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STABILITY PROPERTIES OF DIFFERENTIAL SYSTEMS
UNDER CONSTANTLY ACTING PERTURBATIONS

GIANCARLO CANTARELLI, GIUSEPPE ZAPPALÁ

In memory of Corrado Risito

Abstract. In this article, we find stability criteria for perturbed differential
systems, in terms of two measures. Our main tool is a definition of total

stability based on two classes of perturbations.

1. Introduction

Let R+ denote the interval 0 ≤ t < ∞, and Rn the n dimensional Euclidean
space with the corresponding norm ‖x‖ for x ∈ Rn. Let us consider the Cauchy
problem

ẋ = X(t, x), x(t0) = x0 (1.1)

and assume that X(t, 0) = 0 for t ∈ R+. Note that this differential system has the
null solution x = 0.

In the classical total stability theory, it is required that the null solution be
stable, not only with respect to (small) perturbations of the initial conditions but
also with respect to the perturbations of the right-hand side of the equation. To
this end, we associate to the unperturbed system (1.1) a corresponding family of
perturbed systems

ẋ = X(t, x) +Xp(t, x), x(t0) = x0. (1.2)

This differential system may not possess null solution, because we assume only
that the right-hand side of (1.2) be suitably smooth in order to ensure existence,
uniqueness and continuous dependance of solutions for the initial value problem.

For the convenience of the reader, we recall that the null solution of (1.1) is
said to be totally uniformly stable, according to Dubosin-Malkin Definition [4, 18],
provided that for arbitrary positive ε and t0 ≥ 0 there are δ1 = δ1(ε) > 0 and
δ2 = δ2(ε) > 0 such that whenever ‖x0‖ < δ1 and ‖Xp‖ < δ2, the inequality
‖x(t, t0, x0)‖ < ε is satisfied for all t ≥ t0. Notice that in the classical total stability
theory (and in the present paper) the symbol x(t) = x(t, t0, x0) denotes the solution
of (1.2) through a point (t0, x0).
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We emphasize that our stability criteria in Section 3 generalize two well-known
Malkin theorems. In fact, a Malkin theorem [12, 18] on the total uniform stability
is included as a special case in Theorem 3.1, while Theorem 3.6 improves another
Malkin theorem [13, 18]. There under appropriate hypotheses Malkin proves that

For arbitrary positive ε and t0 ≥ 0, there are δ1 = δ1(ε) > 0 and
δ2 = δ2(ε) > 0 and for any η ∈]0, ε[ there is δ3(η) ∈]0, δ2] such that
whenever ‖x0‖ < δ1 and ‖Xp‖ < δ3 there exists a constant Tη > 0,
such that ‖x(t, t0, x0)‖ < ε is satisfied for all t ≥ t0 + Tη.

It is worth noting that this property first comes the concept of the strong stability
under perturbations in generalized dynamical systems introduced by Seibert [21].

The aim of the present article is to introduce and study a new type of total
stability in terms of two measures, by splitting the perturbation terms Xp in two
parts. Namely, by putting Xp = Y + Z. In Sections 3,4, 5, we require the usual
upper restriction on the Euclidean norm of vector Z, while we select vector Y by
an appropriate scalar product. In Section 6, a mechanical example illustrates our
theoretical results.

2. Preliminaries, notation and basic ideas

Let K := {a : R+ → R+ : continuous, strictly increasing, a(0) = 0} be the set of
functions of class K in the sense of Hahn. We shall define some concepts in terms
of two measures [8, 9, 15]. Namely, we denote by h(t, x) and h0(t, x) two continuous
scalar functions satisfying the conditions:

(i) infx h0(t, x) = 0 for every t ∈ R;
(ii) there exists a positive constant λ and a function m = m(u) ∈ K such that

h0(t, x) < λ implies h(t, x) ≤ m[h0(t, x)] < m(λ).
In mathematical language, condition (ii) means that h0 is uniformly finer than

h, and it implies that infx h(t, x) = 0 for every t ∈ R.
Putting Q(s) = {(t, x) ∈ R+ × Rn : 0 < h(t, x) ≤ s}, we observe that 0 < s′ < s

implies Q(s′) ⊆ Q(s), and moreover the intersection ∩Q(s) for all s > 0 is the
empty set. Hence, the set of the sets {Q(s)} represents a Cartan-Silov direction or,
simply, a direction.

The above theoretical concepts are essential in the following definition: For every
scalar V = V (t, x) we say that limh→0 V (t, x) = 0 if and only if for every direction
such that limh(t, x) = 0, we have limV (t, x) = 0, see [22].

Denote by U = U(t, x) and G = G(t, x) respectively a continuous scalar function
and a continuous n-vector function such that ‖G‖ > 0 on R+ × Rn. For the
unperturbed differential system

ẋ = X(t, x), x(t0) = x0 (2.1)

and a correspondent perturbed differential system

ẋ = X(t, x) + Y (t, x) + Z(t, x) x(t0) = x0 (2.2)

without further mention, we will assume that Y G ≤ U , where Y G denotes the
scalar product of the vectors Y and G. Moreover, we assume that the right-hand
sides of (2.1) and (2.2), are L-measurable in t ∈ R+, continuous in x ∈ Rn. Also
we assume that for every compact subset A ⊂ Rn there exists a map σA = σA(t)
locally integrable such that ‖X(t, x)‖, ‖Y (t, x)‖, ‖Z(t, x)‖ < σA(t) when x ∈ A.
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The previous conditions (Caratheodory’s conditions) ensure the existence and
the general continuity of solutions for (2.1) and (2.2); see [2, 3]. Then, for every
(t0, x0) ∈ R+ × Rn we denote by x(t) = x(t, t0, x0) a solution of (2.2), and we
assume that x(t) is defined for t ≥ t0.

For every continuous scalar function V = V (t, x) having continuous partial
derivatives we put

Vt =
∂V

∂t
, Vx = gradV =

∂V

∂x
, V̇1 = Vt + Vx ·X = V̇ . (2.3)

The function V̇ is said to be the derivative of V computed along the solutions of
the unperturbed system (2.1). While the related formula given by Malkin [12, 18],

V̇2(t, x) = V̇ (t, x) + Vx(t, x)[Y (t, x) + Z(t, x)] (2.4)

gives the derivative of V along the solutions of the perturbed system (2.2).
If φ and θ are two scalar functions, it easy to prove the following results which

will be used in the next sections.
(i) if Vx = φG and Y G ≤ U , when φ > 0 we deduce

V̇2(t, x) = V̇ (t, x) + φ(t, x)[GY (t, x) +GZ(t, x)], (2.5)

V̇2(t, x) ≤ V̇ (t, x) + φ(t, x)[U(t, x) + ‖G(t, x)‖‖Z(t, x)‖]; (2.6)

(ii) if U(t, x) ≤ 0 and φ(t, x) > 0, Vx = φG we deduce

V̇2(t, x) ≤ V̇ (t, x) + φ(t, x)‖G(t, x)‖‖Z(t, x)‖; (2.7)

(iii) if U(t, x) ≥ 0, φ(t, x) > 0, θ(t, x) > 0, Vx(t, x) = φG(t, x) and V̇ (t, x) ≤
−θU(t, x), we deduce

V̇2(t, x) ≤ −[θ(t, x)− φ(t, x)]U(t, x) + φ(t, x)‖G(t, x)‖‖Z(t, x)‖. (2.8)

We conclude the present section with a list of definitions concerning the several
kinds of the stability in terms of two measures and two perturbations.

Definition 2.1. System (2.1) is said to be (h0, h)-stable under two persistent per-
turbations, also called (h0, h)-t.bistable, if for every t0 ∈ R+ and every ε > 0, there
exist a number δ1 = δ1(t0, ε) and a function δ2 = δ2(t0, x, ε) > 0 such that for
all x0 ∈ Rn with h0(t0, x0) < δ1, all Z(t, x) with ‖Z(t, x)‖ < δ2, and all Y with
Y G ≤ U ; we have h[t, x(t)] < ε when t ≥ t0.

If δ1 = δ1(ε) and δ2 = δ2(ε) are independent of t0 and x, we have the uniformity.

Definition 2.2. System (2.1) is said to be strongly weakly (h0, h)-t.bistable, if in
Definition 2.1, δ2(t0, x, ε) ≥ 0, and the L-measure of set

Et(δ2 = 0) = {x ∈ Rn : δ2(t0, x, ε) = 0} (2.9)

is zero for t0 ∈ R+ and ε > 0.
In the following we will briefly write δ2 ∈ GG to indicate this condition.

Definition 2.3. System (2.1) is said to be weakly (h0, h) − t.bistable if, for every
t0 ∈ R+ and ε > 0, there exists at the most one x ∈ Rn such that δ2(t0, x, ε) = 0.

In the following this condition will be briefly denoted as δ2 ∈ ZZ.

Definition 2.4. System (2.1) is said to be (h0, h)-eventually stable under two per-
sistent perturbations, also called eventually (h0, h)-t.bistable, if: For every ε > 0
there exists T = T (ε) > 0, for every t0 ≥ T there exist δ1 = δ1(t0, ε) and
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δ2 = δ2(t0, x, ε) > 0 such that for every x0 ∈ Rn with h0(t0, x0) < δ1, for ev-
ery Z with ‖Z(t, x)‖ < δ2 and every Y with Y G ≤ U , we have h[t, x(t)] < ε when
t ≥ t0.

Definition 2.5. System (2.1) is said to be (h0, h)-semiattractive, if it is (h0, h)-
t.bistable and: For every η ∈]0, ε[ there exists a function δ3 > 0, with 0 < δ3 ≤ δ2,
such that for every Z : ‖Z‖ < δ3 and every Y with Y G ≤ U , there exists Tη > 0
for which h[t, x(t)] < η when t ≥ t0 + Tη, where x(t) = x(t, t0, x0) is a solution of
(2.2).

Definition 2.6. System (2.1) is said to be (h0, h)-stable on average under two
persistent perturbation, also called (h0, h)-t.bistable on average, if: For every t0 ∈
R+, every ε > 0 and every T > 0, there exist δ1 and δ2 > 0 such that every solution
x(t) = x(t, t0, x0) of (2.2) with h0(t0, x0) < δ1, Y G ≤ U , and∫ t+T

t

sup{‖Z(u, x)‖ : x ∈ Rn}du < δ2 ∀t ≥ t0 (2.10)

satisfies h[t, x(t)] < ε for all t ≥ t0.

3. Theoretical developments

Suppose that the functions X,G,U are the known start point. We will use the
technique that is known as family of Liapunov functions introduced by Salvadori
[20]. The basic advantage of this method is that the single function needs to satisfy
less rigid requirements than in other methods.

Theorem 3.1. Let U : R+×Rn → R be given. Assume that for every ε > 0, there
exist three scalar functions Θ = Θ(t, x), φ = φ(t, x) ∈ C, and V = V (t, x) ∈ C1,
and exists a constant l such that on the set R+ × Rn we have:

(i) h(t, x) = ε implies V (t, x) ≥ l > 0;
(ii) limh→0V (t, x) = 0;
(iii) Θ(t, x) > φ(t, x) > 0 and (Θ− φ)U > 0;
(iv) Vx(t, x) = φG(t, x);
(v) V̇ (t, x) ≤ −ΘU(t, x).

Then system (2.1) is (h0, h)-t.bistable.

Proof. Given t0, ε, l,Θ, φ, V , by (ii) there exists d > 0 such that h(t0, x) < d implies
V (t0, x) < l. If we select x0 ∈ Rn such that h0(t0, x0) < δ1 = min[λ,m−1(d)] for
the previous assumptions we recognize that h(t0, x0) < m[h0(t0, x0)] < d, hence
V (t0, x0) < l. From the Malkin formula (2.4), according to (iv) and (v), we deduce

V̇2(t, x) ≤ −(Θ− φ)U(t, x) + φ‖G(t, x)‖‖Z(t, x)‖. (3.1)
Then by selecting

‖Z(t, x)‖ ≤ (Θ− φ)U(t, x)
‖φG(t, x)‖

= δ2(t, x, ε)

it follows that V̇2(t, x) ≤ 0.
Consider a solution x(t) = x(t, t0, x0) of the perturbed system and the corre-

spondent functions h1(t) = h[t, x(t)], V1(t) = V [t, x(t)]. If there exists t′ > t0 such
that h1(t′) = ε with h1(t) < ε for t ∈ [t0, t′[ then we should deduce that V1(t′) ≥ l,
which is a contradiction. �
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Remark. If U ≥ 0 the system can be strongly weakly (h0, h)-t.bistable or weakly
(h0, h)-t.bistable.

Corollary 3.2. Suppose that there exist three scalar functions Θ = Θ(t, x), φ =
φ(t, x) ∈ C and V = V (t, x) ∈ C1 such that on R+ × Rn we have:

(i) for each ε > 0 there exists l > 0 such that h(t, x) = ε implies V (t, x) ≥ l > 0;
(ii) limh→0 V (t, x) = 0;
(iii) Θ(t, x) > φ(t, x) > 0 and (Θ− φ)U > 0;
(iv) Vx(t, x) = φG(t, x);
(v) V̇ (t, x) ≤ −ΘU(t, x).

Then (2.1) is (h0, h)-t.bistable.

Corollary 3.3. For a scalar function U < 0, suppose that there exist three scalar
functions L = L(t, x), φ = 1, V = V (t, x) such that the conditions (i)–(iv) in Corol-
lary 3.2 hold, and that V̇ (t, x) ≤ −L(t, x) < 0. Then (2.1) is (h0, h)−t.bistable.

Proof. From (2.7) we have

V̇2(t, x) ≤ −L(t, x) + ‖G‖‖Z‖ (3.2)

hence by choosing ‖Z‖ ≤ L/‖G‖ we have the proof. �

Theorem 3.4. Suppose that for every ε > 0 there exist two scalar functions φ =
φ(t, x), Θ = Θ(t, x) ∈ C, a map N = N(u) L-measurable, the scalar function
V = V (t, x) ∈ C1, and a constant l such that on R+ × Rn we have:

(i) h(t, x) = ε implies V (t, x) ≥ l > 0;
(ii) limh→0V (t, x) = 0;
(iii) V̇ (t, x) ≤ −ΘU(t, x) + N(t) with 0 <

∫ +∞
0

N(u)du < +∞ and U > 0 (a
hypothesis of Hatvani’s type);

(iv) Θ(t, x) ≥ φ(t, x) > 0 and (Θ− φ)U > 0;
(v) Vx(t, x) = φG(t, x).

Then (2.1) is eventually (h0, h)-t.bistable.

Proof. Given ε > 0 we consider the function

W (t, x) = V (t, x) +
∫ +∞

t

N(u)du (t > 0). (3.3)

Let T > 0 such that 2
∫ +∞

t0
N(u)du < l for t0 ≥ T , and let d > 0 such that h(t0, x) <

d implies (by (ii)) 2V (t0, x) < l. If x0 ∈ Rn and h0(t0, x0) < δ1 = min[λ,m−1(d)],
we deduce that h(t0, x0) ≤ m[h0(t0, x0)] < d and 2V (t0, x0) < l. Then it follows
that W (t0, x0) < l. Consider the derivatives

Ẇ (t, x) = V̇ (t, x)−N(t) ≤ −ΘU(t, x) < 0, (3.4)

Ẇ2(t, x) ≤ −(Θ− φ)U(t, x) + φ‖G(t, x)‖‖Z(t, x)‖. (3.5)

Provided that

‖Z(t, x)‖ ≤ (Θ− φ)U(t, x))
φ‖G(t, x)‖

= δ2(t, x, ε) (3.6)

we obtain Ẇ2(t, x) ≤ 0. Selecting Z = Z(t, x) such that ‖Z(t, x)‖ ≤ δ2, consider
x(t) = x(t, t0, x0) a solution of the perturbed system (2.2), and putH(t) = h[t, x(t)],
v(t) = V [t, x(t)], w(t) = W [t, x(t)]. Suppose that there exists t′ > t0 such that
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H(t′) = ε and H(t) < ε for t0 ≤ t < t′. So we have v(t′) > l hence w(t′) > l. This
is a contradiction which completes the proof. �

Lemma 3.5. Suppose that there exist four scalar functions φ = φ(t, x), U =
U(t, x), Θ = Θ(t, x) ∈ C, V = V (t, x) ∈ C1, a scalar function Ψ = Ψ(t, h) L-
integrable with respect to t ∈ R+, a map a = a(u) ∈ K such that on R+ × Rn, we
have

(i) V (t, x) ≥ a[h(t, x)];
(ii) limh→0V (t, x) = 0;
(iii) Vx(t, x) = φG(t, x);
(iv) V̇ (t, x) ≤ −ΘU(t, x) < 0;
(v) Θ(t, x) > φ(t, x) > 0 and (Θ− φ)U > 0;
(vi) (Θ− φ)U(t, x) = Ψ[t, h(t, x)];
(vii) Ψ(t, h) ≥ Ψ(t, µ) when h ≥ µ > 0;
(viii)

∫ +∞
t′

Ψ(τ, ρ)dτ = +∞, for all t′ ∈ I, all ρ > 0.
Then (2.1) is (h0, h)-t.bistable. Also for every ε > 0, for every η ∈]0, ε], for each
γ > 0 for every t0 ∈ R+ and x0 ∈ Rn with h0(t0, x0) < δ1, for every Z with

‖Z(t, x)‖ ≤
( 1
1 + γ

) (Θ− φ)U(t, x)
φ‖G(t, x)‖

= δ3; (3.7)

there exists tη ≥ t0 for which h[tη, x(tη)] < η where x = x(t, t0, x0) is solution of
(2.2).

Proof. By contradiction let us assume that that there exist ε1 > 0, η1 ∈]0, ε1],
(t1, x1) ∈ R+ × Rn: h0(t1, x1) < δ1, γ1 > 0, Z1 : ‖Z1(t, x)‖ < δ3 (depending on
γ1) such that h[t, x1(t)] ≥ η1 when t ≥ t1 where x1(t) = x(t, t1, x1) is obviously a
solution of (2.2).

Consider the derivative V̇2(t, x): by hypotheses (iii) and (iv) we have

V̇2(t, x) = V̇ + φGY (t, x) + φGZ(t, x) ≤ −(Θ− φ)U + φ‖G‖‖Z‖ (3.8)

Thus selecting

‖Z(t, x)‖ ≤ 1
1 + γ1

(Θ− φ)U(t, x)
φ‖G(t, x)‖

=
1

1 + γ1
δ2 = δ3 (3.9)

we obtain
V̇2(t, x) ≤ − γ1

1 + γ1
(Θ− φ)U < 0. (3.10)

hence by (vi)
V̇2(t, x) ≤ − γ1

1 + γ1
Ψ[t, h(t, x)]. (3.11)

On the set {(t, x) ∈ R+×Rn : h(t, x) ≥ η1 > 0} we have Ψ[t, h(t, x)] ≥ Ψ(t, η1) and

V̇2(t, x) ≤ − γ1

1 + γ1
Ψ(t, η1). (3.12)

Along the above solution x1(t) we obtain, for t ≥ t1,∫ t

t1

V̇2[u, x1(u)]du ≤ − γ1

1 + γ1

∫ t

t1

Ψ(u, η1)du, (3.13)

V [t, x1(t)] ≤ V (t1, x1)−
γ1

1 + γ1

∫ t

t1

Ψ(u, η1)du (3.14)

which is a contradiction. �



EJDE-2010/152 STABILITY PROPERTIES 7

Theorem 3.6. Under the hypotheses of Lemma 3.5 suppose that

(ix) There exist b = b(u) ∈ K such that b[h0(t, x)] ≤ h(t, x) on R+ × Rn.

Then, for every ε > 0 and σ ∈]0, ε], there exists a function δ3 = δ3(t, x, σ) ∈]0, δ2]
such that: for every t0 ∈ R+, for every x0 ∈ Rn with h0(t0, x0) < δ1, and for every
Z : ‖Z(t, x)‖ < δ3; there exists Tσ > 0 for which h[t, x(t)] < σ when t ≥ t0 + Tσ

where x(t) = x(t, t0, x0) is a solution of (2.2).

Proof. Since the system (2.1) is (h0, h)-t.bistable, given t0 ∈ R+ and ε > 0 there
exist δ1 = δ1(t0, ε) and δ2 = δ2(t, x, ε) > 0 such that fixed x0 ∈ Rn for which
h0(t0, x0) < δ1 and select Z : ‖Z(t, x)‖ < δ2 we have h[t, x(t)] < ε for t ≥ t0 where
x(t) = x(t, t0, x0) is a solution of (2.2).

It is obvious that for every σ ∈]0, ε[ there exist d1 ∈]0, δ1[ and d2 ∈]0, δ2[ such
that fixed (t1, x1) ∈ R+ × Rn for which h0(t1, x1) < d1, select Z : ‖Z(t, x)‖ < d2

we have h[t, x1(t)] < σ for t ≥ t1 where x1(t) = x1(t, t1, x1) is a solution of (2.2).
From Lemma 3.5, given η ∈]0, σ[⊂]0, ε] there exists d3 ∈]0, d2[ such that for

every Z : ‖Z(t, x)‖ ≤ d3 there exists tη ≥ t0 for which h[tη, x(tη)] < η where
x(t) = x(t, t0, x0) is a solution of (2.2).

If we assume that η = b(d1), we obtain

b{h0[tη, x(tη)]} ≤ h[tη, x(tη)] < η = b(d1); (3.15)

i.e., h0[tη, x(tη)] < d1. Hence when ‖Z(t, x)‖ ≤ d3 we have h[t, x(t)] ≤ σ for t ≥ tη.
Putting Tη = tη − t0 we then obtain the semiattractivity. �

Theorem 3.7. Suppose that there exist three functions from R × Rn to R: U =
U(t, x), φ = φ(t, x) ∈ C, V = V (t, x) ∈ C1; three functions a = a(u), b = b(u),
c = c(u) belonging to K; and a constant N > 0; such that on R+ × Rn, we have:

(i) a[h(t, x)] ≤ V (t, x) ≤ b[h(t, x)];
(ii) φ(t, x) > 0;
(iii) Vx(t, x) = φG(t, x), ‖Vx(t, x)‖ < N ;
(iv) V̇ (t, x) ≤ −c[h(t, x)];
(v) given r, T, ε > 0, put ν = r

T ε: the condition ν < h(t, x) < ε implies
φU(t,x)
V (t,x) < c(ν)

2b(ε) .

Then (2.1) is (h0, h)-t.bistable on average.

Proof. Given t0 ∈ R+, ε and T > 0, from (i) h(t, x) = ε implies V (t, x) ≥ a(ε).
Select d ∈]0, ε[ such that:

(i) h(t0, x) < d implies V (t0, x) < a(ε);
(ii) b(d) < 1

2a(ε).

If x0 ∈ Rn : h0(t0, x0) < δ1 = min[λ,m−1(d)] we have h(t0, x0) ≤ m[h0(t0, x0)] ≤
d hence V (t0, x0) < a(ε). Let x(t) = x(t, t0, x0) be a solution of (2.2) and suppose
that there exist t′, t′′ ∈ R+ with the following properties:

(iii) t0 ≤ t′ < t′′;
(iv) h(t′′, x′′) = h[t′′, x(t′′)] = ε;
(v) h(t′, x′) = h[t′, x(t′)] = minh[t, x(t)] and h(t′, x′) ≤ h[t, x(t)] ≤ h(t′′, x′′) on

t′ ≤ t ≤ t′′.
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Put W (t, x) = V (t, x)eβ(t), where β = β(t) : R+ → R is a scalar function that
will be defined in (3.23), and consider the derivatives

Ẇ1(t, x) = Ẇ (t, x) = V̇ (t, x)eβ(t) + V (t, x)eβ(t)β̇(t), (3.16)

Ẇ2(t, x) = Ẇ (t, x) +Wx[Y (t, x) + Z(t, x)],

Ẇ2(t, x) = V̇ (t, x)eβ(t) + V (t, x)eβ(t)β̇(t) + eβ(t)[VxY (t, x) + VxZ(t, x)],

Ẇ2(t, x) = W (t, x)
[ V̇ (t, x)
V (t, x)

+ β̇(t) +
VxY (t, x)
V (t, x)

+
VxZ(t, x)
V (t, x)

]
(3.17)

if we select Y (t, x) such that VxY ≤ U we obtain

Ẇ2(t, x) ≤W (t, x)
{ V̇ (t, x)
V (t, x)

+ β̇(t) +
φU(t, x)
V (t, x)

+
‖Vx(t, x)‖
V (t, x)

‖Z(t, x)‖
}
. (3.18)

On the set
{A} = {(t, x) ∈ R+ × Rn : d =

r

T
ε < h(t, x) < ε}

for suitable r ∈]0, T [ we have

(s)
V̇ (t, x)
V (t, x)

< −c(d)
b(ε)

; (ss)
φU(t, x)
V (t, x)

<
c(d)
2b(ε)

(3.19)

hence

Ẇ2(t, x) ≤W (t, x)
{
β̇(t)− c(d)

2b(ε)
+

N

a(d)
‖Z(t, x)‖

}
. (3.20)

Fixed t ∈ R+, for every x ∈ Rn put φ(t) = sup{‖Z(t, x)‖}. Given q ∈]0, 1[ we
construct the function Ψ = Ψ(t) : R→ R such that the equalities

L(T ) =
∫ (µ+1)T

µT

Ψ(u)du

=
∫ (µ+1)T

µT

{ (1− q)
2

c(d)
b(ε)

− N

a(d)
φ(u)

}
du

=
(1− q)c(d)

2b(ε)
T − N

a(d)

∫ (µ+1)T

µT

φ(u)du

(3.21)

are fulfilled for every non negative integer µ.
If, for every t ∈ R+, we select ‖Z(t, x)‖ such that∫ (µ+1)T

µT

φ(u)du ≤ (1− q)c(d)a(d)
2b(ε)N

T = δ2 (3.22)

we obtain L(T ) ≥ 0. On the strength of the previous conditions we can take it such
that Ψ(t) ≥ 0 for all t ≥ 0. We set, for t ∈ R+,

β(t) =
∫ t

0

[
−Ψ(u) +

(1− q)c(d)
2b(ε)

− N

a(d)
φ(u)

]
du. (3.23)

consequently we recognize that β(µT ) = 0 for every natural number µ. Also

β̇(t) = −Ψ(t) +
(1− q)c(d)

2b(ε)
− N

a(d)
φ(t), (3.24)

Ẇ2(t, x) ≤W (t, x)[−Ψ(t)− qc(d)
2b(ε)

] ≤ 0. (3.25)
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Assuming µT ≤ t ≤ (µ+ 1)T , put

Γ(u) = −Ψ(u) +
(1− q)c(d)

2b(ε)
− N

a(d)
φ(u),

∆(u) = Ψ(u) +
(1− q)c(d)

2b(ε)
+

N

a(d)
φ(u).

Consequently,

β(t) =
∫ t

0

Γ(u)du =
∫ t

µT

Γ(u)du ≤
∫ (µ+1)T

µT

∆(u)du, (3.26)

|β(t)| ≤
∣∣ ∫ (µ+1)T

µT

[
Ψ(u) +

(1− q)c(d)
b(ε)

+
N

a(d)
φ(u)

]
du

∣∣
≤ 3

(1− q)c(d)
b(ε)

T = Θ.

(3.27)

Hence we obtain

W [t′, x′] = V [t′, x(t′)]eβ(t′) ≤ b(d)eΘ <
1
2
a(ε)eΘ, (3.28)

W [t′′, x′′] = V [t′′, x(t′′)]eβ(t′′) ≥ a(ε)e−Θ. (3.29)

and so according to (3.25) we have
1
2
a(ε)eΘ > b(d)eΘ ≥ a(ε)e−Θ,

1
2
≥ e−2Θ. (3.30)

Since 0 < q < 1 is arbitrary we obtain a contradiction. (Oziraner theorem exten-
sion) �

4. Theoretical developments for inequalities of the second kind

In this section we assume, as start points, the functions X,V , and select Y from
inequalities of the type (second kind)

F (Vx,Wx, V̇ , Ẇ , Y ) < 0.

This way we deduce some propositions very useful for applications.

Theorem 4.1. Suppose that there exists a family of scalar functions V = V (t, x) ∈
C1 such that on R+ × Rn we have:

(i) for all ε > 0 there exists l > 0 such that h(t, x) = ε implies V (t, x) > l;
(ii) limh→0V (t, x) = 0;
(iii) V̇ (t, x) < 0;
(iv) ‖Vx(t, x)‖ > 0.

Then (2.1) is (h0, h)-t.bistable with respect to the “aim perturbations” (friction?)
for which VxY (t, x) ≤ 0.

Proof. The proof is very similar to that of Theorem 3.1. We limit ourselves to
observe that

V̇2(t, x) ≤ V̇ (t, x) + ‖Vx(t, x)‖‖Z(t, x)‖ (4.1)
and thus if

‖Z(t, x)‖ ≤ − V̇ (t, x)
‖Vx(t, x)‖

= δ2 (4.2)

we have V̇2(t, x) ≤ 0. �
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Theorem 4.2. Suppose that there exist three functions Φ = Φ(t, x) ∈ C, V =
V (t, x) and W = W (t, x) ∈ C1 such that on R+ × Rn we have:

(i) For all ε > 0 there exists l > 0 such that h(t, x) = ε implies V (t, x) −
W (t, x) ≥ l;

(ii) limh→0[V (t, x)−W (t, x)] = 0;
(iii) V̇ (t, x) < 0;
(iv) ‖Vx(t, x)−Wx(t, x)‖ > 0;
(v) 0 < Φ(t, x) < 1.

Then the system (2.1) is (h0, h)-t.bistable with respect to the “aim perturbations”
such that (Vx −Wx)Y (t, x) ≤ (−ΦV̇ + Ẇ )(t, x).

Proof. Let T (t, x) = V (t, x)−W (t, x) be an auxiliary function. From the following
two conditions

Ṫ2(t, x) = [V̇ − Ẇ ](t, x) + (Vx −Wx)Y (t, x) + (Vx −Wx)Z(t, x), (4.3)

Ṫ2 ≤ V̇ − Ẇ − ΦV̇ + Ẇ + ‖Vx − Vx‖‖Z‖

if

‖Z‖ ≤ − (1− Φ)V̇
‖Vx −Wx‖

= δ2(t, x), (4.4)

we obtain Ṫ2(t, x) ≤ 0. �

Theorem 4.3. Suppose that there exist a constant a > 0 and two functions V =
V (t, x), W = W (t, x) ∈ C1 such that on R+ × Rn we have

(i) V (t, x) ≥ 0;
(ii) W (t, x) ≥ −a and for every ε > 0 there exist two constants r, b > 0 for

which h(t, x) = ε with V (t, x) < r implies W (t, x) > b;
(iii) limh→0V (t, x) = limh→0W (t, x) = 0;
(iv) ‖Vx(t, x) + µWx(t, x)‖ > 0 for every µ > 0.

Then (2.1) is bistable with respect to the “aim perturbations” for which

V̇ (t, x) + µẆ (t, x) + [Vx(t, x) + µWx(t, x)]Y (t, x) < 0. (4.5)

Proof. Given ε and r, b > 0, suppose that 0 < µ(a+b) < r where µ > 0 is a constant
(correspondent to ε). Consider the family of functions

v(t, x) = V (t, x) + µW (t, x). (4.6)

If we assume that h(t, x) = ε and V (t, x) ≥ r, we obtain

v(t, x)− µb ≥ r − µ(a+ b), v(t, x) ≥ µb (4.7)

When h(t, x) = ε implies V (t, x) < r, we deduce v(t, x) ≥ µb which condition (i) of
Theorem 3.1. Finally, consider the derivative

v̇2(t, x) = V̇ (t, x) + VxY (t, x) + µ[Ẇ +WxY ](t, x) + [Vx + µWx]Z(T, x) (4.8)

if V̇ + µẆ + [Vx + µWx]Y < 0, we obtain the proof by choosing

‖Z(t, x)‖ ≤ − V̇ + VxY + µ[Ẇ +WxY ]
‖Vx + µWx‖

. (4.9)

�
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5. Liapunov functions in Salvadori’s sense

Let us consider a continuous non trivial function φ = φ(t, x) : R+ × Rn → R+

and a constant ρ ∈]0, supφ]. We shall set, for t ∈ R+,

Et(φ ≤ ρ) = {(t, x) ∈ R+ × Rn : φ(t, x) ≤ ρ, t = constant} (5.1)

The meaning of Et(φ = 0) and Et(φ ≥ ρ) is obvious.

Assumption 5.1. Suppose that there exist two positive numbers m,m′ such that
for every ρ ∈]0,m] we have:

(i) Et(φ = 0) ⊂ Et(φ < ρ), or for short Et(0) ⊂ Et(ρ);
(ii) dist{∂Et(φ = 0), ∂Et(φ ≤ ρ)} ≥ m′ for every t ∈ R+, where dist is the

Euclidean distance of sets, and ∂E is the boundary of E.

Definition 5.2. A function W = W (t, x) : R+×Rn → R will be called definitively
positive, negative, not equal to zero on the sets Et(φ = 0) with respect to h(t, x) if
there exists a constant m > 0 such that for every η ∈]0,m] there exist ρ, β > 0 with
the property: (t, x) ∈ R+ × Rn with h(t, x) > η and φ(t, x) < ρ imply respectively
W (t, x) > β, W (t, x) < −β, |W (t, x| > β.

Theorem 5.3. Suppose that there exist: two functions V = V (t, x) and W =
W (t, x) ∈ C1 from R+×Rn to R, and a constant a > 0 such that, on R+×Rn, we
have:

(i) V (t, x) ≥ 0, supV (t, x) > 0,W (t, x) ≥ −a;
(ii) for every ε > 0 two numbers r, b > 0 exist such that h(t, x) = ε and V (t, x) <

r imply W (t, x) > b.
Then we can construct a family of functions that verifies hypothesis (i) of Theorem
3.1.

Proof. Given ε > 0 with r, b; let 0 < µ ≤ r/(a + b) and consider the family of
functions

vµ = vµ(t, x) = V (t, x) + µW (t, x). (5.2)
Suppose h = h(t, x) = ε and V (t, x) ≥ r hence vµ(t, x) ≥ r − µa and

vµ(t, x)− µb ≥ r − µ(a+ b) ≥ 0 (5.3)

hence we have vµ(t, x) ≥ µb > 0. If h = h(t, x) = ε and V (t, x) < r we have
W (t, x) > b and

vµ(t, x) = V (t, x) + µW (t, x) ≥ µb. (5.4)
�

Theorem 5.4. Suppose that there exist three functions of class C1: V = V (t, x),
W = W (t, x) from R+ × Rn to R and φ = φ(t, x) from R+ × Rn to R+, and two
constants M,M ′ > 0 such that, on R+ × Rn, we have:

(i) φ(t, x) ≥ 0;φ(t, x) = 0 implies V̇ (t, x) ≤ 0, φ(t, x) verifies Assumption 5.1;
(ii) for every χ > 0 there exists χ′ > 0 such that for every t ∈ R+ when

dist[(t, x), Et(φ = 0)] > χ we have V̇ (t, x) < −χ′;
(iii) |W (t, x)| and ‖WX(t, x)‖ < M on R+ × Rn;
(iv) V̇ (t, x) ∈ GG, Ẇ (t, x) ∈ ZZ, ‖Ẇ (t, x)‖ < M ′ on R+ × Rn;
(v) Ẇ (t, x) is definitively not equal to zero with respect to h on the sets Et(φ =

0) and h ∈ C1.
Then we can construct a function whose derivative belongs to ZZ.



12 G. CANTARELLI, G. ZAPPALÁ EJDE-2010/152

Proof. Since Ẇ (t, x) is definitively not equal to zero on the sets Et(φ = 0) with
respect to h there exists m > 0 such that given η ∈]0,m] there exist β, ρ > 0 and
three sets:

A1 = {(t, x) ∈ R+ × Rn : h(t, x) ≥ η, φ(t, x) ≤ ρ, Ẇ (t, x) < −β}, (5.5)

A2 = {(t, x) ∈ R+ × Rn : h(t, x) ≥ η, φ(t, x) ≤ ρ, Ẇ (t, x) > β}, (5.6)

A3 = {(t, x) ∈ R+ × Rn : h(t, x) ≥ η, φ(t, x) ≤ ρ, (t, x) /∈ A1 ∪A2} = ∅ (5.7)

since W (t, x) ∈ C1 when A1, A2 6= ∅ we have dist[A1, A2] > 0.
Now, we shall denote, for a fixed t = t′ ∈ R+, for i = 1, 2 and for every r > 0:

Bi(t′) = {(t′, x) ∈ Ai : φ(t′, x) = 0}; dist{∂Et′(0), ∂Et′(ρ)} = 3α (> 0) (5.8)

S = S(r) = {x ∈ Rn : ‖x‖ < r}. (5.9)

Consider also the sets:

Ci(t′) = S(r) ∩Bi(t′),

Di(t′) = {(t′, x) ∈ R× Rn : dist[(t′, x), Ci(t′)] < α},
D′i(t

′) = {(t′, x) ∈ R× Rn : dist[(t′, x), Ci(t′)] < 2α},
D′′i (t′) = {(t′, x) ∈ R× Rn : dist[(t′, x), Ci(t′)] < 3α} .

Put ψi(t′, x) = 0 for (t′, x) /∈ D′i and ψi(t′, x) = 1 for (t′, x) ∈ D′i we consider the
functions

Ti(t′, x) =
∫

Rn

ψi(t′, x)Ωα(x− u)du (5.10)

where Ωα is the averaging kernel of radius α, i = 1, 2, and u ∈ Rn.
Since h, φ ∈ C1 we can obtain two functions Ti = Ti(t, x) : R+ × Rn → R+ that

belong to C1 with respect to the first variable, and belong to C∞ with respect to
x, and

(i) 0 ≤ Ti(t, x) ≤ 1 for (t, x) ∈ D′′i and Ti(t, x) = 0 for (t, x) /∈ D′′i ;
(ii)

∣∣∂Ti(t,x)
∂t

∣∣, ‖∂Ti(t,x)
∂x ‖ ≤ N , suitable strictly positive constant;

(iii) Ṫi(t, x) = ∂Ti(t,x)
∂t + ∂Ti(t,x)

∂x X, ‖Ṫi‖ ≤ N(1 + ‖X‖);
(iv) Ṫi(t, x) = 0 if (t, x) /∈ D′′i or if (t, x) is in the interior of Di.
Now, let us consider:
(1) the function T = T (t, x) defined on R+ × Rn such that T = T1(t, x) for

(t, x) ∈ D′′1 (t), T = −T2(t, x) for (t, x) ∈ D′′2 (t); T = 0 when (t, x) /∈ D′′1 (t)∪D′′2 (t);
(2) the function ω = TW defined on the set

Γ = {(t, x) ∈ R+ × Rn : h(t, x) ≥ η, ‖x‖ ≤ r}. (5.11)

Since
ω̇(t, x) = TẆ (t, x) + ṪW (t, x), (5.12)

we have

‖ṪW (t, x)‖ =
∣∣∂T
∂t

+
∂T

∂x
X

∣∣|W (t, x)| ≤ N(|W |+ ‖WX‖) ≤ 2NM,

‖TẆ (t, x)‖ ≤ ‖Ẇ (t, x)‖ < M ′, ‖ω̇(t, x)‖ < 2NM +M ′. (5.13)

Let us finally consider the following function, defined on Γ,

vν = vν(t, x) = V (t, x) + νω(t, x), ν > 0 (5.14)
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and its derivative

v̇ν = v̇ν(t, x) = V̇ (t, x) + νω̇(t, x) (5.15)

It is obvious that for fixed t ∈ R+, (t, x) ∈ Γ with (t, x) /∈ [D′′1 (t) ∪D′′2 (t)], we have
vν(t, x) = V (t, x), v̇ν(t, x) = V̇ (t, x).

In this first case since dist[(t, x), Et(φ = 0)] ≥ 3α there exists α′ > 0 such that
V̇ (t, x) < −α′ < 0.

If (t, x) ∈ D1(t) ∩ Γ then T = 1, ω(t, x) = W (t, x), vν(t, x) = V (t, x) + νW (t, x)
with V̇ (t, x) ≤ 0, Ẇ (t, x) < −β hence v̇ν(t, x) < −νβ < 0 for every ν > 0. When
(t, x) ∈ D′′1 (t)∩Γ with (t, x) /∈ D1(t), we have α ≤ dist[(t, x), Et(φ = 0)] ≤ 3α then
there exists α′′ > 0 such that V̇ (t, x) < −α′′; therefore, v̇ν(t, x) < −α′′+ ν(2MN +
M ′). If 0 < 2ν[2MN +M ′] < α′′ we obtain

2v̇ν(t, x) < −α′′. (5.16)

The cases (t, x) ∈ D2(t)∩ Γ and (t, x) ∈ D′′2 (t)∩ Γ with (t, x) /∈ D2(t) are trivial as
A1 = ∅ or A2 = ∅. �

6. Application to the motion of rigid bodies

In this section we present an illustrative mechanical example. Putting

CD = {(p, q, r, γ1, γ2) ∈ R5 : γ2
1 + γ2

2 ≤ 1}

on the set R+ × CD let us consider the system of equations

Ȧp+ 2Aṗ+ 2(C −A)qr = 2Pzγ2γ3 − 2f1p− 2f4r,

Ȧq + 2Aq̇ + 2(A− C)pr = −2Pzγ1γ3 − 2f2q − 2f5r,

Ċr + 2Cṙ = 2f4p+ 2f5q − 2f3r,
γ̇1 = rγ2 − qγ3, γ̇2 = pγ3 − rγ1, γ̇3 = qγ1 − pγ2,

γ2 = 1− γ3, γ2
1 + γ2

2 + γ2
3 = 1 .

(6.1)

This system, with the usual designation and when Pz = 0, constitutes the basic
dynamical system for the motion of a symmetrical rigid body about a fixed point
and variable mass [16]; if P = 0 the body is non heavy, if z = 0 the center of gravity
is a fixed point.

Assumption 6.1. Assume that the given functions A(t), C(t) ∈ C1(R+ → R+),
P (t) ∈ C(R+ → R+), z(t) ∈ C(R+ →]0,∞[) and G(t, p, q, r, γ1, γ2), U(t, . . . γ2)
satisfy the following properties:

(i) inf{A(t), C(t), P (t),−z(t)} > 0, −Pz = const > 0 and A′ = inf A(t) ≤
supA(t) = A′′;

(ii) 0 < f ′ = inf{fi(t, p, q, r, γ1, γ2)} ≤ sup{fi(..)} = f ′′ for i = 1, 2, 3;
(iii) for every t0, p0, q0, r0, γ

0
1 , γ

0
2 there exists only one solution, defined for t ≥ t0;

(iv) G = {Ap,Aq,Cr,−Pzγ1,−Pzγ2}, U = A2p2 +A2q2 + C2r2;
(v) as measures of stability we select the following functions h and h0:

4h = A(p2 + q2) + Cr2 − Pz(γ2
1 + γ2

2) = h0; (6.2)
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(vi) as auxiliary Liapunov’s functions we select the following functions of Ma-
trosov’s type

V =
1
2
[A(p2 + q2) + Cr2]− 1

2
Pz(γ2

1 + γ2
2) = 2h, (6.3)

W = A(pγ2 − qγ1). (6.4)

(vii) f1 = 2A2, f2 = 2A2, f3 = 2C2.

Theorem 6.2. Under Assumption 6.1, we deduce that:
(i) The measure h0 is uniformly finer than h, h = 0 is equivalent to p = q =

r = γ1 = γ2 = 0.
(ii) V = 2h and limh→0V = 0 hence condition (3.2)(ii) hold, and we obtain

limh→0W = 0.
(iii) G = gradV hence, for φ = 1, condition (3.2)(iv) is verified.
(iv) V̇ = −f1p2 − f2q

2 − f3r
2 = −2U < 0, so conditions (3.2)(iii) and (3.2)(v)

hold for θ = 2 > φ = 1, −f ′′(p2 + q2 + r2) ≤ V̇ ≤ −f ′(p2 + q2 + r2).
(v) V̇ = 0 if and only if p = q = r = 0; therefore, the L-measure on R5 of the

set

E1 = E(V̇ = 0) = {p = q = r = 0, (γ1, γ2) ∈ R2 : γ2
1 + γ2

2 ≤ 1}
is equal to zero, hence the system (6.1) is strongly weakly (h0, h)-t.bistable
with respect to perturbation

σ{Ap,Aq,Cr, 0, 0} (6.5)

where σ = σ(t, p, q, r, γ1, γ2) > 0 belongs to C1.
(vi) Since

Ẇ = 2(A− C)qrγ2 −Aṗγ2 + 2Pzγ2
2 − 2f1pγ2 − 2f4rγ2 +Apγ̇2

− 2(C −A)prγ1 +Aq̇γ1 + 2Pzγ2
1 + 2f2qγ1 + 2f5rγ1 +Aqγ̇1,

(6.6)

hence on the set E1, we obtain Ẇ = 2Pz(γ2
1 + γ2

2) ≤ 0.
(vii) If 0 < η < 1 and γ2

1 + γ2
2 = γ ≥ η we deduce 2Pzγ ≤ 2Pzη < 0 i.e.

on the set E2 = E(V̇ = 0, η ≤ γ ≤ 1) we have Ẇ ≤ 2Pzη < 0 and
4h = −Pzγ ≥ −Pzη. Since W ∈ C1 there exists b > 0 such that on the set

(CD)1 = {(p, q, r) ∈ R3 : p2 + q2 + r2 ≤ 9b2} × {(γ1, γ2) ∈ R2 : γ ≥ η} (6.7)

we have Ẇ ≤ Pzη < 0, i.e. the function Ẇ is definitely negative on the set
E(V̇ = 0) with respect to the measure h when γ ≥ η. According to Theorem
5.4 we have A2 = 0 and

A1 = {(p, q, r, γ1, γ2) : h ≥ −1
2
Pzγ ≥ −1

2
Pzη;φ = p2 + q2 + r2 ≤ 9b2}

= {(p, q, r) ∈ R3 : φ = p2 + q2 + r2 ≤ 9b2} × {(γ1, γ2) ∈ R2 : γ ≥ η}.
(6.8)

(viii) Consider the function ψ = ψ(p, q, r) from R3 to R+ such that ψ = 0 when
4b2 ≤ φ, ψ = 1 when 0 ≤ ψ < 4b2 and their regularized function, defined
on R3:

T (x) =
∫

R3
ψi(x)Ωb(x− u)du (6.9)

where x = (p, q, r) and Ωb is the averaging kernel of radius b. It is obvious
that 0 ≤ T ≤ 1, T ∈ C∞ and: T = 0 when φ ≥ 9b2, 0 < T ≤ 1 when
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b2 ≤ φ < 9b2,T = 1 when φ < b2, |Ṫ | < M ′′(> 0) being M ′′ a suitable
constant. On the set (CD)1 we obtain

|TW | = |T‖W | ≤ |W | ≤ A′′[|pγ2|+ |qγ1|] ≤ 6A′′b. (6.10)

(ix) Successively consider the family of functions wµ = V +µTW defined on the
set

R+ × (CD)2 = {t ∈ R+} × {(p, q, r) ∈ R3; (γ1, γ2) ∈ R2 : η ≤ γ < 1}

when µ > 0 and suppose that:
(1) φ ≥ 9b2 in this case T = 0, wµ = V hence for h = s we obtain

wµ = 2s;
(2) φ < 9b2 now |TW | ≤ 6A′′b therefore h = s implies

[wµ]h=s = [V + µTW ]h=s ≥ 2s− 6µA′′b > s↔ µ <
s

6A′′b
. (6.11)

(x) Consider the derivatives

ẇµ = V̇ + µṪW + µTẆ (6.12)

and suppose that:
(1) φ ≥ 9b2 then T = 0 i.e. ẇµ = V̇ = −f1p2 − f2q

2 − fr3r2 ≤ −f ′φ ≤
−9f ′b2.

(2) φ ≤ b2 hence T = 1, ẇµ = V̇ + µẆ , ẇµ < µPzη.
(3) b2 < φ < 9b2 then Ẇ ≤ 0, ẇµ ≤ V̇ + µṪW but |ṪW | ≤ M ′′|W | ≤

6M ′′A′′b and V̇ ≤ −f ′b2 therefore we obtain ẇµ ≤ −f ′b2+6µM ′′A′′b ≤
−3µM ′′A′′2b if and only if µ ≤ f ′b

9M ′′A′′ .

When µ ≤ µ′ = min[ s
6A′′b ,

f ′b
9M ′′A′′ ] all the conditions of Theorem 3.1 are verified,

hence (6.1) is weakly (h0, h)-t.bistable with respect to the perturbations

Y = σ{−(wµ)p,−(wµ)q,−(wµ)r, 0, 0} (6.13)

where µ ≤ µ′ and σ = σ(p, q, r, γ1, γ2) is an arbitrary continuous function.
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