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REPRESENTATION OF THE NORMING CONSTANTS BY TWO
SPECTRA

TIGRAN N. HARUTYUNYAN

ABSTRACT. The representation of the norming constants by 2 spectra was
studied by Levitan, Gasymov (and others) for the Sturm-Liouville problem
with boundary conditions y(0) cos a+1v’(0) sina = 0, y(m) cos B4y () sin B =
0, when sin a # 0 and sin 3 # 0. We investigate the representation by 2 spectra
without these restrictions.

1. INTRODUCTION AND STATEMENT OF THE MAIN RESULT

Let L(q, a, 8) denote the Sturm-Liouville (S.-L.) problem

ly=—y" +q(x)y=py, =€ (0,m), ueC, (1.1)
y(0)cosa+y'(0)sina =0, «a € (0,7, (1.2)
y(m)cos B+ 1y (m)sinB =0, Be€l0,7), (1.3)

where ¢ is a real-valued, summable on [0, 7] function (we write ¢ € L}[0,7]). By
L(q, a, B) we also denote the self-adjoint operator, generated by the problem —
(1.3)), (see [6L[R]). It is known, that the spectra of the operator L(q, o, 3) is discrete
and consists of simple eigenvalues, which we denote by p,(¢,a,3), n =0,1,2,...,
emphasizing the dependence of i, on ¢, a and .

The eigenvalues p,(q, @, 3) are enumerated in increasing order; i.e.,

/’LO(Q7OL7ﬁ) < .ul(qvavﬁ) << MH(Qaaa/B) < ,u‘n-‘rl((Lavﬂ) <....

In what follows, for brevity, we often use the notation p,, = p, (e, 8) = un(q, , 8).

By ¢(x, p,7) and ¥ (x, u, §) we denote the solutions of (1.1]), satisfying the initial
conditions

00, p1,7) =siny,  ¢'(0,4,7) = —cosy, 7€C, (1.4)
p(m, pu,0) =sind, ' (w,p,8) = —cosd, d¢€C, (1.5)

correspondingly. The eigenvalues u, = p,(q,«,3), n =0,1,2,..., of L(q, o, 3) are
the solutions of the equation

B(p) = By, v, B) == (@) cos B+ & (m, p, ) sin f = 0, (1.6)
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or the equation
W) = U, @, B) = (0, 1, B) cos a + 9/ (0, 1, B) sinax = 0. (1.7)

According to the Liouville formula, the Wronskian W (z) = W(z, p,¢) = ¢ - ¢’ —
') of the solutions ¢ and 1 is constant. It follows that W(0) = W(r) and,
consequently,

‘I’(M,%ﬁ) = —q)(u,a,ﬁ)

The functions ¢, (z) = o(z, tin, o) and ¥, (x) = P(z, pn, ), n =0,1,2,..., are the
eigenfunctions, corresponding to the eigenvalue j,,. The squares of the L2-norms
of these eigenfunctions:

an = an(q,0, B) = / on(@)2dz, by = by (g0, 8) = / () 2z, (1.8)

are called the norming constants.
Our aim is to prove the following theorem.

Theorem 1.1. (1) For arbitrary € € (0,m), € # «, the following representations
are true (n =0,1,2,...):

sin o sin(a — ¢) ﬁ pi (e, B) — pn(av, B) (1.9)

an(Qva’ﬁ) = sine /f«n(avﬁ) — ,un(é-i,ﬁ) k=0, kn :U'k(&ﬁ) - un(a’/@)

if a € (0,m), B €[0,m).

4n? ] po(m, B) = pn (T, B)

an(qvﬂyﬂ): ﬂ_(n_'_%)g HO(E’B)_Mn(ﬂ-aB)
| 1 [ ) ) (1.10)
pn (T, B) = pin(€,8) % (k+1)2 pk(E,8) = pn(m, B)
k#n

if B € (0,7), n#0.

a T — é 1 . - k? . /“Lk(ﬂ—vﬂ) — /‘O(Wvﬁ)

@)= D s G mes —mmy
if B € (0,7).

an(q,m,0)

_(n+3)* m _ ﬁ (E+3)" m(m,0) = pa(m,0)  (1.12)
(n + 1)2 ,Ll,n(ﬂ',()) - ,LLn(&‘, 0) oo (k+ 1)2 /Lk({':a O) - /Ln(’/T, 0) .
k#n

(2) For arbitrary n € (0,7), n# 5, (n=0,1,2,...):

bulg,,8) = S8 ___sin(f — ) II Ziiz g; - tn{%, ) (1.13)

sing (e, B) — pn(a,m) L4 fin(cv, B)
k#n
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ifa e (0,7], B €(0,m).
An®  po(a, 0) — pn (@, 0)

bn(q,,0) = - (n—l— %)2 fin (1) — fin(c, 0)
. 1 . ﬁ k? . :U'k(aao) — ,LLn(O‘aO) (114)
M’ﬂ(a70) - :un(a7 77) ke1 (k‘ + %)2 :U’k(a7 77) - ,un(a’ 0),
k#n
if o € (0,m), n#0.
o _ 4 . - k? ) pe(x, 0) — pn (v, 0)
Wiee0) = e g —mwm L7 man—m@o
if o € (0,m).
bﬂ(qaﬂ_’o)
_(m+3) m B D me(m0) — pa(m,0)  (1.16)
(n+1)2 pn(m,0) = po(mm) L5 (k+1)° pe(m,m) — pin(m,0)

The representation of the norming constants by two spectra was investigated in
[1 2 [7, I0] with the purpose of using it for (constructive) solution of the inverse
Sturm-Liouville problem by two spectra. They do it by reducing the inverse problem
by 2 spectra to the solution of the inverse problem by spectral function and solve it
by Gelfand-Levitan method. In these papers the Sturm-Liouville problem L(g, o, 3)
considered under conditions sina # 0 and sin 8 # 0 and as the norming constants
the authors consider (in our notation) a,(q, a, 5) = %

Levitan [7] studied the representation of a, (g, «, 3) by spectra {ux(q, o, 3)}72,
and {ui(q, o, £1)}52g: B # B, o, B, 61 € (0,m), when ¢ € Cr[0, 7].

Levitan and Gasymov [2] study the representation of a,(q,«,3) by spectra
(g, 00 )} and {ui(a. 5,870, @ # & a,e, 8 € (0,7), when g € LL[0,7].
The formula, obtained in [2], coincides with . The cases, when sina = 0
(a=m)orsinf =0 (8=0), in [7] and [2] are not considered. The representation
of norming constants by, (g, a, 8) (or bn(q,a, 3) = %) are usually not consid-
ered (since it is very similar to investigation of a,, and also it is not required in
their solution of inverse problem by Gelfand-Levitan method). One of our aims is
the solution of inverse problem by “the eigenvalues function (EVF) of the family of
Sturm-Liouville operators” (see [3]). The statement of the problem and its solution
will be the subject of our future articles. However in this solution we will need to
simultaneously use the representations for both a, and b,, and this is the main
reason for such a detailed formulation of the Theorem of this article.

Technically the consideration of the cases sin a # 0, sin 3 # 0 is distinguished by
the fact that in these cases the (rough) asymptotic behavior of the eigenvalues is

tia(ay 0 B) = n? + O(1), (1.17)
and thus

un(qvaaﬂ) - ﬂn(qv‘??ﬂ) = O(l)? (118)
N’n(qvaaﬂ) - /Ln(%aaﬂl) = O(l) (119)
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These relations are important for the convergence in the infinite product
and (L.13). Meanwhile, when sinaw = 0 (o = 7) or/and sin3 = 0 (3 = 0) the
(rough) asymptotic behavior of the eigenvalues have the form (n — oo) (in [3] we
have obtained the common formula for the asymptotic behavior of the eigenvalues

tn(g, o, B) in all the cases a € (0, 7] and § € [0, 7), from which (1.17)), (1.20)-(1.22)
follow as particular cases):

tn(q,m, B) = (n + %)2 +O(1), when sinf#0 (1.20)
tn(q, 0, 0) = (n + %)2 +0O(1), when sina#0 (1.21)

ala,7,0) = (n+ 1) + O(1). (1.22)

The relations (1.18) and (1.19) do not hold in the general case (for example,
pn(q, 7, B) — pn(q, a, ) = O(n) when o € (0,7)).

Thus to obtain the representation of a,, and b, for all the cases by two spectra

we need some improvement of the method in [7] and [2].
These 1mpr0vement are the causes that the formulae (| . and - -

(similarly (T.13)) and (L.14)-(L.16)) are different and depend on the cases:

. aﬂE(O ),

e a=m, € (0,m),
e ae(0,m), =0,
. a—mﬁ—O.

Whether it is possible to join all these formulae in one (may be more complicated,
but one), today we do not know.

It was obtained in [3], that the lowest eigenvalue po(q, o, 5) has the property:
for arbitrary 8 € [0,7), limy—o po(g, @, 3) = —oo and for arbitrary « € (0, 7],

limg_» po(q, o, B) = —o0.
In combination with the property

L _ 9mlg,a,0)
an(q, o, 3) da
(and bn(qla 5 = —%n (aqﬂ,a,,ﬁ) [3]) this leads to the fact that the formulae (1.11)) and

(1.15) for ag(g,,3) and bo(q, o, 0) have a special form.

2. PROOF OF THE MAIN THEOREM

The proof of the main theorem is based on the following lemmas. Here we give
the statements of these lemmas and after that we prove the Theorem. The proofs
of the lemmas are presented in §3.

Lemma 2.1. Ast — oo, we have the followmg'

O(—t7,,3) = te™” [sma sin 3 + O( )], when «, 8 € (0,7), (2.1)
O(—t*,7,0) = et [smﬁ + O( )], when [ € (0,7), (2.2)
O(—t7,a,0) = ; [sin o 4+ O( )], when o € (0,7), (2.3)

t

F+oG o) (2.4)

d(—t%, 7,0
( 7777 ) 2
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Lemma 2.2. The specification of the spectra {un(q, o, 8)}52, uniquely determines
the characteristic functions ®(u, «, 5) by the formulae

D(p,a,8) = (o, ) — ) - sina - sin 3 - H 'ukk#7 (2.5)

when «, 3 € (0, ).

pk(m, B) — p
, T, 3) = sin 7, when B € (0,7), 2.6
®(p, 7, 8) = sin 3 - H S 8 € (0,m) (2.6)
pr(a, 0) —
D(p,,0) =sina - H 7, when a € (0,7), (2.7)
e (ke 3)?
pr (0
®(p,m,0) = H k+1 . (2.8)
In what follows, by f(z, ) we denote the derivative by p; i.e., f(z, ) = df(z’”).
Lemma 2.3. The following formulae hold
- p (s B) — p
q)(u,ogﬁ)‘# po(ed) = —7sina - sin 8 H T, (2.9)
when a, B € (0, 7).
v
( M, 76)’ a,ﬁ) ﬁ[uo(aaﬁ)_ﬂn(aaﬁ)]
sina-sin g [ :U'k(aaﬂ)];,un(aaﬂ)’ (2.10)
kn
when «, 8 € (0,7) and n # 0.
. Slnﬁ (0 un 3
(p(ﬂu777ﬁ) p=pn(m,8) H ) ( )u (2.11)
k;én
when B € (0,7).
. sin « pr (o, 0) — pn (@, 0
@(u,a,O)h:M(a’o) = —( H )L( ), (2.12)
when o € (0, 7).
* _ /~Lk /f'n(ﬂ—vo)
(1, ,0)| s im0y =~ H k PRI (2.13)
k;én

We consider also the meromorphic functions (see (1.6) and ( ):
V(p,a,8) (0, B)cosa+ 9’ (0 1, 3) sin o

: )

Mage(p) = U(u,e,8) (0,1, B)cose + (0, u, ) sine ’ (2.14)
. (M,Ol B) _ (m, p,a)cos B+ ¢ (m, pu, @) sin 3

naﬂﬁ(“) M?a 6) 30(7'(',,[1,,(1) cosd + (P/(W,/L, )Sln6 ' (215)
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Lemma 2.4. For arbitrary € € (0,7), € # «,

6mo¢,6,5(ﬂ) _ an(Qa aﬂ)
op ’/‘:“"(aﬁ) sin(a —¢)’ (2.16)
and for arbitrary 6 € (0,7), 6 # 3,
Ina,p,5(1) _ bulg, 2. B)
o P n(G_ 8 (2.17)
As it is noted in §1, ¥(p, o, B) = —®(u, ¢, 5). So, we can be rewritten as
D(p, o, B)
a,B,e == 2.18
Mo neli) = G (218)
It is easy follows from the ) and - ) that
ama,ﬁﬁ(:u) | _ @(ﬂn(aa 6)’ «, 5)
ou p=pn(c,B) (I)(,un(a’ ﬁ)’ e, ﬁ) ’
nap.s(1) _ P(pn(a, 8), 0, )
8u n=tin () @(,un(a,,@’),oz,é) '
Then, from (2.16]) and (2.17] -, we obtain
: O (pin(a, ), @, B)
an(q,a,3) =sin(a — e , 2.19
(000 0) =50 =) 4, (0.5).2.5) (219)
‘i’(un(a,ﬁ)ﬂ,ﬂ)

Substltutmg corresponding formulae from ([2.9 . ) and . . in and
(L

, we obtain the formulae — 1.12)) and - ) of Theorem. Thus our
Theorem is proved if the lemmas E)- 2.4 hold.

3. PROOFS OF LEMMAS
Proof of the lemma[2.1l Let us denoted by yi(z,A) and ya(x, A) the solutions of
the equation —y” + q(x)y = A2y, satisfying the initial conditions
yl(()a)‘) =1, yll((),)‘) =0,
y2(0,\) =0, w5(0,\) =1.

For y1(x,A) and y2(z,A) it is well known [I [6, B, O] (the case ¢ € LL[0,7] is
considered in detail in [4]) the asymptotic formulae (when |A| — o)

e\Im)\\w
y1(m, A) = cos Aw + O( B ), yi(m,A) = =Asin Ar + O <e|1m)‘|’r> ,
(3.1)
sin A eltmAlm elTmA|™
el ) = T+ O( ) whm ) = cosxn 105

Since (see (|1.4),
o(x, A%, a) = yy(x, \) sina — yo(x, \) cosa (3.2)
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and ®(u, o, ) is defined by ([1.6)), if we substitute in (3.1]), (3.2) and (1.6) u = \? =

(it)? = —t2, we obtain for ®(—t2, a, 3) the formula

Tt

+ O(%)) cos o cos 3

t

d(—t2,a,3) = (cos(imﬁ) + O(%)) sin avcos 3 — (

sin(int)
1t
t

+ (—itsin(irt) + O(e™))sinaccos B — (cos(mt) + 0(67)) cos asin f3.

. . . wt —wt . —wt__wt
Taking into account the formulae cos(int) = S—=fF—, sin(int) = 5 we

obtain the assertions of lemma [2.1] O

Proof of the lemma[2.4 The case a, 3 € (0,7) was considered in [I} 2 B5]; see [T}
formula (1.1.26)] for details. In this case (sina # 0, sin 3 # 0) they consider as the
% (in our notation).

The remaining three results are presented in [I], but without a proof, and in the
case a = 7, [ = 0 they write

characteristic function

1 #k(m,0) — p
(I)(,uﬂTaO) =7 H }{727
k=1

since they begin the enumeration for u, (7, 0) from n = 1, but not from n = 0. We
use Hadamard’s factorization theorem (it is similar to method of [I]) to represent
the entire function ®(u, a, B) of order 1/2 in the form

Tl (- . .

If ®(0,a,0) = 0, i.e. for some ko pg,(c, 3) = 0, then we must change the ko-th
factor by —u and it is easy to show that we can take uk,(a,5) = 0 = po(a, §)
(change the enumeration for finite number of eigenvalues and correspondingly for
finite factors) in

- [ N [
D(u,a,B) =c1p (1 - 7) = colt (1 - 7) . (3.4)
g ,u“k(aaﬁ) kl;[l ,LLk(OZ,ﬂ)
k#ko
Detailed computations show that results for the cases (3.3) and (3.4]) are the same.
In the case a =7, § € (0,7) (sin 3 # 0) we use the formula

COS AT = 1—-—- (3.5)
,EO ( (k + %)2)
and consider the relation
o] A2 0o
q)()‘2a7776) _ ch:O (1_ Hk(ﬂ"ﬁ)) _CH (k+%)2 . uk(ﬂ-vﬁ)_)‘Q (3 6)
B E+1)2-x2 T 1)2 _y2° ’
COS AT Hzio( :;ci)%)z o p(m, B) (k4 35)2 — X

According to (1.20)), in this case the infinite product

R, (1 umm—(m%)z)

Tyve 2 —
o (B 2)2 =A%
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converges uniformly because A2 = —t2 € (—oo, —1]). The infinite product
= (k+3)?
kl;[o pe (7, 3)

also converses. So we can write the right hand side of in the form

ﬁ (k+3)* 77 e, B) — N2

C .
W Wah—e

Thus, if we pass to the limit in (3.6) when A = it, ¢ — oo, then in the left hand

side of (3.6)), according to lemma we obtain
O (-2 ““lsing+ O (%
im 7( ,‘a,,@) = lim -2 [ ﬂﬂ — (t)] =sin g,
t—o00 COS(Zt’/T) t—o0 %

142
and in the right hand side we obtain ¢[],- %; Le., ¢ =sinfB[[r, we(mB)

(k+3)°
Substituting this value of ¢ in (3.3)), we obtain formula (2.6).
In the case a € (0,7), = 0 we follow the same procedure and obtain formula

2.

In case a = 7w, B = 0 we consider the relation of

o\, 7m0 =c]] (1 - uk(AwO))

k=0

and sin(Am) /A, which we can write in the form

SinAM -7 ﬁ (1 G 121)2)'

k=0
According to (1.22)), the infinite product [T, /iiz;l,);) converges and the product
N 0)—-X O 0) — (k+1)2
|1 Zf(fl)l —e =+ “k(&;)l)z(_; : J
k=0 k=0
converges uniformly by A\? = (it)? = —t?> € (—o0, —1]. Thus, we can pass to the
limit (¢ — oo) in the relation
o(—t*,m0) ¢ ﬁ (k+1)* ﬁ pur(m,0) + 12
sinimt Ty be(m,0) ot (B +1)2 42

and according to (2.4) and uniform convergence of the right hand side, we obtain

1= <112, ;i?';)()z) Thus, we obtain the formula (2.8). Lemma is proved. [

The proof of the lemma [2.3] coincides with simple differentiation with respect to
w at the point p = p, (o, ) in (2.5)-(2.8). With this aim we represent the infinite
product [[;°,ax in the form

00 n 00 n—1 0o 00
[o=TToe TT o= TTee TT av=an TLew
k=0 k=0 k=n+1 k=0 k=n+1 k

=0
k#n
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For example,
n(m, 0
D(u,a,0) = M(% sina - H Mk
(n+ 5) k#n

Now differentiating with respect to p and taking the result at u = p,(a,0) we
obtain

b (jin(ar,0), 0, 0)

-1 pi (e, 0) fin(,0) — p
- (n+ 2)2 sin H (k+ ‘,u fin (,0) (n+ %)2 P(M)|y:p(a,0)
k;én
___sina i (o ,un(a 0)
oy E o
where

9 : = Hk (Oz, 0) —H
Pu) = —(sma 71)
op g (k+3)?
k#n
The process is analogous in other cases. Lemma is proved.

Proof of lemma([2.4) Since all the eigenvalues of L(q,,3) are simple, there exist
the constants ¢, = ¢,(q,«, 8), n =0,1,2,..., such that

on(z) = cp - Yp(x). (3.7)
By direct computation, from ([2.14]) we obtain

ama,ﬁ,s(ﬂ) _ [W(Oa M, ﬁ) : 'Q[J(O, H, ﬁ) - 1/}(07 M, ﬁ) : '(//(07 H, ﬁ)] Sin(a - 5) (3 8)
op [1(0, 1, B) cos € + 4/ (0, p, 3) sin ] B

On the other hand, by standard methods, we obtain
/ WP, 1, 8) de = 4 (0,1, 8) - (0, 1, B) = (0, 1, 8) - ' (0,,8). (3.9)
0

Since for p = p1,(q, o, 8) we have (3.7), using (L.4), from (3.8) and (3.9) we obtain
M| Jo %/12 )dx - sin(a — ¢)
ou p=pin (0, 8) [ (0) cos e + 1 (0) sin £]2
2 [° @2 (z)dx - sin(a — €)
c2[pn(0) cose + ¢/, (0) sine]?

_ an(g,0,0)
sin(a—e)
We prove (2.17) in a similar way. Lemma is proved. O
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