.9) is bad. However, we do not know how
to improve the estimate.

Proof of Lemma 3.4. Multiplying (3.12) by hϕ, summing over i, and “integrating
by parts”, we obtain the inequality

‖ϕ‖2 + τ2‖ϕx‖2 ≤
1
2

{
‖Gj‖2 + (1 + 2

τ2

ε2
)‖ϕ‖2 +

τ2

ε2
(
‖F ′(ϕ)‖2 + c‖w‖44

)}
.

Let us estimate Gj in the form

‖Gj‖2 ≤ (1 +
√
τ)‖yj‖2 + (τ3/2 + τ2)‖yj

t̄ ‖
2. (6.4)

Next, applying the Hölder inequality and (6.1) for p = 4 and r = 0, we obtain

τ‖w‖44 ≤ cτ‖w‖3‖w‖(1) ≤ c(‖w‖2 + τ2‖wx‖2)2. (6.5)

Then, in view of the assumption (3.4), we obtain the estimate

(1− cτ)‖ϕ‖2 + 2τ2‖ϕx‖2

≤ (1 +
√
τ)‖yj‖2 + c(

√
τ + τ)‖εyj

t̄ ‖
2 + cτ + c(‖w‖2 + τ2‖wx‖2)2,

which is equivalent to (3.15).
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To prove the inequality (3.16) for s > 1 we use the estimate of the form (6.5)
again; that is,

τ2

ε2
h
∣∣∣ N−1∑

i=1

F ′′′(ϑi)w̄2
i wi

∣∣∣ ≤ cτ‖w‖‖w̄‖24 ≤
1
2
‖w‖2 + cτ(‖w̄‖2 + τ2‖w̄x‖2)2.

By (3.4), (3.7), to prove the estimate (3.16) for s = 1 it is sufficient to note that

τh
I−1∑
i=1

∣∣∣ τ
ε2
F (yi)w2

i − fiwi

∣∣∣ ≤ cτ‖w‖2 + cτ3/4‖
√
εyt̄‖‖w‖.

�

Sketch of the proof for Lemma 3.6. Let us prove firstly the additional a-priori es-
timate (3.21). We differentiate the equation (3.2) with respect to x, multiply the
result by hε2yxt, and sum over i. By the identity

∂xF
′(ŷi) = F ′′(ϑi)ŷix, (6.6)

we arrive at the estimate

∂t̄‖ε2yxt‖2 + ∂t‖ε2yxx̄‖2 +
τ

ε2
‖ε3yxtt̄‖2 +

τ

ε2
‖ε3yxx̄t‖2 ≤ c‖ŷx‖2 + ‖ε2yxt‖2.

Summing over j, using (3.7), and applying the Gronwall lemma, we obtain the
desired a-priori estimate.

Furthermore, repeating similar manipulations with the equation (3.11) we obtain
the equality

‖εϕx‖2 +
τ2

ε2
‖ε2ϕxx̄‖2

= −τ2h

N−1∑
i=1

{F ′(ϕ̄i) + F ′′(ϕ̄i)wi}x ϕix + ε2h

N−1∑
i=1

Gixϕix.

(6.7)

By (6.6) and the boundedness of F (k),

τ2h
∣∣∣ N−1∑

i=1

F ′(ϕ̄i)xϕix

∣∣∣ = τ2h
∣∣∣ N−1∑

i=1

F ′′(ϑ̄i)(ϕix − wix)ϕix

∣∣∣
≤ cτ2(‖ϕx‖2 + ‖wx‖2)
≤ cτ(‖εϕx‖2 + ‖εwx‖2).

(6.8)

Next we write

(F ′′(ϕ̄i)wi)x = F ′′(ϕ̄i)wix + F ′′′(ϑ̄i)(ϕix − wix)wi+1.

The Gagliardo-Nirenberg inequality for p = 4, r = 1, (3.4), and (3.16) imply

τ2h
∣∣∣ N−1∑

i=1

F ′′′(ϑ̄i)ϕ2
ixwi+1

∣∣∣ ≤ cτ2‖ϕx‖24‖w‖

≤ cτ11/4‖ϕ‖3/4 ‖ϕ‖5/4
(2)

≤ cτ11/16
{
‖
√
εϕ‖2 + ‖ετϕ‖2(2)

}
(6.9)
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and

τ2h
∣∣∣ N−1∑

i=1

F ′′′(ϑ̄i)wixwi+1ϕix

∣∣∣ ≤ cτ2‖w‖‖ϕx‖4‖wx‖4

≤ cτ17/16‖
√
εϕ‖3/8‖ετϕ‖5/8

(2) ‖ετw‖
5/8
(2)

≤ cτ17/16
{
‖
√
εϕ‖+ ‖ετϕ‖2(2) + ‖ετw‖2(2)

}
.

(6.10)

Furthermore, in view of (3.7) and (3.10),

‖εGx‖ = ‖ε(2yj
x − yj−1

x )‖ ≤ c
√
ε. (6.11)

Combining (6.7)–(6.11) we arrive at the inequality

‖εϕx‖2 +
τ2

ε2
‖ε2ϕxx̄‖2 ≤ c(

√
ε+ τ11/16) + cτ

(
‖εwx‖2 +

τ2

ε2
‖ε2wxx̄‖2

)
. (6.12)

To close the estimates, we should come back to the equations (3.13), (3.14) again.
For s = 1 we use the inequality similar to (6.8); that is,

τ2h
∣∣∣ N−1∑

i=1

(F ′′(yi)wi)xwix

∣∣∣ ≤ cτ2
(
‖wx‖2 + ‖yx‖‖w‖4‖wx‖4

)
≤ cτ

(
‖εwx‖2 + ‖ετwxx̄‖2

)
+ cτ13/10.

This and (3.21) yield

‖εwx‖2 +
τ2

ε2
‖ε2wxx̄‖2 ≤ c

√
τ , s = 1. (6.13)

To estimate εwx for s > 1 we write firstly:

τ2h
∣∣∣ N−1∑

i=1

(F ′′′(ϑ̄i)w̄2)xwx

∣∣∣ ≤ 1
2
‖εwx‖2 + cτ3

{
‖w̄w̄x‖+ ‖ϕ̄xw̄2‖

}2
, (6.14)

where ϑ̄i = αiϕ̄i + (1− αi) ¯̄ϕi, αi ∈ [0, 1]. Furthermore, by (6.1),

τ3/2‖w̄w̄x‖ ≤ cτ3/8{‖w̄‖2 + ‖ετ w̄xx̄‖2}
and by (6.1) and (6.12),

τ3/2‖ϕ̄xw̄2‖ ≤ cτ3/32‖ετϕ̄‖5/8
(2) ‖w̄‖

7/4‖ετ w̄‖1/4
(2) ≤ cτ3/32

{
‖w̄‖2 + ‖ετ w̄xx̄‖2

}
.

Next

τ2h
∣∣∣ N−1∑

i=1

(F ′′(ϕ̄i)wi)xwx

∣∣∣ ≤ cτ2
{
‖wx‖2 + ‖ϕ̄x‖‖w‖4‖wx‖4

}
≤ cτ‖εwx‖2 + cτ3/8‖εϕ̄x‖

{
‖w‖2 + ‖ετwxx̄‖2

}
.

Taking into account (3.16), (6.12), and denoting

f(s) =
{
‖w‖2 + ‖εwx‖2 +

τ2

ε2
(‖εwx‖2 + ‖ε2wxx̄‖2)

}
(s),

we arrive at the inequality

f(s) ≤ cτ3/8
{
ε1/4 + τ11/34 + τ

√
f(s− 1)

}
f(s) + cτ3/16f2(s− 1). (6.15)

In view of (6.13),
f(1) ≤ c

√
τ . (6.16)
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From this and (6.15) it follows that (6.16) holds uniformly in s ≥ 1. Therefore,

f(s) ≤ cτ3/16f2(s− 1), s > 1, (6.17)

which implies the convergence of the sequence ‖εϕx‖(s) as s→∞. Moreover,

‖εwx‖(s) ≤ csτ
p(s), s ≥ 1,

where cs does not depend on τ or ε, and p(s) →∞ as s→∞. In particular,

p(1) =
1
4
, p(2) =

19
32
, p(3) =

41
32
, p(4) =

85
32
.

To prove the second part of Lemma 3.6 statement we do the same as above but for
the derivative with respect to t. �

Sketch of the proof for Theorem 3.8. By Lemma 3.3 it is sufficient to prove the sta-
bility of the ϕ(s) calculations for s = 1, 2. To this aim let us consider the recurrence
equation

Φ(s)− τ2Φ(s)xx̄ +
τ2

ε2

{
F ′

(
ϕ(s− 1) + Φ(s− 1)

)
− F ′

(
ϕ(s− 1)

)
+ F ′′

(
ϕ(s− 1) + Φ(s− 1)

)(
ϕ(s) + Φ(s)− ϕ(s− 1)− Φ(s− 1)

)
− F ′′

(
ϕ(s− 1)

)(
ϕ(s)− ϕ(s− 1)

)}
= G̃, s = 1, 2

(6.18)

for the difference Φ(s) = ϕ1(s) − ϕ2(s) of two pairs ϕi(s), s = 0, 1, 2. We assume
that

‖Φ(0)‖2 + ‖εΦx(0)‖2 + ‖εΦt(0)‖2 ≤ µk3 , (6.19)

‖G̃‖2 + ‖εG̃x‖2 + ‖εG̃t‖2 ≤ µk3 . (6.20)

Multiplying (6.18) by Φ(s) and using the boundedness of F (k), we obtain the in-
equality

‖Φ(s)‖2 + τ2‖Φx(s)‖2 ≤
(1

4
+ c

τ2

ε2

)
‖Φ(s)‖2 + µk3 + c

τ2

ε2

(
‖Φ(s)‖33

+ ‖Φ(s)‖24‖Φ(s− 1)‖+ ‖Φ(s− 1)‖2
)
.

(6.21)

Next the Gagliardo-Nirenberg inequality and the assumption (3.4) imply

τ2

ε2
‖Φ(s)‖33 ≤ cτ1/4ε1/2‖Φ(s)‖

(
‖Φ(s)‖2 + τ2‖Φx(s)‖2

)
, (6.22)

τ2

ε2
‖Φ(s)‖24 ≤ cτ1/4ε1/2‖Φ(s)‖‖Φ(s)‖1/2(τ‖Φx(s)‖)1/2. (6.23)

By (3.18), ‖Φ(s)‖ is bounded uniformly in s: ‖Φ(s)‖ ≤ 1/
√
ε. Therefore, combining

(6.21)-(6.23) we arrive at the inequality

‖Φ(s)‖2 + τ2‖Φx(s)‖2 ≤ c
√
τ
(
‖Φ(s− 1)‖2 + τ2‖Φx(s− 1)‖2

)
+ µk3 .

In view of (6.19),

‖Φ(s)‖2 + τ2‖Φx(s)‖2 ≤ (1 + c
√
τ)2µk3 . (6.24)

Repeating the same for the derivatives εΦx(s), εΦt(s), and taking into account
Lemma 3.3 we complete the proof. �
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