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EXISTENCE OF ENTIRE POSITIVE SOLUTIONS FOR A CLASS
OF SEMILINEAR ELLIPTIC SYSTEMS

ZHIJUN ZHANG

ABSTRACT. Under simple conditions on f; and g;, we show the existence of
entire positive radial solutions for the semilinear elliptic system

Au = p(|z]) f1(v) f2(u)
Av = q(|z[)g1(v)g2(u),

where z € RN, N > 3, and p, ¢ are continuous functions.

1. INTRODUCTION

The purpose of this paper is to investigate the existence of entire positive radial
solutions to the semilinear elliptic system

Au = p(|jz|) fi(v) fo(u), =€ RY,
Av = q(|z)g1(v)g2(u), @€ RY,

where N > 3. We assume that p, q, f;, g; (i = 1,2) satisfy the following hypotheses.

(H1) The functions p, g, fi, g; : [0,00) — [0, 00) are continuous;
(H2) the functions f; and g; are increasing on [0, 00).

(1.1)

Denote

P(oc0) := lim P(r), P(r)= /OT tl_N(/t sN_lp(s)ds>dt, r >0,

r—00 0

T t
Qo)1= lim Q). Q)= [ 8 ( [ gws)ar, =0,
rTr—00 O 0
ds

)+ g1(8)g2(s)’
We see that F'(r) = fl(r)f2(r)igl(r)92(r) > 0, for » > a and F' has the inverse
function F~! on [a, o).

This problem arises in many branches of mathematics and physics and has been

discussed by many authors; see, for instance, [I]-[8], [10] 11 [12] and the references
therein.

r>a>0.

T—00

F(o0) := lim F(r), F(r)= /T ABIAC
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When fo = g1 = 1, fi(v) = v, g2(u) = uP, 0 < o < B, Lair and Wood
[8] considered the existence and nonexistence of entire positive radial solutions to
(1.1). Their results were extended by Cirstea and Radulescu [I], Wang and Wood
[12], Ghergu and Réadulescu [6], Peng and Song [11], Ghanmi, Maagli, Radulescu
and Zeddini [5], and the authors of this article in [I0].

When f1(v) = v, fo(u) = u®2, g1(v) = v, go(u) = u”?, where a; > 0, B2 > 0,
az > 1 and B > 1, Garcia-Melidn and Rossi [3], Garcia-Melidn [4] have studied
the existence, uniqueness and exact blow-up rate near the boundary of positive
solutions to system on a bounded domain.

In this paper, we give simple conditions on f; and g; to show the existence of
entire positive radial solutions to . Our main results are as the following.

Theorem 1.1. Under hypotheses (H1)-(H2) and

(H3) F(c0) = o0,
system (L.1)) has one positive radial solution (u,v) € C*([0,00)). Moreover, when
P(c0) < o0 and Q(c0) < 00, u and v are bounded; when P(c0) = oo = Q(00),
lim, 00 w(r) = limy—, o0 v(r) = 00.
Theorem 1.2. Under hypotheses (H1)-(H2) and

(H4) F(o0) < 00;
(H5) P(c0) < 00, Q(o0) < 005
(H6) there exist b > a and ¢ > a such that P(o0) + Q(00) < F(oc0) — F(b+ ¢),

system has one positive radial bounded solution (u,v) € C?([0,00)) satisfying
b+ 1) ()P(r) < ulr) < 7 (Fb+)+ P(r) + Q). vr=0;
¢+ 91(0)g(0)Q(r) < vl(r) < P (F(b+ ) + P(r) + Q(r)),  ¥r > 0.

Remark 1.3. From (H1)-(H2), we see that (H3) implies

*° ds 00 ds
[ som= L awew == 12

Remark 1.4. When f;(v) = v, fo(u) = u2, g1(v) = v”1, go(u) = u”?, where
a; and §; are positive constants, we see that (H3) holds provided max{a; + ao,
B1+ B2} <1 and (H4) holds provided ay + ag > 1 or 1 + B2 > 1.

Remark 1.5. By [9], we see that P(co) = oo if and only if [ sp(s)ds = oo.

2. PROOF OF THEOREMS [[.1] AND

Note that radial solutions of (|1.1)) are solutions of the ordinary differential equa-
tion system

u“+b
r

N-1,

v + V= q(r)g1(v)g2(u).

u' = p(r) fi(v) fa(u),
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Thus solutions of (1.1)) are simply solutions of

mm=b+A3FN([4“%@vmw»ﬁW@maﬁ7r>a
v(r):c—&—/orth(/tsN Lq(s)91(0(5))g2 (u(s))ds ) dt, 7> 0.

0

Let {tm tm>0 and {vm, }m>0 be the sequences of positive continuous functions de-
fined on [0, c0) by

ug(r) =b, wvo(r) =c,

nes) = b [0 [V o) sl ()N, 720,

0 0

Uma1(r) =c+ /OT tl_N(/t sN_lq(s)gl(vm(s))gg(um(s))ds)dt, r > 0.

0
Obviously, for all » > 0 and m € N, w,,(r) > b, v, (r) > ¢ and

vo <v1, ug <wg, Vr>0.
Hypothesis (H2) yields
ur(r) <ws(r), wi(r) <wvs(r), Vr>D0.

Continuing this line of reasoning, we obtain that the sequences {u,,} and {v,,} are
increasing on [0, 00). Moreover, we obtain by (H1) and (H2) that, for each r > 0,

iy (r) = 1 N?/TsN’%K$fﬂvm(ﬁ)ﬁﬂwn@Dds
0

< fi(vm(r)) f2(um(r)) P’ (r)
< J1 (V1 (7) 4 tmgr (1)) f2 (Vi1 (7) + g () P'(r)

< {ﬁ (V1 (1) + Ung1 (1)) f2 (Vg1 (1) + g1 (7))

91 (U1 (1) + U1 (1) 92 (01 (1) + w2 (1) | P/ (1),

%wﬂﬂTINKTQ’MGMMMA$MAWM$MS

< 91(0m (7)) g2 (um (1)) Q' (r)
< 91 (Vmr1 (1) + tmg1 (1) g2 (Vi1 (1) + i1 () Q' ()

< [ A (Oma (1) + g1 (1) fo (0 (1) 4 2 (1)

91 (Um1 (1) + W1 (1) 92 (0m 1 (1) + 1 () | @ (1)

and

Vm+1 (1) +Um41(r) dr
/ < Q(r) + P(r).

bte f1(7) f2(7) + 91(7) 92(7)

Consequently,

F(um(r) +vp(r)) = F(b+¢) < P(r)+ Q(r), Vr>0. (2.1)
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Since F~! is increasing on [0, c0), we have
U (1) + v (1) < FH(E(b+¢) + P(r) + Q(r)), Vr>0. (2.2)
(i) When (H3) holds, we see that
F~1(o0) = 0. (2.3)

It follows that the sequences {u,,} and {v,,} are bounded and equicontinuous on
[0, co] for arbitrary ¢o > 0. It follows by Arzela-Ascoli theorem that {u,,} and {v.,}
have subsequences converging uniformly to v and v on [0, ¢g]. By the arbitrariness
of cg > 0, we see that (u,v) are positive entire solutions of . Moreover, when
P(x) < 0o and Q(o0) < 0o, we see by that

u(r) +v(r) < F7HF(b+c) + P(o0) +Q(00)),  ¥r > 0;
and,when P(00) = co = Q(00), by (H2) and the monotones of {u,,} and {v,,},
u(r) =2 b+ fi(c) f2(D)P(r), v(r) = c+g1(c)g2(0)Q(r), Vr = 0.

Thus lim, 00 w(r) = lim, o v(r) = co.
(ii) When (H4)—(H6) hold, we see by (2.1)) that

F(tm(r) + vm(r)) < F(b+¢) + P(o0) + Q(0) < F(00) < 0. (2.4)
Since F~! is strictly increasing on [0, 00), we have
U (1) + v (1) < F7H(F(b+ ¢) 4+ P(00) + Q(00)) < 00, Vr > 0. (2.5)

The last part of the proof follows from (i). Thus the proof is complete.
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