Electronic Journal of Differential Equations, Vol. 2010(2010), No. 16, pp. 1–5. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

EXISTENCE OF ENTIRE POSITIVE SOLUTIONS FOR A CLASS OF SEMILINEAR ELLIPTIC SYSTEMS

ZHIJUN ZHANG

ABSTRACT. Under simple conditions on f_i and g_i , we show the existence of entire positive radial solutions for the semilinear elliptic system

$$\Delta u = p(|x|)f_1(v)f_2(u)$$

$$\Delta v = q(|x|)g_1(v)g_2(u),$$

where $x \in \mathbb{R}^N$, $N \geq 3$, and p, q are continuous functions.

1. Introduction

The purpose of this paper is to investigate the existence of entire positive radial solutions to the semilinear elliptic system

$$\Delta u = p(|x|)f_1(v)f_2(u), \quad x \in \mathbb{R}^N,
\Delta v = q(|x|)g_1(v)g_2(u), \quad x \in \mathbb{R}^N,$$
(1.1)

where $N \geq 3$. We assume that p, q, f_i, g_i (i = 1, 2) satisfy the following hypotheses.

- (H1) The functions $p, q, f_i, g_i : [0, \infty) \to [0, \infty)$ are continuous;
- (H2) the functions f_i and g_i are increasing on $[0, \infty)$.

Denote

$$\begin{split} P(\infty) &:= \lim_{r \to \infty} P(r), \quad P(r) = \int_0^r t^{1-N} \Big(\int_0^t s^{N-1} p(s) ds \Big) dt, \quad r \ge 0, \\ Q(\infty) &:= \lim_{r \to \infty} Q(r), \quad Q(r) = \int_0^r t^{1-N} \Big(\int_0^t s^{N-1} q(s) ds \Big) dt, \quad r \ge 0, \\ F(\infty) &:= \lim_{r \to \infty} F(r), \quad F(r) = \int_a^r \frac{ds}{f_1(s) f_2(s) + g_1(s) g_2(s)}, \quad r \ge a > 0. \end{split}$$

We see that $F'(r) = \frac{1}{f_1(r)f_2(r)+g_1(r)g_2(r)} > 0$, for r > a and F has the inverse function F^{-1} on $[a, \infty)$.

This problem arises in many branches of mathematics and physics and has been discussed by many authors; see, for instance, [1]-[8], [10, 11, 12] and the references therein.

²⁰⁰⁰ Mathematics Subject Classification. 35J55, 35J60, 35J65.

Key words and phrases. Semilinear elliptic systems; entire solutions; existence.

^{©2010} Texas State University - San Marcos.

Submitted October 22, 2009. Published January 27, 2010.

Supported by grants 10671169 from NNSF of China, and 2009ZRB01795 from NNSF of Shandong Province.

2 Z. ZHANG EJDE-2010/16

When $f_2 = g_1 \equiv 1$, $f_1(v) = v^{\alpha}$, $g_2(u) = u^{\beta}$, $0 < \alpha \leq \beta$, Lair and Wood [8] considered the existence and nonexistence of entire positive radial solutions to (1.1). Their results were extended by Cîrstea and Rădulescu [1], Wang and Wood [12], Ghergu and Rădulescu [6], Peng and Song [11], Ghanmi, Mâagli, Rădulescu and Zeddini [5], and the authors of this article in [10].

When $f_1(v) = v^{\alpha_1}$, $f_2(u) = u^{\alpha_2}$, $g_1(v) = v^{\beta_1}$, $g_2(u) = u^{\beta_2}$, where $\alpha_1 > 0$, $\beta_2 > 0$, $\alpha_2 > 1$ and $\beta_1 > 1$, García-Melián and Rossi [3], García-Melián [4] have studied the existence, uniqueness and exact blow-up rate near the boundary of positive solutions to system (1.1) on a bounded domain.

In this paper, we give simple conditions on f_i and g_i to show the existence of entire positive radial solutions to (1.1). Our main results are as the following.

Theorem 1.1. Under hypotheses (H1)–(H2) and

(H3)
$$F(\infty) = \infty$$
,

system (1.1) has one positive radial solution $(u, v) \in C^2([0, \infty))$. Moreover, when $P(\infty) < \infty$ and $Q(\infty) < \infty$, u and v are bounded; when $P(\infty) = \infty = Q(\infty)$, $\lim_{r \to \infty} u(r) = \lim_{r \to \infty} v(r) = \infty$.

Theorem 1.2. Under hypotheses (H1)–(H2) and

- (H4) $F(\infty) < \infty$;
- (H5) $P(\infty) < \infty$, $Q(\infty) < \infty$;
- (H6) there exist b > a and c > a such that $P(\infty) + Q(\infty) < F(\infty) F(b+c)$,

system (1.1) has one positive radial bounded solution $(u, v) \in C^2([0, \infty))$ satisfying

$$b + f_1(c)f_2(b)P(r) \le u(r) \le F^{-1}\Big(F(b+c) + P(r) + Q(r)\Big), \quad \forall r \ge 0;$$

 $c + g_1(c)g_2(b)Q(r) \le v(r) \le F^{-1}\Big(F(b+c) + P(r) + Q(r)\Big), \quad \forall r \ge 0.$

Remark 1.3. From (H1)–(H2), we see that (H3) implies

$$\int_{a}^{\infty} \frac{ds}{f_1(s)f_2(s)} = \int_{a}^{\infty} \frac{ds}{g_1(s)g_2(s)} = \infty.$$
 (1.2)

Remark 1.4. When $f_1(v) = v^{\alpha_1}$, $f_2(u) = u^{\alpha_2}$, $g_1(v) = v^{\beta_1}$, $g_2(u) = u^{\beta_2}$, where α_i and β_i are positive constants, we see that (H3) holds provided $\max\{\alpha_1 + \alpha_2, \beta_1 + \beta_2\} \leq 1$ and (H4) holds provided $\alpha_1 + \alpha_2 > 1$ or $\beta_1 + \beta_2 > 1$.

Remark 1.5. By [9], we see that $P(\infty) = \infty$ if and only if $\int_0^\infty sp(s)ds = \infty$.

2. Proof of Theorems 1.1 and 1.2

Note that radial solutions of (1.1) are solutions of the ordinary differential equation system

$$u'' + \frac{N-1}{r}u' = p(r)f_1(v)f_2(u),$$

$$v'' + \frac{N-1}{r}v' = q(r)g_1(v)g_2(u).$$

Thus solutions of (1.1) are simply solutions of

$$u(r) = b + \int_0^r t^{1-N} \left(\int_0^t s^{N-1} p(s) f_1(v(s)) f_2(u(s)) ds \right) dt, \quad r \ge 0,$$

$$v(r) = c + \int_0^r t^{1-N} \left(\int_0^t s^{N-1} q(s) g_1(v(s)) g_2(u(s)) ds \right) dt, \quad r \ge 0.$$

Let $\{u_m\}_{m\geq 0}$ and $\{v_m\}_{m\geq 0}$ be the sequences of positive continuous functions defined on $[0,\infty)$ by

$$\begin{split} u_0(r) &\equiv b, \quad v_0(r) \equiv c, \\ u_{m+1}(r) &= b + \int_0^r t^{1-N} \Big(\int_0^t s^{N-1} p(s) f_1(v_m(s)) f_2(u_m(s)) ds \Big) dt, \quad r \geq 0, \\ v_{m+1}(r) &= c + \int_0^r t^{1-N} \Big(\int_0^t s^{N-1} q(s) g_1(v_m(s)) g_2(u_m(s)) ds \Big) dt, \quad r \geq 0. \end{split}$$

Obviously, for all $r \geq 0$ and $m \in \mathbb{N}$, $u_m(r) \geq b$, $v_m(r) \geq c$ and

$$v_0 \le v_1, \quad u_0 \le u_1, \quad \forall r \ge 0.$$

Hypothesis (H2) yields

$$u_1(r) \le u_2(r), \quad v_1(r) \le v_2(r), \quad \forall r \ge 0.$$

Continuing this line of reasoning, we obtain that the sequences $\{u_m\}$ and $\{v_m\}$ are increasing on $[0, \infty)$. Moreover, we obtain by (H1) and (H2) that, for each r > 0,

$$\begin{split} u'_{m+1}(r) &= r^{1-N} \int_0^r s^{N-1} p(s) f_1(v_m(s)) f_2(u_m(s)) ds \\ &\leq f_1(v_m(r)) f_2(u_m(r)) P'(r) \\ &\leq f_1 \big(v_{m+1}(r) + u_{m+1}(r) \big) f_2 \big(v_{m+1}(r) + u_{m+1}(r) \big) P'(r) \\ &\leq \Big[f_1 \big(v_{m+1}(r) + u_{m+1}(r) \big) f_2 \big(v_{m+1}(r) + u_{m+1}(r) \big) \\ &+ g_1 \big(v_{m+1}(r) + u_{m+1}(r) \big) g_2 \big(v_{m+1}(r) + u_{m+1}(r) \big) \Big] P'(r) \,, \end{split}$$

$$\begin{aligned} v'_{m+1}(r) &= r^{1-N} \int_0^r s^{N-1} q(s) g_1(v_m(s)) g_2(u_m(s)) ds \\ &\leq g_1 \big(v_m(r) \big) g_2(u_m(r) \big) Q'(r) \\ &\leq g_1 \big(v_{m+1}(r) + u_{m+1}(r) \big) g_2 \big(v_{m+1}(r) + u_{m+1}(r) \big) Q'(r) \\ &\leq \Big[f_1 \big(v_{m+1}(r) + u_{m+1}(r) \big) f_2 \big(v_{m+1}(r) + u_{m+1}(r) \big) \\ &+ g_1 \big(v_{m+1}(r) + u_{m+1}(r) \big) g_2 \big(v_{m+1}(r) + u_{m+1}(r) \big) \Big] Q'(r) \end{aligned}$$

and

$$\int_{h+c}^{v_{m+1}(r)+u_{m+1}(r)} \frac{d\tau}{f_1(\tau)f_2(\tau)+g_1(\tau)g_2(\tau)} \le Q(r) + P(r).$$

Consequently,

$$F(u_m(r) + v_m(r)) - F(b+c) \le P(r) + Q(r), \quad \forall r \ge 0.$$
 (2.1)

4 Z. ZHANG EJDE-2010/16

Since F^{-1} is increasing on $[0, \infty)$, we have

$$u_m(r) + v_m(r) \le F^{-1}(F(b+c) + P(r) + Q(r)), \quad \forall r \ge 0.$$
 (2.2)

(i) When (H3) holds, we see that

$$F^{-1}(\infty) = \infty. \tag{2.3}$$

It follows that the sequences $\{u_m\}$ and $\{v_m\}$ are bounded and equicontinuous on $[0,c_0]$ for arbitrary $c_0>0$. It follows by Arzela-Ascoli theorem that $\{u_m\}$ and $\{v_m\}$ have subsequences converging uniformly to u and v on $[0,c_0]$. By the arbitrariness of $c_0>0$, we see that (u,v) are positive entire solutions of (1.1). Moreover, when $P(\infty)<\infty$ and $Q(\infty)<\infty$, we see by (2.2) that

$$u(r) + v(r) \le F^{-1}(F(b+c) + P(\infty) + Q(\infty)), \quad \forall r \ge 0;$$

and, when $P(\infty) = \infty = Q(\infty)$, by (H2) and the monotones of $\{u_m\}$ and $\{v_m\}$,

$$u(r) > b + f_1(c)f_2(b)P(r), \quad v(r) > c + g_1(c)g_2(b)Q(r), \quad \forall r > 0.$$

Thus $\lim_{r\to\infty} u(r) = \lim_{r\to\infty} v(r) = \infty$.

(ii) When (H4)–(H6) hold, we see by (2.1) that

$$F(u_m(r) + v_m(r)) \le F(b+c) + P(\infty) + Q(\infty) < F(\infty) < \infty.$$
 (2.4)

Since F^{-1} is strictly increasing on $[0, \infty)$, we have

$$u_m(r) + v_m(r) \le F^{-1}(F(b+c) + P(\infty) + Q(\infty)) < \infty, \quad \forall r \ge 0.$$
 (2.5)

The last part of the proof follows from (i). Thus the proof is complete.

References

- [1] F. Cîrstea, V. Rădulescu; Entire solutions blowing up at infinity for semilinear elliptic systems, J. Math. Pures Appl. 81 (2002), 827-846.
- [2] N. Dancer, Y. Du; Effects of certain degeneracies in the predator-prey model, SIAM J. Math. Anal. 34 (2002), 292-314.
- [3] J. García-Melián, J. Rossi; Boundary blow-up solutions to elliptic systems of competitive type, J. Diff. Eqns. 206 (2004), 156-181.
- [4] J. García-Melián; A remark on uniqueness of large solutions for elliptic systems of competitive type, J. Math. Anal. Appl. 331 (2007), 608-616.
- [5] A. Ghanmi, H. Mâagli, V. Rădulescu, N. Zeddini; Large and bounded solutions for a class of nonlinear Schrödinger stationary systems, Analysis and Applications 7(4) (2009), 1-14.
- [6] M. Ghergu, V. Rădulescu; Explosive solutions of semilinear elliptic systems with gradient term, RACSAM Revista Real Academia de Ciencias (Serie A, Matemáticas) 97 (2003), 437-445.
- [7] J. López-Gómez; Coexistence and metacoexistence for competitive species, Houston J. Math. 29 (2003), 483-536.
- [8] A. V. Lair, A. W. Wood; Existence of entire large positive solutions of semilnear elliptic systems, J. Diff. Equations 164 (2000), 380-394.
- [9] A. V. Lair, A. W. Shaker; Entire solution of a singular semilinear elliptic problem, J. Math. Anal. Appl. 200 (1996), 498-505.
- [10] H. Li, P. Zhang, Z. Zhang; A remark on the existence of entire positive solutions for a class of semilinear elliptic systems, J. Math. Anal. Appl. 365 (2010), 338-341.
- [11] Y. Peng, Y. Song; Existence of entire large positive solutions of a semilinear elliptic system, Appl. Math. Comput. 155 (2004), 687-698.
- [12] X. Wang, A. W. Wood; Existence and nonexistence of entire positive solutions of semilinear elliptic systems, J. Math. Anal. Appl. 267 (2002), 361-362.

ZHIJUN ZHANG

School of Mathematics and Information Science, Yantai University, Yantai, Shandong, 264005, China

 $E\text{-}mail\ address{:}\ \mathtt{zhangzj@ytu.edu.cn}$