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EFFECTS OF SMALL SPATIAL VARIATION OF THE
REPRODUCTION RATE IN A TWO SPECIES

COMPETITION MODEL

GEORG HETZER, TUNG NGUYEN, WENXIAN SHEN

Abstract. Of concern is the effect of a small spatially inhomogeneous per-
turbation of the reproduction rate of the first species in a two-species Lotka-
Volterra competition-diffusion problem with spatially homogeneous reaction
terms. Apart from this perturbation and the diffusion rates, the two species
are assumed to be identical. Our main result shows that the first species can
always invade, whereas the second species can only invade under certain con-
ditions which yield uniform persistence of both species. The proof relies on
comparison techniques and properties of the principal eigenvalue of reaction-
diffusion equations.

1. Introduction

This paper addresses the invasion and co-existence in two species competition
models with dispersal. The overarching biological question can be described in
terms of a species competing with a mutant exhibiting one slightly different feature.
This question has drawn much attention over the years. One of the first major
contributions goes back to [1] and [6] where the authors address the difference
in the dispersal rate under the assumption that the reproduction rate is spatially
dependent. Specifically, it is shown in [1] and [6] that for κ1 < κ2, all solutions of

ut = κ1∆u+ u(a0(x)− u− v), x ∈ Ω

vt = κ2∆v + v(a0(x)− u− v), x ∈ Ω
∂u

∂ν
(t, ·) =

∂v

∂ν
(t, ·) = 0 on ∂Ω

(1.1)

which satisfy positive initial conditions, converge to the semi-trivial equilibria (u∗, 0)
(provided that

∫
Ω
a0(x)dx > 0 and a0(·) 6≡constant). Biologically, the “slower dif-

fuser” persists and can invade (invasion means starting from small initial condition
and survive). Similar results have been established for two species competition
models with nonlocal diffusion (cf. [10]), but the situation is more complicated
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in time-dependent settings, cf. [9]. In a very recent work [11], the authors con-
sidered the invasion and co-existence for two species competition models in which
two competing species have the same population dynamics, but different dispersal
strategies: the movement of one species is purely by random walk while the other
species adopts a non-local dispersal strategy. The above mentioned results for (1.1)
have been partially extended to such competition models, and additional interesting
results are obtained in [11].

A difference in the reproduction rate has been investigated in [8]. Consider

ut = κ∆u+ u(a0(x) + εa(x)− u− v), x ∈ Ω

vt = κ∆v + v(a0(x)− u− v), x ∈ Ω
∂u

∂ν
(t, ·) =

∂v

∂ν
(t, ·) = 0 on ∂Ω

(1.2)

The authors assume that a0 is a nonconstant smooth function on Ω with
∫
Ω
a0 > 0

and that a changes sign. Among other results, they establish for a large class
of functions a and ε small that the stability of the two species varies in a com-
plicated fashion as κ increases. Basically, the biological consequence is that it is
unpredictable which species survives.

We are interested in the borderline case where a0 ∈ (0,∞) is a constant, and∫
Ω
a(x) dx = 0. Moreover, we can allow the diffusion rates to be different which

leads to
ut = κ1∆u+ u(a0 + εa(x)− u− v), x ∈ Ω

vt = κ2∆v + v(a0 − u− v), x ∈ Ω
∂u

∂ν
(t, ·) =

∂v

∂ν
(t, ·) = 0 on ∂Ω.

(1.3)

Note that (1.3) possesses a continuum of stable equilibria for ε = 0 regardless of the
diffusion coefficients (cf. [2]) which suggest that the restriction to equal diffusions
coefficient in (1.2) can be avoided here.

The biological interpretation in case κ1 = κ2 is that the original species v has
not adapted to the environment, whereas the mutant u shows slight adaptation
(ε � 1), which proves to be an advantage in certain regions of the habitat, but a
disadvantage in others.

As it is known, a small spatially variation favors the persistence in a single species
population model with Neumann boundary condition. More precisely, all solutions
of

ut = κ∆u− u2, x ∈ Ω
∂u

∂ν
(t, ·) = 0, x ∈ ∂Ω

with positive initial conditions converge to 0 as t→∞ (hence the population cannot
persist), while for any a(x) 6≡ 0 with

∫
Ω
a(x)dx = 0, all solutions of

ut = κ∆u+ u(a(x)− u), x ∈ Ω
∂u

∂ν
(t, ·) = 0, x ∈ ∂Ω

with positive initial conditions converge to its unique positive equilibrium as t →
∞ (hence the population persists). This follows directly from the fact that the
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principal eigenvalue λ(b) of

κ∆u+ b(x)u = λu, x ∈ Ω,
∂u

∂ν
|∂Ω ≡ 0

(1.4)

is greater than the principal eigenvalue λ(b̄)(= b̄) of

κ∆u+ b̄u = λu, x ∈ Ω,
∂u

∂ν
|∂Ω ≡ 0

(1.5)

for all b ∈ C1(Ω̄), b 6≡ b̄ := 1
vol(Ω)

∫
Ω
b(x)dx.

It is natural to ask whether a small spatial variation in the reproduction rate of
the species u in (1.3) gives u a better chance than v to survive no matter whether
κ1 = κ2 or not, and whether such a small spatial variation still allows both species
to co-exist. We find that the answer to the first question is yes and the answer
to the second question depends on the size of κ1, κ2, a0, and the frequency of
the variation of a, that is, the mutant u always survives and can invade, whereas
the species v can only co-exist and invade under certain circumstances. A typical
biological situation for the latter would be a habitat which does not exhibit high
frequency variation of the environment.

As for mutations primarily affecting competitiveness, a comprehensive study has
been described in [12].

To state our main result, we introduce the following standing hypotheses:
(H1) N ∈ N, Ω ⊂ RN bounded domain with smooth boundary,
(H2) ε ≥ 0, a0, κ1, κ2 > 0, and a 6≡ 0 belongs to C1(Ω̄) with

∫
Ω
a(x)dx = 0 and

‖a‖∞ = 1.
Under hypotheses (H1) and (H2), (1.3) has two semi-trivial equilibrium solutions

(u∗ε (·), 0) and (0, v∗(·)) with u∗ε (x) > 0 and v∗(x) = a0 for x ∈ Ω̄.
Firstly, the fact that λ(b) > λ(b̄) for b ∈ C1(Ω̄) with b 6≡ b̄ (notations as in (1.4)

and (1.5)) implies:
• For any ε > 0, (0, v∗) is unstable and hence the species u can invade when

rare (see Theorem 2.1 (1)).
The above result shows that any spatially inhomogeneous perturbation in the

reproduction rate of the species u will enable u to survive.
Let ‖ · ‖k,p be the norm on W k,p(Ω). We write ‖ · ‖2 for ‖ · ‖0,2 and ‖ · ‖∞ for

the norm on L∞(Ω). Denote by
(
µj

)
j∈Z+

the decreasing sequence of eigenvalues

of w 7→ ∆w, w ∈ W 2,2(Ω), ∂w
∂ν |∂Ω ≡ 0 counted by multiplicity, and by

(
ϕj

)
j∈Z+

an orthogonal sequence of eigenfunction associated with
(
µj

)
j∈Z+

. Note that µ1 <

µ0 = 0, and we assume ϕ0 = 1
vol(Ω) and ‖ϕj‖0,2 = 1 for j ∈ N. Let a =

∑∞
j=1 ajϕj

be the eigenfunction expansion of a and

λ2 =
1

vol(Ω)

∞∑
j=1

a2
0a

2
j

κ2|µj |(a0 + κ1|µj |)2
[
1−

κ1κ2µ
2
j

a2
0

]
. (1.6)

Observe that

|λ2| ≤
1

min{κ1, κ2}|µ1|
. (1.7)
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We show that there are η(κ1, κ2, a0), ζ(κ1, κ2, a0) > 0 such that for 0 < ε <
min{η(κ1, κ2, a0) · |λ2|, ζ(κ1, κ2, a0)},

• If λ2 < 0, then (u∗ε , 0) is asymptotically stable and hence the species v
cannot invade when rare. In particular, if |µj0 | < a0√

κ1κ2
< |µj0+1| for some

j0 ≥ 0 and aj = 0 for j ≤ j0, then (u∗ε , 0) is asymptotically stable (see
Theorem 2.1 (2)).

• If λ2 > 0 , then (u∗ε , 0) is unstable and hence (1.3) is strongly uniformly
persistent. In particular, if |µj0 | < a0√

κ1κ2
< |µj0+1| for some j0 ≥ 1 and

aj = 0 for j ≥ j0 + 1, then (u∗ε , 0) is unstable (see Theorem 2.1 (3)).

The above results reveal interesting effects of κ1, κ2, and a0 on the dynamics of
(1.3). They imply that if the square root of the product of the diffusion rates
κ1 and κ2 is larger than a0

|µ1| , then any spatially inhomogeneous perturbation in
the reproduction rate of the species u drives the species v to extinction provided
that v is small initially. They also show that the frequency of the variation of the
environment plays a crucial role for the stability of (u∗ε , 0). Roughly, consider the
following two extreme cases: if a changes rapidly in the sense that the modes with
low frequency are not present in its expansion, the species u drives v to extinction
provided that v is small initially. If a changes slowly in the sense that the modes
with high frequency are not present in its expansion, both u and v can coexist.

It should be pointed out that global asymptotic stability of (u∗ε , 0) has been
established in [4] for κ1 = κ2 = κ and given ε > 0, provided that κ is sufficiently
large.

We will prove the above mentioned results in Section 2. Our proof relies on
comparison arguments and properties of the principal eigenvalue, which allows us
to determine the sign of the principal eigenvalue λu(ε) of the linearization of (1.3) at
the semi-trivial equilibrium (u∗ε , 0). The constant λ2 is the first nonzero coefficient
in the power series expansion of λu(ε) with respect to ε.

As the above results reveal, if one fixes a and a small ε and varies a0 or κ1

or κ2, the stability of the semi-trivial solution (u∗ε , 0) may change. To shed some
light on the stability change of (u∗ε , 0) and the global dynamics of (1.3), we present
some numerical simulations in Section 3. They corroborate the theoretical findings
obtained in this paper and indicate the relative dominance of the mutant even if
both co-exist. Moreover, they suggest that the interior equilibrium, when it exists,
is unique and globally stable.

General results on the existence and uniqueness of co-existence states can be
found in [3].

It should be pointed out that similar results hold, e.g., for periodic boundary
conditions assuming that the domain is a hypercube

∏N
n=1

(
aj , bj

)
, aj < bj . How-

ever, for Dirichlet boundary conditions, the situation is different since the principal
eigenvalue λ(b) of (1.4) with Bu = u may not be greater than the principal eigen-
value of (1.5) with Bu = u. We provide such an example in Section 4.

2. Uniform persistence induced by spatial variation

Throughout we assume that hypotheses (H1) and (H2) are satisfied and that
p > N . It is well-known ([5], [13], [14]) that (1.3) generates a solution semi-flow on
some fractional power space X ↪→ C1(Ω̄)2 which leaves the positive cone invariant.
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As for notation, we understand
(
µj

)
j∈Z+

,
(
ϕj

)
j∈Z+

, and λ2 as described in

the introduction. Moreover, we write, Bw = 0 for ∂w
∂ν = 0 on ∂Ω in case that

w ∈W 2,2(Ω).
Let (u∗ε , 0) and (0, v∗) be the two semi-trivial stationary solutions of (1.3). Then

v∗ = a0 and u∗ε is the solution of

κ1∆u+ u(a0 + εa(x)− u) = 0, x ∈ Ω,
Bu = 0,

(2.1)

The eigenvalue problem of the linearization of the steady state version of (1.3) at
(u∗ε , 0) is given by

κ1∆u+ (a0 + εa(x)− 2u∗ε (x))u− u∗ε (x)v = λu, x ∈ Ω,

κ2∆v + (a0 − u∗ε (x))v = λv, x ∈ Ω,
Bu = Bv = 0,

(2.2)

and at (0, v∗) by
κ1∆u+ εa(x)u = λu, x ∈ Ω,

κ2∆v − a0u− a0v = λv, x ∈ Ω,
Bu = Bv = 0.

(2.3)

Hence the stability of (u∗ε , 0) is determined by the principal eigenvalue λu(ε) of the
eigenvalue problem

κ2∆v + (a0 − u∗ε (x))v = λv, x ∈ Ω,
Bv = 0,

(2.4)

whereas the stability of (0, v∗) is determined by the principal eigenvalue λv(ε) of
the eigenvalue problem

κ1∆u+ εa(x)u = λu, x ∈ Ω,
Bu = 0.

(2.5)

Theorem 2.1. Assume that (H1, (H2) are satisfied and λ2 is given by (1.6). Then
(1) (0, v∗) is unstable for ε > 0.

Moreover, there exist η(κ1, κ2, a0), ζ(κ1, κ2, a0) > 0 such that for any 0 < ε <
min{η(κ1, κ2, a0) · |λ2|, ζ(κ1, κ2, a0)}

(2) (u∗ε , 0) is asymptotically stable in case that λ2 < 0 and
(3) (u∗ε , 0) is unstable provided that λ2 > 0.

Corollary 2.2. Let additionally {µj , j ≥ 0} be understood as described in the
introduction, J1 := {j ∈ N : |µj | < a0/

√
κ1κ2}, and J2 := {j ∈ N : |µj | >

a0/
√
κ1κ2}, and assume 0 < ε < min{η(κ1, κ2, a0) · |λ2|, ζ(κ1, κ2, a0)}.

(1) If aj = 0 for j ∈ J1 and there is j2 ∈ J2 such that aj2 6= 0, then (u∗ε , 0) is
asymptotically stable.

(2) If aj = 0 for j ∈ J2 and there is j1 ∈ J1 such that aj1 6= 0, then (u∗ε , 0) is
unstable.

Remark 2.3. The biological meaning is that the mutant u can invade under all
circumstances and will always survive, whereas the species v needs a favorable
environment, e.g., as described in the second alternative of the Corollary. The
condition aj = 0 for all j ∈ J2 excludes coexistence in case of “high frequency”
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adaptation of the mutant in a highly heterogeneous habitat. Also, slower dispersal
rates favors persistence as the roles of κ1, κ2 in the definition of J2 reveals.

In order to prove Theorem 2.1, we first prove some lemmas and make a few
observations.

Lemma 2.4. Let a∗(·) ∈ C1(Ω̄) and u∗(·) be the solution of

κ1∆u∗ + a0(a∗(x)− u∗) = 0, x ∈ Ω

Bu∗ = 0, x ∈ ∂Ω.
(2.6)

Then ‖u∗‖∞ ≤ ‖a∗‖∞.

Proof. Observe that u = u∗ is the unique solution of
−κ1∆u = a0(a∗(x)− u), x ∈ Ω

Bu = 0, x ∈ ∂Ω.
(2.7)

Note that u = ‖a∗‖∞ is a super-solution of (2.7) and u = −‖a∗‖∞ is a sub-solution
of (2.7). By comparison principle for elliptic equations, we have

−‖a∗‖∞ ≤ u∗(x) ≤ ‖a∗‖∞ for x ∈ Ω

and hence
‖u∗‖∞ ≤ ‖a∗‖∞.

�

Let u∗1 be the solution of

κ1∆u∗1 + a0[a(x)− u∗1] = 0, x ∈ Ω,

Bu∗1 = 0.
(2.8)

By Lemma 2.4,
‖u∗1‖∞ ≤ ‖a‖∞ = 1. (2.9)

The following calculations are meant in the L2 sense. Write the expansions of a
and u∗1 in terms of the orthogonal basis {ϕj} as

a =
∞∑

j=1

ajϕj , u∗1 =
∞∑

j=0

u∗1,jϕj , (2.10)

(2.8) and (2.10) yield

κ1

∞∑
j=0

µju
∗
1,jϕj + a0[−u∗1,0 +

∞∑
j=1

(aj − u∗1,j)ϕj ] = 0 (2.11)

for j ∈ N ∪ {0}. Using the orthogonality of {ϕj}, we have

u∗1,j =

{
0 j = 0,

a0aj

a0+κ1|µj | j ∈ N.
(2.12)

Let u∗2 be the solution of

κ1∆u∗2 − a0u
∗
2 + u∗1[a(x)− u∗1] = 0, x ∈ Ω,

Bu∗2 = 0.
(2.13)

By Lemma 2.4 and (2.9), we have

‖u∗2‖∞ ≤ 2
a0
. (2.14)
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Let

u∗2 =
∞∑

j=0

u∗2,jϕj (2.15)

be the expansion of u∗2 in terms of {ϕj}. (2.10), (2.12), (2.13) and (2.15) yield

κ1

∞∑
j=0

µju
∗
2,jϕj − a0

∞∑
j=0

u∗2,jϕj +
∞∑

j=1

u∗1,jϕj

∞∑
j=1

(aj − u∗1,j)ϕj = 0. (2.16)

Using the orthogonality of {ϕj}, we get

− a0u
∗
2,0 +

∞∑
j=1

u∗1,j(aj − u∗1,j) = 0,

hence

u∗2,0 =
∞∑

j=1

aj

a0 + κ1|µj |

(
aj −

a0aj

a0 + κ1|µj |

)
=

∞∑
j=1

κ1|µj |a2
j

(a0 + κ1|µj |)2
. (2.17)

Lemma 2.5. Let u∗1(x) and u∗2(x) be the solutions of (2.8) and (2.13), respectively,
and M =

(
1 + ‖2u∗1u∗2 − au∗2‖∞

)
/a0. Then there exists an ε̂(a0) > 0 such that

|u∗ε (x)−
(
a0 + εu∗1(x) + ε2u∗2(x)

)
| ≤ ε3M

for x ∈ Ω, 0 < ε < ε̂.

Proof. Let

u+
ε := a0 + εu∗1 + ε2u∗2 + ε3M,u−ε := a0 + εu∗1 + ε2u∗2 − ε3M.

A direct calculation yields

κ1∆u+
ε + u+

ε (a0 + εa(x)− u+
ε )

= εκ1∆u∗1 + ε2κ1∆u∗2 + (a0 + εu∗1 + ε2u∗2 + ε3M)(εa− εu∗1 − ε2u∗2 − ε3M)

= εa0(u∗1 − a) + ε2a0u
∗
2 + ε2u∗1(u

∗
1 − a)

+ (a0 + εu∗1 + ε2u∗2 + ε3M)(εa− εu∗1 − ε2u∗2 − ε3M)

= −ε3[a0M + 2u∗1u
∗
2 − au∗2]− ε4[u∗2u

∗
2 + 2u∗1M − aM ]− 2ε5u∗2M − ε6M2

=: R(ε).

By M =
(
1 + ‖2u∗1u∗2 − au∗2‖∞

)
/a0 and (2.9), (2.14), there exists an ε̂ = ε̂(a0) > 0

with R(ε) < 0 for all 0 < ε < ε̂, hence u+
ε is a super-solution of

−κ1∆u = u(a0 + εa(x)− u), x ∈ Ω,
Bu = 0,

(2.18)

for 0 < ε < ε̂. Similarly, we have

κ1∆u−ε + u−ε (a0 + εa(x)− u−ε )

= εκ1∆u∗1 + ε2κ1∆u∗2 + (a0 + εu∗1 + ε2u∗2 − ε3M)(εa− εu∗1 − ε2u∗2 + ε3M)

= εa0(u∗1 − a) + ε2a0u
∗
2 + ε2u∗1(u

∗
1 − a)

+ (a0 + εu∗1 + ε2u∗2 − ε3M)(εa− εu∗1 − ε2u∗2 + ε3M)

= ε3[a0M − 2u∗1u
∗
2 + au∗2] + ε4[−u∗2u∗2 + 2u∗1M + aM ] + 2ε5u∗2M − ε6M2

> 0
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for 0 < ε < ε̂ by passing to a smaller ε̂, if necessary. Thus, u− is a sub-solution
of (2.18) for 0 < ε < ε̂. By possibly reducing the size of ε̂ once more, we can also
ensure u−ε > 0 for 0 < ε < ε̂, hence the fact that u∗ε is the only positive solution of
(2.18) yields

u−ε (x) ≤ u∗ε (x) ≤ u+
ε (x)

for 0 < ε < ε̂. The lemma then follows. �

We remark that the size of ε̂(a0) depends on that of a0.

Lemma 2.6. Let b∗ ∈ C1(Ω̄) with
∫
Ω
b∗(x)dx = 0 and v∗ be the solution of

κ2∆v∗ + b∗(x) = 0, x ∈ Ω

Bv∗ = 0, x ∈ ∂Ω
(2.19)

with
∫
Ω
v∗(x)dx = 0. Then there is C0 independent of κ2 and b∗ such that

‖v∗‖∞ ≤ C0
‖b∗‖∞
κ2

.

Proof. Let p ∈ [2,∞), Dp := {w ∈ W 2,p(Ω) : Bw = 0}, and Ap : Dp → Lp(Ω) be
defined by Apw := −∆w. (Dp, ‖ · ‖2,p) is a Banach space and Ap is a Fredholm
operator of index 0 with kernel span{1} and (closed) range Rp := {z ∈ Lp(Ω) :∫
Ω
z = 0} in Lp(Ω). The statements about kernel and range follow from the fact

that A2 is self-adjoint, Dp ⊂ D2, and Ap = A2|Dp . Fix p > N , and set D̂p :=
{w ∈ Dp :

∫
Ω
w = 0}. Then Ap|D̂p

is a bounded bijective mapping from D̂p onto

Rp, hence Kp :=
(
Ap|D̂p

)−1 is bounded by the open mapping theorem. Since

D̂p ↪→ L∞(Ω) for p > N , there exists a σ(p) > 0 with ‖w‖∞ ≤ σ(p)‖w‖2,p for
w ∈ D̂p and p > N . Fixing a p > N , we get ‖v∗‖∞ ≤ σ(p)

κ2
‖Kp‖ vol(Ω)

1
p ‖b∗‖∞.

The lemma follows with C0 = σ(p)‖Kp‖ vol(Ω)
1
p . �

Let v1 be the solution of
κ2∆v1 − u∗1 = 0, x ∈ Ω

Bv1 = 0
(2.20)

satisfying
∫
Ω
v1 = 0 (such a solution exists in view of

∫
Ω
u∗1 = 0 and is unique

because of
∫
Ω
v1 = 0), and let v1 =

∑∞
j=1 v1,jϕj be its expansion. Then (2.20)

becomes

κ2

∞∑
j=1

µjv1,jϕj −
∞∑

j=1

u∗1,jϕj = 0, ∀ j ∈ N, (2.21)

hence

v1,j =
u∗1,j

κ2µj
=

a0aj

κ2µj(a0 + κ1|µj |)
, j ∈ N. (2.22)

By Lemma 2.6 and (2.9), there is C1 > 0 such that

‖v1‖∞ ≤ C1

κ2
. (2.23)

Let v2 be a solution of
κ2∆v2 − u∗1v1 − u∗2 = λ2, in Ω

Bv2 = 0
(2.24)
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with
∫
Ω
v2 = 0 and

λ2 =
1

vol(Ω)

∞∑
j=1

a2
0a

2
j

κ2|µj |(a0 + κ1|µj |)2
[
1−

κ1κ2µ
2
j

a2
0

]
as defined in the introduction (such solution exists and is unique by the choice of
λ2). By Lemma 2.6 and (1.7), (2.9), (2.14), and (2.23), there is C2 > 0 such that

‖v2‖∞ ≤ C2
a0 + min{κ1, κ2}
a0 · κ2 ·min{κ1, κ2}

. (2.25)

Lemma 2.7. There exist M̃(κ1, κ2, a0), ε̃(κ1, κ2, a0) > 0 such that

ε2λ2 − ε3M̃ ≤ λu(ε) ≤ ε2λ2 + ε3M̃

for 0 < ε < ε̃.

Proof. First of all, consider

vt = κ2∆v + (a0 − u∗ε )v, inΩ

Bv(t, ·) = 0, t > 0.
(2.26)

For given v0, let v(t, ·; v0) be the solution of (2.26). Then the principal eigenvalue
theory yields

lim
t→∞

ln ‖v(t, ·; v0)‖
t

= λu(ε)

for all v0 with v0(x) > 0 for x ∈ Ω. Note that by Lemma 2.5, there exist an
M(a0) > 0, an ε̂(a0) > 0, and a function ψ(x, ε) with |ψ(x, ε)| ≤M such that

u∗ε (x) = a0 + εu∗1(x) + ε2u∗2(x) + ε3ψ(x, ε)

for 0 < ε < ε̂.
For given M̃ > 0, let

v+
ε = (1 + εv1 + ε2v2)e(ε

2λ2+ε3M̃)t,

v−ε = (1 + εv1 + ε2v2)e(ε
2λ2−ε3M̃)t,

where v1 and v2 are the solutions of (2.20) and (2.24) with
∫
Ω
v1(x)dx = 0 and∫

Ω
v2(x)dx = 0, respectively. We then have

e−(ε2λ2+ε3M̃)t(v+
ε )t = (ε2λ2 + ε3M̃)(1 + εv1 + ε2v2)

and

e−(ε2λ2+ε3M̃)t
(
κ2∆v+

ε + (a0 − u∗ε )v
+
ε

)
= εκ2∆v1 + ε2κ2∆v2 − (εu∗1 + ε2u∗2 + ε3ψ)(1 + εv1 + ε2v2)

= ε2λ2 − ε3[ψ + u∗1v2 + u∗2v1]− ε4[ψv1 + u∗2v2]− ε5ψv2.

It then follows from (2.9), (2.14), (2.23), and (2.25) that there exist M̃(κ1, κ2, a0)
> 0 and 0 < ε̃(κ1, κ2, a0) < ε̂ such that

(v+
ε )t ≥ κ2∆v+

ε + (a0 − u∗ε )v
+
ε

for 0 < ε < ε̃.
Similarly, we can prove by adjusting M̃ and ε̃ if necessary that

(v−ε )t ≤ κ2∆v−ε + (a0 − u∗ε )v
−
ε
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for 0 < ε < ε̃.
Let vε

0 = 1 + εv1 + ε2v2. Then by comparison principle for parabolic equations,
we have

v−ε ≤ v(t, ·; vε
0) ≤ v+

ε

for 0 < ε < ε̃, which implies

ε2λ2 − ε3M̃ ≤ λu(ε) = lim
t→∞

ln ‖v(t, ·; vε
0)‖

t
≤ ε2λ2 + ε3M̃

for 0 < ε < ε̃ and proves the lemma. �

Proof of Theorem 2.1. (1) Assume that φ(x) is a positive principal eigenfunction
of (2.5). Then we have

κ1∆φ
φ

+ εa(x) = λv(ε).

Integrating the above equality over Ω, we have

κ1

∫
Ω

(φx(x))2

(φ(x))2
dx = λv(ε).

By the assumption that a(x) 6≡ 0 and
∫
Ω
a(x)dx = 0, φ(x) 6≡ constant. Hence for

any ε > 0, λv(ε) > 0 and then (0, v∗) is unstable.
(2) and (3) are direct consequences of Lemma 2.7. In fact, choose M̃(κ1, κ2, a0)

and ε̃(κ1, κ2, a0) as in Lemma 2.7. Let η(κ1, κ2, a0) = 1
M̃(κ1,κ2,a0)

and ζ(κ1, κ2, a0) =
ε̃(κ1, κ2, a0). Then, if 0 < ε < min{η(κ1, κ2, a0) · |λ2|, ζ(κ1, κ2, a0)} and λ2 < 0,
Lemma 2.7 yields λu(ε) ≤ ε2λ2 + ε3M̃ < 0, which implies (2). On the other
hand, if 0 < ε < min{η(κ1, κ2, a0) · |λ2|, ζ(κ1, κ2, a0)} and λ2 > 0, one obtains
λu(ε) ≥ ε2λ2 − ε3M̃ > 0, which shows (3). �

3. Numerical simulations

All numerical simulations are performed for Ω = (0, 1), κ1 = κ2 = κ, and
a(x) = 0.01 cos(πx) (hence ε = 0.01) for different values of a0 and κ using Matlab
PDE solver. The number of grid points on Ω is N = 100. All equilibria are obtained
by requiring that the difference in the l2-norm between two successive iterations is
less than 10−12. The equilibrium of the system is denoted by (û, v̂). The simulation
results are consistent with Theorem 2 as shown in the following figures. Moreover,
they suggest that the interior equilibrium, when it exists, has a basin of attraction
which has both semi-trivial equilibria as boundary points.

3.1. Stability of (u∗ε , 0) when a0 changes. Fix κ = 1. Let a(x) = 0.01 cos(πx).
Then one has λ2 < 0 if a0 < π2 and λ2 > 0 if a0 > π2. Simulations for several values
of a0 between 3 and 15 are performed. It is seen that (u∗ε , 0) is stable when a0 ≤ 9.8
and unstable when a0 ≥ 9.9. The simulations with a0 = 3, 9.8, 9.9, and 15 are
presented in the following (see Figures 1-4). They are done for two different initial
values for each value of a0: one is close to the semi-trivial equilibrium (u∗ε , 0) and
the other one is close to the semi-trivial equilibrium (0, a0). More specifically, the
first initial value is (u∗ε +0.01, 0.01) and the second initial value is (0.01, a0 +0.01).

The 4 graphs in Figure 1 show the results for a0 = 3 < π2 (thus, λ2 < 0) with
initial values (u0, v0) = (u∗ε + 0.01, 0.01) and (u0, v0) = (0.01, 3 + 0.01). The equi-
librium (û, v̂) in both cases is (u∗ε , 0). This suggests that (u∗ε , 0) is asymptotically
stable.
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Figure 1.

Figure 2.

The 4 graphs in Figure 2 show the results for a0 = 9.8 < π2 (thus, λ2 <
0) with the initial values (u0, v0) = (u∗ε + 0.01, 0.01) and (u0, v0) = (0.01, 9.8 +
0.01). The equilibrium (û, v̂) in both cases is (u∗ε , 0). This suggests that (u∗ε , 0) is
asymptotically stable.

The 4 graphs in Figure 3 show the results for a0 = 9.9 > π2 (thus, λ2 > 0)
with the initial values (u0, v0) = (u∗ε + 0.01, 0.01) and (u0, v0) = (0.01, 9.9 + 0.01).
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Figure 3.

The equilibrium (û, v̂) in both cases is an interior point of the positive cone. This
suggests that (u∗ε , 0) is unstable.

Figure 4.

The 4 graphs in Figure 4 show the results for a0 = 15 > π2 (thus, λ2 > 0)
with the initial values (u0, v0) = (u∗ε + 0.01, 0.01) and (u0, v0) = (0.01, 15 + 0.01).
The equilibrium (û, v̂) in both cases is an interior point of the positive cone. This
suggests that (u∗ε , 0) is unstable.
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3.2. Stability of (u∗ε , 0) when κ changes. Fix a0 = 3. Let a(x) = 0.01 cos(πx).
Then one has λ2 < 0 if κ > 3/π2 and λ2 > 0 if κ < 3/π2. Simulations for several
values of κ between 0.01 and 1 are performed. It is seen that (u∗ε , 0) is unstable
when κ ≤ 0.3 and stable when κ ≥ 0.31. The simulations with κ = 0.01, 0.3, 0.31,
and 1 are presented in the following (see Figures 5-8). Again the simulations are
done for two different initial values for each value of κ: one is (u∗ε + 0.01, 0.01),
which is close to the semi-trivial equilibrium (u∗ε , 0) and the other is (0.01, 3.01),
which one is close to the semi-trivial equilibrium (0, 3).

Figure 5.

The 4 graphs in Figure 5 show the results for κ = 0.01 < 3/π2 (thus, λ2 > 0)
with initial values (u0, v0) = (u∗ε + 0.01, 0.01) and (u0, v0) = (0.01, 3.01). The
equilibrium (û, v̂) in both cases is an interior point of the positive cone. This
suggests that (u∗ε , 0) is unstable.

The 4 graphs in Figure 6 show the results for κ = 0.3 < 3/π2 (thus, λ2 > 0) with
initial values (u0, v0) = (u∗ε +0.01, 0.01) and (u0, v0) = (0.01, 3.01). The equilibrium
(û, v̂) in both cases is an interior point of the positive cone. This suggests that
(u∗ε , 0) is unstable.

The 4 graphs in Figure 7 show the results for κ = 0.31 > 3/π2 (thus, λ2 < 0) with
initial values (u0, v0) = (u∗ε +0.01, 0.01) and (u0, v0) = (0.01, 3.01). The equilibrium
(û, v̂) in both cases is (u∗ε , 0). This suggests that (u∗ε , 0) is asymptotically stable.

The 4 graphs in Figure 8 show the results for κ = 1 > 3/π2 (thus, λ2 < 0) with
initial values (u0, v0) = (u∗ε +0.01, 0.01) and (u0, v0) = (0.01, 3.01). The equilibrium
(û, v̂) in both cases is (u∗ε , 0). This suggests that (u∗ε , 0) is asymptotically stable.

4. The principal eigenvalue for Dirichlet boundary conditions

In this section, we provide an example which shows that the principal eigenvalue
λ(b) of (1.4) with Bu = u can be smaller than the principal eigenvalue of (1.5) with
Bu = u.
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Figure 6.

Figure 7.

Set φj(x) :=
√

2/π sin(jx) for j ∈ N, x ∈ [0, π] and ψj(x) :=
√

2/π cos(jx) for
j ∈ Z+, x ∈ [0, π]. Then

(
φj

)
is an orthonormal basis of eigenfunctions for

u′′ = µu 0 < x < π,

u(0) = 0 = u(π).
(4.1)

with
(
−j2

)
j∈N the corresponding sequence of eigenvalues.
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Figure 8.

The goal is to show that the principal eigenvalue λ(ψ2) of

u′′ + ψ2u = λu 0 < x < π,

u(0) = 0 = u(π),
(4.2)

is smaller than −1. Note that ψ̄2 =
∫ π

0
ψ2 = 0 and the principal eigenvalue λ(ψ̄2)

of
u′′ + ψ̄2u = λu 0 < x < π,

u(0) = 0 = u(π),
(4.3)

is −1. Hence λ(ψ2) < λ(ψ̄2).
Denote by u a principal eigenfunction of (4.2) with ‖u‖0,2 = 1, then λ(ψ2) =∫ π

0

[
−

(
u′)2 + ψ2u

2
]
. Let

∑∞
j=1 αjφj be the eigenfunction expansion of u, then∑∞

j=1 α
2
j = 1. The trigonometric identity φjφk = 1

2

[
ψj−k − ψj+k

]
for k ≤ j and

the Cauchy product formula yield

u2 =
∞∑

j=1

j−1∑
k=0

αjαj−kφjφj−k =
1
2

∞∑
j=1

j−1∑
k=0

αjαj−k

[
ψk − ψ2j−k

]
,

hence ∫ π

0

ψ2u
2 =

1
2

∞∑
j=1

j−1∑
k=0

αjαj−k

∫ π

0

[
ψk − ψ2j−k

]
ψ2

=
1
2

∞∑
j=3

αjαj−2 −
1
2
α2

1

≤ 1
2

∞∑
j=1

α2
j −

1
2
α2

1 =
1
2

∞∑
j=2

α2
j
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Therefore,∫ π

0

[
−(u′)2 + ψ2u

2
]
≤ −

∞∑
j=1

j2α2
j +

1
2

∞∑
j=2

α2
j ≤ −α2

1 −
7
2

∞∑
j=2

α2
j (4.4)

But, −α2
1 − 7

2

∑∞
j=2 α

2
j < −1 unless |α1| = 1 and hence αj = 0 for j ∈ N \ {1}.

The second alternative is not satisfied, since φ1 is not an eigenfunction of (4.2).
Consequently, the principal eigenvalue satisfies λ(ψ2) < −1.

We remark that the principal eigenvalue λ(−ψ2) of

u′′ − ψ2u = λu 0 < x < π,

u(0) = 0 = u(π),
(4.5)

is greater than −1, since
∫ π

0
ψ2φ

2
1 < 0. Hence λ(−ψ2) > λ(−ψ̄2) = −1.

Therefore, in general, neither λ(b̄) ≤ λ nor λ(b̄) ≥ λ is true in the case of Dirichlet
boundary conditions, and we cannot expect any result similar to Theorem 2.1.
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