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ANALYSIS OF A QUADRATIC SYSTEM OBTAINED FROM A
SCALAR THIRD ORDER DIFFERENTIAL EQUATION

FABIO SCALCO DIAS, LUIS FERNANDO MELLO

Abstract. In this article, we study the nonlinear dynamics of a quadratic
system in the three dimensional space which can be obtained from a scalar
third order differential equation. More precisely, we study the stability and
bifurcations which occur in a parameter dependent quadratic system in the
three dimensional space. We present an analytical study of codimension one,
two and three Hopf bifurcations, generic Bogdanov-Takens and fold-Hopf bi-
furcations.

1. Introduction

In this paper we study the stability and bifurcations in the dynamics of the third
order differential equation

x′′′ + f(x)x′′ + g(x)x′ + h(x) = 0, (1.1)

where f, g, h : R → R are

f(x) = a1x + a0, g(x) = b1x + b0, h(x) = c2x
2 + c1x + c0, (1.2)

with a1, a0, b1, b0, c2, c1, c0 ∈ R, c2 6= 0.
By defining of the variables y = x′ and z = x′′, differential equation (1.1) can be

written as the system of nonlinear differential equations

x′ = y,

y′ = z,

z′ = −
(
(a1x + a0)z + (b1x + b0)y + c2x

2 + c1x + c0

)
,

(1.3)

where (x, y, z) ∈ R3 are the state variables and (a0, a1, b0, b1, c0, c1, c2) ∈ R7, c2 6= 0,
are real parameters.

The choice of real affine functions to f and g and a quadratic function to h imply
that the vector field that defines (1.3),

F (x, y, z) =
(
y, z,−

(
(a1x + a0)z + (b1x + b0)y + c2x

2 + c1x + c0

))
, (1.4)

is a quadratic vector field. So, system (1.3) is a quadratic system of differential
equations in R3.
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Quadratic systems in R3 are some of the simplest systems after linear ones and
have been extensively studied in the last five decades. Examples of such systems
are the Lorenz system [12], the Chen system [2], the Liu system [10], the Rössler
system [16], the Rikitake system [15], the Lü system [13], the Genesio system [5]
among several others.

An interesting problem related to quadratic systems defined in Rn is the deter-
mination of the number of their limit cycles. In R2 this number is finite [3, 6]. For
quadratic systems in Rn, n ≥ 3 the scenario is very different. Recently Ferragut,
Llibre and Pantazi [4] provided an example of quadratic vector field in R3 and an
analytical proof that it has infinitely many limit cycles.

As far as we know, differential equation (1.1), or equivalently system (1.3), was
analyzed in two particular cases:

(a) When a1 = b1 = c0 = 0, c1 = 1 and c2 = −1 differential equation (1.1) is a
feedback control system of Lur’e type. The Hopf bifurcations of codimen-
sion one of the equivalent system (1.3) were studied in [8];

(b) When a1 = b1 = c0 = 0 and c2 = −1 differential equation (1.1) is an ex-
tension of the above feedback control system of Lur’e type. The equivalent
system (1.3) was studied in [5] from the chaotic behavior point of view and
in [20] were studied its Hopf bifurcations of codimension one and homoclinic
connections.

On the other hand, differential equation (1.1), or equivalently system (1.3), can
be seen as a particular case of a more general quadratic third order differential equa-
tion [7]. In [7] the authors studied oscillations that appear from codimension one
Hopf bifurcations. The study was made using an approach based on harmonic bal-
ance techniques. However there exist more degenerate cases that were not analyzed
by them.

Despite the simplicity, system (1.3) has a rich local dynamical behavior present-
ing several degenerate bifurcations. The study carried out in the present paper may
contribute to understand analytically the stability and some bifurcations of system
(1.3). For this purpose the paper is organized as follows. After some general results
the linear analysis of the equilibria of system (1.3) is presented in Section 2. A
brief review of the methods used to study Hopf, Bogdanov-Takens and fold-Hopf
bifurcations are presented in Section 3. These methods are used in Section 4 to
prove the main results of this paper. More specifically, in subsections 4.1 and 4.2
we study all the possible Hopf bifurcations (generic and degenerate ones) which
occur in the equilibria of system (1.3). An application of these results is made in
subsection 4.3 for a particular case of system (1.3). In subsection 4.4 we present
the study of a Bogdanov-Takens bifurcation which occurs at an equilibrium point
of system (1.3) for a suitable choice of the parameters. This study leads to the
existence of homoclinic connections and global bifurcations in system (1.3). Other
global bifurcations in system (1.3) can be determined by the existence of a fold-
Hopf bifurcation at an equilibrium point for a suitable choice of the parameters.
The study of this bifurcation is presented in subsection 4.5. In Section 5 we make
some concluding comments.

2. Linear analysis of system (1.3)

The equilibria of system (1.3) are E∗ = (x∗, 0, 0), where x∗ is a real zero of
the function h, that is h(x∗) = 0. By assumption h is a quadratic function, so
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it may have 0, 1 or 2 real zeros. This implies that system (1.3) has 0, 1 or 2
equilibrium points. The local behavior of the flow of system (1.3) is trivial when
there is no equilibrium point. Nevertheless the global behavior of the flow can be
very interesting with the study, for example, of large amplitude limit cycles, that is
limit cycles out of compact parts of R3 [11]. In this paper we only study the cases
with 1 or 2 equilibria.

Suppose that system (1.3) has only one equilibrium point. Without loss of
generality, we can consider h(x) = x2, that is c2 = 1 and c1 = c0 = 0. This implies
that the equilibrium point E∗ is at the origin. The linear part of system (1.3) at
the origin has the form

A = DF (E∗) =

0 1 0
0 0 1
0 −b0 −a0

 ,

and its characteristic polynomial is

p(λ) = −λ
(
λ2 + a0λ + b0

)
. (2.1)

It follows that one eigenvalue is λ1 = 0 and this implies that the origin is a non-
hyperbolic equilibrium point. A more detailed study of the stability of this equilib-
rium point is presented in subsections 4.4 and 4.5.

Now suppose that system (1.3) has two equilibrium points. Thus the function
h has the form h(x) = c2(x − x0)(x − x1), c2 6= 0. By the following change of
coordinates and a reparametrization in time

x = X, y = c
1/3
2 Y, z = c

2/3
2 Z, t = c

1/3
2 τ,

system (1.3) can be written with a function h of the form h(x) = (x− x0)(x− x1).
Without loss of generality, we can consider x0 = 0 and x1 = −1. It follows that
system (1.3) has the equilibria E0 = (0, 0, 0) and E1 = (−1, 0, 0) and can be written
as

x′ = y,

y′ = z,

z′ = −
(
(a1x + a0)z + (b1x + b0)y + x(x + 1)

)
,

(2.2)

where (x, y, z) ∈ R3 are the state variables and (a0, b0, a1, b1) ∈ R4 are real param-
eters.

A useful tool for the linear analysis of an equilibrium point is the following
Routh-Hurwitz stability criterion whose proof can be found in [14, p. 58].

Lemma 2.1. The polynomial L(λ) = λ3 +p1λ
2 +p2λ+p3 with real coefficients has

all roots with negative real parts if and only if the numbers p1, p2, p3 are positive
and the inequality p1p2 > p3 is satisfied.

2.1. Linear analysis at E0. In this subsection we study the stability of the equi-
librium E0 = (0, 0, 0) of system (2.2) from the linear point of view. Consider the
set of parameters

W = {(a0, b0, a1, b1) ∈ R4}.
We have the following proposition.

Proposition 2.2. Define the following subsets of W:

W1 = {(a0, b0, a1, b1) ∈ W : a0 ≤ 0} ∪ {(a0, b0, a1, b1) ∈ W : b0 ≤ 0},
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W2 = {(a0, b0, a1, b1) ∈ W : a0 > 0, b0 > 0, a0b0 < 1},
W3 = {(a0, b0, a1, b1) ∈ W : a0 > 0, b0 > 0, a0b0 > 1}.

Then the following statements hold:
(1) If (a0, b0, a1, b1) ∈ W1 then the equilibrium E0 is unstable;
(2) If (a0, b0, a1, b1) ∈ W2 then the equilibrium E0 is unstable;
(3) If (a0, b0, a1, b1) ∈ W3 then the equilibrium E0 is locally asymptotically

stable.

Proof. The characteristic polynomial of the Jacobian matrix of system (2.2) at E0

is
p(λ) = λ3 + a0λ

2 + b0λ + 1.

If (a0, b0, a1, b1) ∈ W1 then the coefficients a0 and b0 of p(λ) are non-positive. From
Lemma 2.1 it follows that the equilibrium E0 is unstable. This proves item 1 of the
proposition. From Lemma 2.1 the equilibrium E0 is locally asymptotically stable
if the coefficients of the characteristic polynomial satisfy

a0 > 0, b0 > 0, a0b0 > 1. (2.3)

So if (a0, b0, a1, b1) ∈ W2 then E0 is unstable and if (a0, b0, a1, b1) ∈ W3 then E0 is
locally asymptotically stable. This proves item 2 and 3 of the proposition. �

Define the set

H0 = {(a0, b0, a1, b1) ∈ W : a0 > 0, b0 > 0, a0b0 = 1}. (2.4)

Thus W = W1 ∪W2 ∪W3 ∪ H0. If (a0, b0, a1, b1) ∈ H0 then the equilibrium E0 is
non-hyperbolic, that is the Jacobian matrix of system (2.2) at E0 has one negative
real eigenvalue and a pair of purely imaginary eigenvalues

λ1 = − 1
b0

< 0, λ2,3 = ±i
√

b0.

The set H0 is called the Hopf hypersurface of the equilibrium E0. From the
Center Manifold Theorem, at a Hopf point a two dimensional center manifold is
well-defined, it is invariant under the flow generated by (2.2) and can be continued
with arbitrary high class of differentiability to nearby parameter values (see [8, p.
152]). This center manifold is attracting since λ1 < 0. So it is enough to study the
stability of E0 for the flow restricted to the family of parameter-dependent contin-
uations of the center manifold. A detailed analysis of this case will be presented in
subsection 4.1.

2.2. Linear analysis at E1. In this subsection, we study the stability of the equi-
librium E1 = (−1, 0, 0) of system (2.2) from the linear point of view.

The characteristic polynomial of the Jacobian matrix of system (2.2) at E1 is

p(λ) = λ3 + (a0 − a1)λ2 + (b0 − b1)λ− 1.

The coefficient −1 of p(λ) is negative. From Lemma 2.1 it follows that the equilib-
rium E1 is unstable for all parameters (a0, b0, a1, b1) ∈ W.

Define the set

H1 = {(a0, b0, a1, b1) ∈ W : (a0 − a1) < 0, (a0 − a1)(b0 − b1) = −1}. (2.5)

If (a0, b0, a1, b1) ∈ H1 then the Jacobian matrix of system (2.2) at E1 has eigenvalues

λ1 = (a1 − a0) > 0, λ2,3 = ±i
1√

a1 − a0
.
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The set H1 is called the Hopf hypersurface of the equilibrium E1. From the
Center Manifold Theorem, at a Hopf point a two dimensional center manifold is
well-defined, it is invariant under the flow generated by (2.2) and can be continued
with arbitrary high class of differentiability to nearby parameter values (see [8,
p. 152]). This center manifold is repelling since λ1 > 0. We are interested in
the study the stability of E1 for the flow restricted to the family of parameter-
dependent continuations of the center manifold. A detailed analysis of this case
will be presented in subsection 4.2.

3. Generalities on Hopf, Bogdanov-Takens and fold-Hopf
bifurcations

3.1. Hopf bifurcations. In this subsection we present a review of the projection
method described in [8] for the calculation of the first and second Lyapunov co-
efficients associated to Hopf bifurcations, denoted by l1 and l2 respectively. This
method was extended to the calculation of the third and fourth Lyapunov coeffi-
cients in [17] and [18], respectively.

Consider the differential equation

x′ = f(x, ζ), (3.1)

where x ∈ R3 and ζ ∈ Rn are respectively vectors representing phase variables and
control parameters. Assume that f is of class C∞ in R3 × Rn. Suppose that (3.1)
has an equilibrium point x = x0 at ζ = ζ0 and, denoting the variable x − x0 also
by x, write

F (x) = f(x, ζ0) (3.2)

as

F (x) = Ax +
1
2
B(x, x) +

1
6
C(x, x, x) +

1
24

D(x, x, x, x) +
1

120
E(x, x, x, x, x)

+
1

720
K(x, x, x, x, x, x) +

1
5040

L(x, x, x, x, x, x, x) + O(‖x‖8),
(3.3)

where A = fx(0, ζ0) and, for i = 1, 2, 3,

Bi(x, y) =
3∑

j,k=1

∂2Fi(ξ)
∂ξj∂ξk

∣∣∣
ξ=0

xjyk, Ci(x, y, z) =
3∑

j,k,l=1

∂3Fi(ξ)
∂ξj∂ξk∂ξl

∣∣∣
ξ=0

xjykzl,

and so on for Di, Ei, Ki and Li.
Suppose that (x0, ζ0) = (0, ζ0) is an equilibrium point of (3.1) where the Jacobian

matrix A has a pair of purely imaginary eigenvalues λ2,3 = ±iω0, ω0 > 0, and the
other eigenvalues λ1 6= 0. Let T c be the generalized eigenspace of A corresponding
to λ2,3. By this it is meant the largest subspace invariant by A on which the
eigenvalues are λ2,3.

Let p, q ∈ C3 be vectors such that

Aq = iω0q, AT p = −iω0p, 〈p, q〉 =
3∑

i=1

p̄iqi = 1, (3.4)

where AT is the transpose of the matrix A. Any vector y ∈ T c can be represented
as y = wq + w̄q̄, where w = 〈p, y〉 ∈ C. The two dimensional center manifold
associated to the eigenvalues λ2,3 = ±iω0 can be parameterized by the variables w
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and w̄ by means of an immersion of the form x = H(w, w̄), where H : C2 → R3

has a Taylor expansion of the form

H(w, w̄) = wq + w̄q̄ +
∑

2≤j+k≤7

1
j!k!

hjkwjw̄k + O(|w|8), (3.5)

with hjk ∈ C3 and hjk = h̄kj . Substituting this expression into (3.1) we obtain the
following differential equation

Hww′ + Hw̄w̄′ = F (H(w, w̄)), (3.6)

where F is given by (3.2). The complex vectors hij are obtained solving the system
of linear equations defined by the coefficients of (3.6), taking into account the
coefficients of F (see Remark 3.1 of [17], p. 27), so that system (3.6), on the chart
w for a central manifold, writes as

w′ = iω0w +
1
2
G21w|w|2 +

1
12

G32w|w|4 +
1

144
G43w|w|6 + O(|w|8),

with Gjk ∈ C.
The first Lyapunov coefficient l1 is

l1 =
1
2

Re G21, (3.7)

where G21 = 〈p,H21〉 and H21 = C(q, q, q̄) + B(q̄, h20) + 2B(q, h11).
The second Lyapunov coefficient is

l2 =
1
12

Re G32, (3.8)

where G32 = 〈p,H32〉 and

H32 = 6B(h11, h21) + B(h̄20, h30) + 3B(h̄21, h20) + 3B(q, h22) + 2B(q̄, h31)

+ 6C(q, h11, h11) + 3C(q, h̄20, h20) + 3C(q, q, h̄21) + 6C(q, q̄, h21)

+ 6C(q̄, h20, h11) + C(q̄, q̄, h30) + D(q, q, q, h̄20) + 6D(q, q, q̄, h11)

+ 3D(q, q̄, q̄, h20) + E(q, q, q, q̄, q̄)− 6G21h21 − 3Ḡ21h21,

The third Lyapunov coefficient is

l3 =
1

144
Re G43, (3.9)

where G43 = 〈p,H43〉. The expression for H43 is too large to be put in print and
can be found in [17, eq. (44)].

A Hopf point of codimension one is an equilibrium point (x0, ζ0) such that linear
part of the vector field f has eigenvalues λ2 and λ3 = λ with λ = λ(ζ) = γ(ζ)+iη(ζ),
γ(ζ0) = 0, η(ζ0) = ω0 > 0, the other eigenvalue λ1 6= 0 and the first Lyapunov
coefficient, l1(ζ0), is different from zero. A transversal Hopf point of codimension
one is a Hopf point of codimension one for which the complex eigenvalues depending
on the parameters cross the imaginary axis with nonzero derivative. As l1 < 0
(l1 > 0) one family of stable (unstable) periodic orbits can be found on the center
manifold and its continuation, shrinking to the Hopf point.

Hopf point of codimension 2 is an equilibrium point (x0, ζ0) of f that satisfies
the definition of Hopf point of codimension one, except that l1(ζ0) = 0, and an
additional condition that the second Lyapunov coefficient, l2(ζ0), is nonzero. This
point is transversal if the sets γ−1(0) and l−1

1 (0) have transversal intersection, or



EJDE-2010/161 ANALYSIS OF A QUADRATIC SYSTEM 7

equivalently, if the map ζ 7→ (γ(ζ), l1(ζ)) is regular at ζ = ζ0. The bifurcation
diagrams for l2 6= 0 can be found in [8, p. 313], and in [19].

A Hopf point of codimension 3 is a Hopf point of codimension 2 where l2 vanishes
but l3 6= 0. A Hopf point of codimension 3 is called transversal if the sets γ−1(0),
l−1
1 (0) and l−1

2 (0) have transversal intersections. The bifurcation diagram for l3 6= 0
can be found in [17] and in Takens [19].

3.2. Bogdanov-Takens bifurcations. In this subsection we present an approach
based on [8, p. 321], and [9] for the Bogdanov-Takens bifurcation. Consider a
system x′ = f(x, α), x ∈ R3, α ∈ Rn and assume that f is of class C∞ in R3 ×Rn.
Suppose that for α = α0 there is an equilibrium point x = x0 such that the Jacobian
matrix A of f at x0 has a double zero eigenvalue; that is, λ2,3 = 0 and the other
eigenvalue λ1 6= 0. Denoting the variable x− x0 also by x we consider

F (x) = f(x, α0) = Ax +
1
2
B(x, x) + O(‖x‖3),

where, for i = 1, 2, 3,

Bi(x, y) =
3∑

j,k=1

∂2Fi(ξ)
∂ξj∂ξk

∣∣∣
ξ=0

xjyk.

Let q0, q1, p0, p1 ∈ R3 be vectors such that Aq0 = 0, Aq1 = q0, AT p1 = 0, AT p0 =
p1, where AT is the transpose of the matrix A, satisfying the conditions 〈q0, p1〉 = 0,
〈q1, p0〉 = 0, 〈q0, p0〉 = 1 and 〈q1, p1〉 = 1. Write the polynomial characteristic of
the Jacobian matrix of f at (x, α) as p(λ) = λ3 + R(x, α)λ2 + T (x, α)λ + D(x, α)
and assume that the following conditions hold:
(BT1) The Jacobian matrix satisfies A 6= 0;
(BT2)

a(α0) =
1
2
〈p1, B(q0, q0)〉 6= 0; (3.10)

(BT3)
b(α0) = 〈p0, B(q0, q0)〉+ 〈p1, B(q0, q1)〉 6= 0; (3.11)

(BT4) The map G : (x, α) → (f(x, α), T (x, α), D(x, α)) is regular at (x0, α0).
Under the above assumptions the system undergoes a Bogdanov-Takens bifurca-

tion at x0 for parameters at α0. The bifurcation diagram of the Bogdanov-Takens
bifurcation can be found in [8, p. 322]. The assumption (BT4) is called transver-
sality condition for the Bogdanov-Takens bifurcation while the assumptions (BT1)-
(BT3) are the non-degenerescence conditions.

Define s = sign a(α0)b(α0) = ±1. If s = −1 (s = 1, resp.) then the limit cycle
bifurcating from the Hopf point or from the homoclinic loop is attracting (repelling,
resp.).

3.3. Fold-Hopf bifurcations. In this subsection a review of the fold-Hopf bifur-
cation is presented based on [8] and [9]. This kind of bifurcation is also called
zero-Hopf bifurcation.

Consider the differential equation (3.1), where x ∈ R3 and ζ ∈ Rn are respec-
tively vectors representing phase variables and control parameters. Assume that f
is of class C∞ in R3 × Rn. Suppose that (3.1) has an equilibrium point x = x0 at
ζ = ζ0 = 0. Denoting the variable x− x0 also by x, we can write (3.2) as

F (x) = f(x, 0)
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where
F (x) = Ax +

1
2
B(x, x) +

1
6
C(x, x, x) + O(‖x‖4),

A = fx(0, 0) and, for i = 1, 2, 3,

Bi(x, y) =
3∑

j,k=1

∂2Fi(ξ)
∂ξj∂ξk

∣∣∣
ξ=0

xjyk, Ci(x, y, z) =
3∑

j,k,l=1

∂3Fi(ξ)
∂ξj∂ξk∂ξl

∣∣∣
ξ=0

xjykzl.

Suppose that (x0, ζ0) = (0, 0) is an equilibrium point of (3.1) where the Jacobian
matrix A has a zero eigenvalue λ1 = 0 and a pair of purely imaginary eigenvalues
λ2,3 = ±iω0, ω0 > 0. Let p0, q0 ∈ R3 be vectors such that

Aq0 = 0, AT p0 = 0, 〈p0, q0〉 = 1, (3.12)

and let p1, q1 ∈ C3 be vectors such that

Aq1 = iω0q1, AT p1 = −iω0p1, 〈p1, q1〉 = 1, (3.13)

where AT is the transpose of the matrix A. From the above assumptions, it follows
that

〈p1, q0〉 = 〈p0, q1〉 = 0.

Consider the complex numbers

G200 = 〈p0, B(q0, q0)〉, (3.14)

G110 = 〈p1, B(q0, q1)〉, (3.15)

G011 = 〈p0, B(q1, q̄1)〉, (3.16)

the complex vectors, in C3,

h020 = (2iω0I3 −A)−1B(q1, q1), (3.17)

h200 the solution of(
A q0

p0 0

) h200

s

 =

−B(q0, q0) + 〈p0, B(q0, q0)〉q0

0

 , (3.18)

h011 the solution of(
A q0

p0 0

) h011

s

 =

−B(q1, q̄1) + 〈p0, B(q1, q̄1)〉q0

0

 , (3.19)

and the vector h110 which is solution of(
iω0I3 −A q1

p̄1 0

) h110

s

 =

B(q0, q1)− 〈p1, B(q0, q1)〉q1

0

 . (3.20)

From the above complex vectors define the complex numbers

G300 = 〈p0, C(q0, q0, q0) + 3B(q0, h200)〉, (3.21)

G111 = 〈p0, C(q0, q1, q̄1) + B(q0, h011) + B(q1, h̄110) + B(q̄1, h110)〉, (3.22)

G210 = 〈p1, C(q0, q0, q1) + 2B(q0, h110) + B(q1, h200)〉, (3.23)

G021 = 〈p1, C(q1, q1, q̄1) + 2B(q1, h011) + B(q̄1, h020)〉. (3.24)

The theorem about the fold-Hopf bifurcation states that if
(FH1) b(0)c(0)e(0) 6= 0,
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(FH2) The map G : (x, ζ) 7→ (f(x, ζ),Tr(fx(x, ζ)),det(fx(x, ζ))) is regular at
(x0, ζ0) = (0, 0),

then (3.1) is locally orbitally smoothly equivalent near the origin to the complex
normal form

ξ′ = β1 + b(β)ξ2 + c(β)|χ|2 + O(‖(ξ, χ)‖4),
χ′ = (β2 + iω(β))χ + d(β)ξχ + e(β)ξ2χ + O(‖(ξ, χ)‖4),

where β = (β1, β2), ω(0) = ω0,

b(0) =
G200

2
, c(0) = G011, d(0) = G110 − iω0

G300

3G200
(3.25)

and

e(0) =
1
2

Re
(
G210 + G110

(Re G021

G011
− G300

G200
+

G111

G011

)
− G021G200

2G011

)
. (3.26)

In general the O-terms cannot be truncated. See [8, p. 336.], Depending upon the
coefficients b(0), c(0), d(0) and e(0) the system can have two-dimensional invariant
tori and even chaotic motions. Define

s = sign b(0)c(0), θ(0) =
Re d(0)
G200

. (3.27)

For example, if s = 1 and θ(0) < 0 then the system exhibits Hopf bifurcations and
torus “heteroclinic destruction” (see [8, p. 341]), giving rise to chaotic invariant
sets. The bifurcation diagrams for the fold-Hopf bifurcation can be found in [8, pp.
339–343].

4. Bifurcation analysis of system (1.3)

4.1. Hopf bifurcation analysis at E0. In this subsection we study the Hopf
bifurcations that occur at the equilibrium E0 for parameters in the set H0 defined
in (2.4). Define the critical parameter

a0c =
1
b0

> 0.

Theorem 4.1. Consider system (2.2). The first Lyapunov coefficient at E0 for
parameter values in H0 is

l1(a0c , b0, a1, b1) =
N(a0c , b0, a1, b1)
2(b0 + 5b4

0 + 4b7
0)

, (4.1)

where

N(a0c , b0, a1, b1) = b1 − b0

(
2 + b0

(
16b2

0 + a2
1b0(−3 + 8b3

0)

− 10b0b1 + b2
1 + a1

(
1 + 12b2

0(−2b0 + b1)
)))

.

If ζ0 = (a0c
, b0, a1, b1) ∈ H0 is such that l1(ζ0) 6= 0 then system (2.2) has a transver-

sal Hopf point at E0 for the parameter vector ζ0.

Proof. For parameters on the Hopf hypersurface H0 (2.4), the eigenvalues of the
Jacobian matrix of system (2.2) at E0 are

λ1 = − 1
b0

, λ2,3 = ±iω0, ω0 =
√

b0, b0 > 0,
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the eigenvectors q and p defined in (3.4) are

q =
(
− 1

b0
,
−i√
b0

, 1
)
, p =

( −ib0

2(b3/2
0 + i)

,
−i
√

b0

2
,

b
3/2
0

2(b3/2
0 + i)

)
and the multilinear symmetric functions B and C write as

B(x, y) = (0, 0,−a1(x1y3 + x3y1)− b1(x1y2 + x2y1)− 2x1y1) , C(x, y, z) = (0, 0, 0) .

The complex vectors h11 and h20 are

h11 =
(2(−1 + a1b0)

b2
0

, 0, 0
)
,

h20 =
(2(−i + ia1b0 +

√
b0b1)

3b2
0(−i + 2b

3/2
0 )

,
4(1− a1b0 + i

√
b0b1)

3b
3/2
0 (−i + 2b

3/2
0 )

,
8(i− ia1b0 −

√
b0b1

3b0(−i + 2b
3/2
0 )

)
.

The complex number G21 defined in (3.7) has the form

G21 =
(
a2
1b

2
0(i− 12b

2/3
0 )− i

(
− 5i +

√
b0(12b0 − b1)

)
(−2i +

√
b0b1)

+ a1b0(−11i + 36b
2/3
0 + 12ib2

0b1)
)
/
(
− 3b

2/3
0 − 9ib3

0 + 6b
9/2
0

)
.

Performing the calculations in (3.7), the first Lyapunov coefficient is given by (4.1).
It remains only to verify the transversality condition of the Hopf bifurcation.

In order to do so, consider the family of differential equations (2.2) regarded as
dependent on the parameter a0. The real part, γ = γ(a0), of the pair of complex
eigenvalues at the critical parameter a0 = a0c verifies

γ′(a0c) = Re〈p,
dA

da0

∣∣∣
a0=a0c

q〉 = − b3
0

2(b3
0 + 1)

< 0,

since b0 > 0. In the above expression A is the Jacobian matrix of system (2.2) at
E0. Therefore, the transversality condition at the Hopf point holds. �

The sign of the first Lyapunov coefficient (4.1) is determined by the sign of the
numerator of (4.1), N(a0c , b0, a1, b1), since the denominator is positive.

If ζ0 = (a0c , b0, a1, b1) ∈ H0 is such that l1(ζ0) 6= 0 then system (2.2) has a
transversal Hopf point at E0 for the parameter vector ζ0. More specifically, if
ζ0 = (a0c , b0, a1, b1) ∈ H0 is such that l1(ζ0) < 0 then the Hopf point at E0 is
asymptotically stable (weak attracting focus for the flow of system (2.2) restricted
to the center manifold) and for a suitable ζ close to ζ0 there exists a stable limit
cycle near the unstable equilibrium point E0; if ζ0 = (a0c , b0, a1, b1) ∈ H0 is such
that l1(ζ0) > 0 then the Hopf point at E0 is unstable (weak repelling focus for the
flow of system (2.2) restricted to the center manifold) and for a suitable ζ close to
ζ0 there exists an unstable limit cycle near the asymptotically stable equilibrium
point E0.

In the rest of this subsection we study the stability of the equilibrium E0 with
the restriction a1 = 0. This makes the analysis of the sign as well as the analysis
of the zero set of the first Lyapunov coefficient (4.1) more simple. See Remark 4.3.
Define the following subset H00 of the Hopf hypersurface H0

H00 = {(a0, b0, a1, b1) ∈ H0 : a1 = 0}.
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Corollary 4.2. Consider system (2.2) with parameter values in H00. If either

b1 = b11 =
1 + 8b3

0

b2
0

or b1 = b12 = 2b0,

then the first Lyapunov coefficient at E0 vanishes; that is,

l1(a0c
, b0, 0, b11) = l1(a0c

, b0, 0, b12) = 0.

Proof. Substituting a1 = 0 into the expression of G21 in the proof of Theorem 4.1
results

G21 = − (2b0 − b1)(1 + 8b3
0 − b2

0b1)
b0 + 5b4

0 + 4b7
0

+ i
−10 + b0(−52b2

0 + 3b0b1(1− 8b3
0) + b2

1(−1 + 2b3
0))

3b
3/2
0 (1 + 5b3

0 + 4b6
0)

.

If b1 = b11 then the second parenthesis in the numerator of the real part of
G21 vanishes. Then l1(a0c , b0, 0, b11) = 0. On the other hand, if b1 = b12 then
the first parenthesis in the numerator of the real part of G21 vanishes. Then
l1(a0c

, b0, 0, b12) = 0. �

From Corollary 4.2 the first Lyapunov coefficient vanishes on the curves

L1 =
{
(a0, b0, b1) ∈ H00 : a0 =

1
b0

, b1 =
1 + 8b3

0

b2
0

}
and

L2 =
{
(a0, b0, b1) ∈ H00 : a0 =

1
b0

, b1 = 2b0

}
.

See Figure 1. It is simple to see that the curves L1 and L2 have no intersection and
divide the Hopf surface H00 into three connected components

H01 = {(a0, b0, a1, b1) ∈ H00 : b1 >
1 + 8b3

0

b2
0

},

H02 = {(a0, b0, a1, b1) ∈ H00 : 2b0 < b1 <
1 + 8b3

0

b2
0

},

H03 = {(a0, b0, a1, b1) ∈ H00 : b1 < 2b0},
where the sign of the first Lyapunov coefficient at E0 is fixed: l1(a0c

, b0, 0, b1) > 0
on H02 and l1(a0c , b0, 0, b1) < 0 on H01 ∪ H03. See Figure 1. The bifurcation
diagram for l1 < 0 can be found in [8, p. 161].

Remark 4.3. It is well known that the first Lyapunov coefficient is a continuous
function of the parameters. Thus if ζ00 = (a0c , b0, 0, b1) ∈ H01 then there exists a
neighborhood Vζ00 of ζ00 in the Hopf hypersurface H0 such that l1(ζ0) < 0 for all
ζ0 ∈ Vζ00 , since l1(ζ00) < 0. Analogous conclusions hold for the other subsets H02

and H03.

In the next theorem we give the stability of the equilibrium E0 for parameters
in the curve L1.

Theorem 4.4. Consider system (2.2) with parameter values in L1. Then the
second Lyapunov coefficient at E0 is

l2(a0c , b0, 0, b11) = − 9 + 121b3
0 + 570b6

0 + 1008b9
0

3b5
0(1 + 14b3

0 + 49b6
0 + 36b9

0)
. (4.2)
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Figure 1. The Hopf surface H00 = H0∩{a1 = 0} for E0, the sets
H01, H02 and H03 and the curves L1 and L2

As b0 > 0 then l2(a0c , b0, 0, b11) < 0 and system (2.2) has a transversal Hopf point
of codimension 2 at E0 which is a stable equilibrium point. The bifurcation diagram
of system (2.2) at a typical point on the curve L1 can be found in [8, p. 313].

Proof. By Corollary 4.2, for parameters in L1, l1(a0c
, b0, 0, b11) = 0. Due to the

quadratic nature of the system, the multilinear symmetric functions D and E are

D(x, y, z, w) = (0, 0, 0), E(x, y, z, w, r) = (0, 0, 0).

The complex vectors h11, h20, h21, h22, h30 and h31 are

h11 =
(
− 2

b2
0

, 0, 0
)
,

h20 =
(16b3

0 − 2ib
3/2
0 + 2

6b5
0 − 3ib

7/2
0

,
4
(
8ib3

0 + b
3/2
0 + i

)
6b

9/2
0 − 3ib3

0

,
−64b3

0 + 8ib
3/2
0 − 8

6b4
0 − 3ib

5/2
0

)
,

h21 =
( i− 3b

3/2
0 + 16ib3

0 − 48b
9/2
0

6b6
0(−i + b

3/2
0 )

,
1− ib

3/2
0 + 16b3

0 − 16ib
9/2
o

6(−ib
11/2
0 + b7

0)
,

− −3i + b
3/2
0 − 48ib3

0 + 16b
9/2
0

6b5
0(−i + b

3/2
0 )

)
,

h22 =
(
− 4(5 + 141b3

0 + 714b6
0 + 848b9

0)
9b7

0(1 + 5b3
0 + 4b6

0)
, 0, 0

)
,
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h30 =
(3− 5ib

3/2
0 + 46b3

0 − 40ib
9/2
0 + 192b6

0

4b6
0 + 20ib

15/2
0 − 24b9

0

,

− 3i(3− 5ib
3/2
0 + 46b3

0 − 40ib
9/2
0 + 192b6

0)

4b
11/2
0 (−1− 5ib

3/2
0 + 6b3

0)
,

9(3− 5ib
3/2
0 + 46b3

0 − 40ib
9/2
0 + 192b6

0)

4b5
0(−1− 5ib

3/2
0 + 6b3

0)

)
and

h31 =
((

7i− 65b
3/2
0 + 133ib3

0 − 1897b
9/2
0 − 2050ib6

0 − 12056b
15/2
0

− 31744ib9
0 + 21504b

21/2
0

)
/
(
18b

17/2
0 (i− 2b

3/2
0 )2(−1− 4ib

3/2
0 + 3b3

0)),

−
(
1 + 35ib

3/2
0 + 19b3

0 + 1099ib
9/2
0 − 1774b6

0 + 7256ib
15/2
0

− 22720b9
0 − 16896ib

21/2
0

)
/
(
9b8

0(i− 2b
3/2
0 )2(−1− 4ib

3/2
0 + 3b3

0)
)
,(

2(5i + 5b
3/2
0 + 95ib3

0 + 301b
9/2
0 + 1498ib6

0 + 2456b
15/2
0 + 13696ib09

− 12288b
21/2
0 )

)
/
(
9b

15/2
0 (i− 2b

3/2
0 )2(−1− 4ib

3/2
0 + 3b3

0)
))

,

respectively. From (3.8),

G32 = −4(9 + 121b3
0 + 570b6

0 + 1008b9
0)

b5
0(1 + 14b3

0 + 49b6
0 + 36b9

0)

− i
(17 + 1214b3

0 + 21105b6
0 + 155492b9

0 + 463040b12
0 + 377856b15

0 )

36b
19/2
0 (1 + 14b3

0 + 49b6
0 + 36b9

0)
.

Thus, the second Lyapunov coefficient (3.8) is

l2(a0c
, b0, 0, b11) =

1
12

Re G32 = − 9 + 121b3
0 + 570b6

0 + 1008b9
0

3b5
0(1 + 14b3

0 + 49b6
0 + 36b9

0)
.

The proof is complete. �

From Theorem 4.4, the sign of the second Lyapunov coefficient at E0 is always
negative on L1. Thus the equilibrium E0 is a weak attracting focus (for the flow
of system (2.2) restricted to the center manifold) and there are two limit cycles,
one stable and the other unstable, near the equilibrium E0 for suitable value of the
parameters. See the pertinent bifurcation diagram in [8, p. 313].

In the next theorem we study the stability of the equilibrium E0 for parameters
in the curve L2.

Theorem 4.5. Consider system (2.2) with parameter values in L2. See Figure 1.
Then the second and third Lyapunov coefficients at E0 vanish; that is,

l2(a0c
, b0, 0, b12) = l3(a0c

, b0, 0, b12) = 0.

Proof. By Corollary 4.2, for parameters in L2, l1(a0c , b0, 0, b12) = 0. Due to the
quadratic nature of the system, the multilinear symmetric functions D, E, K and
L are

D(x, y, z, w) = E(x, y, z, w, r) = K(x, y, z, w, r, s) = L(x, y, z, w, r, s, t) = (0, 0, 0).
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The complex vectors h11, h20, h21, h22, h30 and h31 are

h11 =
(
− 2

b2
0

, 0, 0
)
, h20 =

( 2
3b2

0

,
4i

3b
3/2
0

,− 8
3b0

)
,

h21 =
(
− 5(−i + 3b

3/2
0 )

3b3
0(−i + b

3/2
0 )

,
5(1− ib

3/2
0 )

3(−ib
5/2
0 + b4

0)
,−5(−3i + ib

3/2
0 )

3b2
0(−i + b

3/2
0 )

)
,

h22 =
(
− 16(17 + 32b3

0)
9(b4

0 + b7
0)

, 0, 0
)
, h30 =

(
− 1

2b3
0

,
3i

2b
5/2
0

,
9

2b2
0

)
,

h31 =
(89i− 149b

3/2
0

9ib4
0 − 9b

11/2
0

,
118 + 238ib

3/2
0

9(−ib
7/2
0 + b5

0)
,−4(−29i + 89b

3/2
0 )

9b3
0(−i + b

3/2
0 )

)
,

respectively. From the above results the complex number G32 (3.8) can be written
as

G32 = −5i(157 + 277b3
0)

9b
7/2
0 (1 + b3

0)
.

By the above expression of G32, l2(a0c
, b0, 0, b12) = Re G32/12 = 0.

The complex vectors h32, h33, h40, h41 and h42 are, respectively,

h32 =
(
− 5(−187i + 561b

3/2
0 − 187ib3

0 + 1041b
9/2
0 )

18b5
0(−i + b

3/2
0 )2(i + b

3/2
0 )

,

− 5i(187 + 120ib
3/2
0 + 307b3

0)

18b
9/2
0 (−i + b

3/2
0 )2

,−5(−441i + 307(b3/2
0 − 3ib3

0 + b
9/2
0 ))

18b4
0(−i + b

3/2
0 )2(i + b

3/2
0 )

)
,

h33 =
(
− 33137 + 114154b3

0 + 109817b6
0

18b6
0(1 + b3

0)2
, 0, 0

)
,

h40 =
( 4

9b4
0

,
16i

9b
7/2
0

,− 64
9b3

0

)
,

h41 =
(109i− 169b

3/2
0

6b5
0(−i + b

3/2
0 )

,
89 + 149ib

3/2
0

2b
9/2
0 (i− b

3/2
0 )

,
9(−23i + 43b

3/2
0 )

2b4
0(−i + b

3/2
0 )

)
,

h42 = (h421 , h422 , h423),

where

h421 =
2(−8001i + 14701b

3/2
0 − 9761ib3

0 + 22461b
9/2
0 )

27b6
0(−i + b

3/2
0 )2(i + b

3/2
0 )

,

h422 =
4(4651 + 10151b

3/2
0 + 5211b3

0 + 16711b
9/2
0 )

27b
11/2
0 (−i + b

3/2
0 )2(i + b

3/2
0 )

,

h423 =
8(1901i− 6201b

3/2
0 + 1261ib3

0 − 11561b
9/2
0 )

27b5
0(−i + b

3/2
0 )2(i + b

3/2
0 )

.

Substituting the above results into the expression of the complex number G43 (3.9)
and making the simplifications it follows that

G43 = −5i(13099 + 43838b3
0 + 40339b6

0)

9b
11/2
0 (1 + b3

0)2
,

and, by (3.9), l3(a0c , b0, 0, b12) = 1
144 Re G43 = 0. �
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Based on the above theorem we have the following question.

Question 4.6. Consider system (2.2) with parameters in L2. Is the equilibrium
E0 a center for the flow of system (2.2) restricted to the center manifold?

This question is related with the planar center-focus problem. In his seminal
paper Bautin [1] solves the center-focus problem for quadratic systems in the plane:
If the three first Lyapunov coefficients are zero at the equilibrium point then it is a
center. It is not known an extension of the Bautin’s theorem for quadratic systems
in R3.

We have calculated the following Lyapunov coefficient, l4, at E0 for parameters
in L2 and it vanishes too. These calculations are not presented here. Based on this
information and Theorem 4.5 we have the following question.

Question 4.7. How many limit cycles can bifurcate from E0 for a suitable pertur-
bation of a parameter vector in L2?

4.2. Hopf bifurcation analysis at E1. In this subsection we study the Hopf
bifurcations that occur at the equilibrium E1 for parameters in the set H1 defined
in (2.5). Define the critical parameter

b0c =
1

a1 − a0
+ b1.

Theorem 4.8. Consider system (2.2). The first Lyapunov coefficient at E1 for
parameter values in H1 is

l1(a0, b0c , a1, b1) =
D(a0, b0c , a1, b1)

2(−4 + (a0 − a1)3)(−1 + (a0 − a1)3)
, (4.3)

where

D(a0, b0c , a1, b1)

= a0(a0 − a1)
(
2a0(−8 + a3

0) + 8a1 − 11a3
0a1 + 21a2

0a
2
1 − 17a0a

3
1 + 5a4

1

)
− (a0 − a1)3

(
(a0 − a1)4 − 2a1 − 10a0

)
b1 − (a0 − a1)5b2

1.

If ζ1 = (a0, b0c
, a1, b1) ∈ H1 is such that l1(ζ1) 6= 0 then system (2.2) has a transver-

sal Hopf point at E1 for the parameter vector ζ1.

Proof. For parameters on the Hopf hypersurface H1 we have

λ1 = a1 − a0, λ2,3 = ±iω0, ω0 =
1√

a1 − a0
, a1 − a0 > 0,

q = (a0 − a1,−i
√

a1 − a0, 1),

p =
( √

a1 − a0

2(−i− (a1 − a0)3/2)
,

−i

2
√

a1 − a0
,

−i

2(−i− (a1 − a0)3/2)

)
,

B(x, y) = (0, 0,−a1(x1y3 + x3y1)− b1(x1y2 + x2y1)− 2x1y1) ,

C(x, y, z) = (0, 0, 0).

The complex vectors h11 and h20 are

h11 =
(
2a0(a0 − a1), 0, 0

)
,



16 F. S. DIAS, L. F. MELLO EJDE-2010/161

h20 =
(
− 2(a0 − a1)2(a0(

√
a1 − a0 + ib1)− ia1b1)

6i− 3(a1 − a0)3/2
,

− 4(a0 − a1)2(ia0 + b1
√

a1 − a0)
6i− 3(a1 − a0)3/2

,

− 8(a0 − a1)(a0(
√

a1 − a0 + ib1)− ia1b1

6i− 3(a1 − a0)3/2

)
.

Substituting the above expressions into (3.7) and making the simplifications, results
that the complex number G21 is

G21 =
D∗(a0, b0c , a1, b1)

3(2 + a3
0 − 3a2

0a1 − a3
1 + 3ia1

√
a1 − a0 + 3a0(a2

1 − i
√

a1 − a0))
,

where

D∗(a0, b0c , a1, b1)

= (a0 − a1)
(
a3
0(10i

√
a1 − a0 − 3b1) + a2

1b1(3a1 − ib1

√
a1 − a0)

+ a2
0(−24− 19ia1

√
a1 − a0 + 9a1b1 − ib2

1

√
a1 − a0)

+ a0

(
9ia2

1(
√

a1 − a0 + ib1) + 12ib1

√
a1 − a0 + 2a1(6 + ib2

1

√
a1 − a0)

))
.

Performing the calculations in (3.7), the first Lyapunov coefficient is given by (4.3).
It remains only to verify the transversality condition of the Hopf bifurcation.

In order to do so, consider the family of differential equations (2.2) regarded as
dependent on the parameter b0. The real part, γ = γ(b0), of the pair of complex
eigenvalues at the critical parameter b0 = b0c verifies

γ′(b0c) = Re
〈
p,

dA

db0

∣∣∣
b0=b0c

q
〉

=
(a1 − a0)2

2
(
(a1 − a0)3 + 1

) > 0,

since a1−a0 > 0. In the above expression A is the Jacobian matrix of system (2.2)
at E1. Therefore, the transversality condition at the Hopf point holds. �

Note that the sign of the first Lyapunov coefficient (4.3) in Theorem 4.8 is
determined by the sign of the function D(a0, b0c , a1, b1), the numerator of l1, since
the denominator is positive.

In the rest of this subsection we study the stability of the equilibrium E1 with
the restriction a0 = 0. This makes the analysis of the sign as well as the analysis of
the zero set of the first Lyapunov coefficient (4.3) simpler. See Remark 4.3. Define
the following subset of the Hopf hypersurface H1 for E1

H10 = {(a0, b0, a1, b1) ∈ H1 : a0 = 0}.

Corollary 4.9. Consider system (2.2) with parameter values in H10. Then the
first Lyapunov coefficient at E1 is

l1(0, b0c
, a1, b1) =

a4
1b1(−2 + a3

1 + a1b1)
2(4 + 5a3

1 + a6
1)

.

If either

b1 = b13 = 0, or b1 = b14 =
2− a3

1

a1
,

then the first Lyapunov coefficient at E1 vanishes; that is,

l1(0, b0c , a1, b13) = l1(0, b0c , a1, b14) = 0.
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Proof. Substituting a0 = 0 into the expression of G21 in the proof of Theorem 4.8
results

G21 =
a4
1b1(−2 + a3

1 + a1b1)
4 + 5a3

1 + a6
1

+ i
a
7/2
1 b1(2b1 + a2

1(9− a1b1))
3(4 + 5a3

1 + a6
1)

.

If b1 = b13, then the numerator of the real part of G21 vanishes. Then the
first Lyapunov coefficient l1(0, b0c , a1, b13) = 0. On the other hand, if b1 = b14

then the parenthesis in the numerator of the real part of G21 vanishes. Then
l1(0, b0c , a1, b14) = 0. �

From Corollary 4.9 the first Lyapunov coefficient vanishes on the curves

L3 = {(b0, a1, b1) ∈ H10 : b0 =
1
a1

, b1 = 0},

L4 = {(b0, a1, b1) ∈ H10 : b0 =
3− a3

1

a1
, b1 =

2− a3
1

a1
}.

See Figure 2. These curves have only one intersection point P1 =
(
( 3
√

2)−1, 3
√

2, 0
)

and divide the Hopf surface H10 into four connected components

H11 = {(a0, b0, a1, b1) ∈ H10 : b1 > 0, b0 >
3− a3

1

a1
},

H12 = {(a0, b0, a1, b1) ∈ H10 : b1 > 0, b0 <
3− a3

1

a1
},

H13 = {(a0, b0, a1, b1) ∈ H10 : b1 < 0, b0 <
3− a3

1

a1
},

H14 = {(a0, b0, a1, b1) ∈ H10 : b1 < 0, b0 >
3− a3

1

a1
},

where the first Lyapunov coefficient at E1 has fixed sign: l1(0, b0c , a1, b1) > 0 on
H11 ∪H13 and l1(0, b0c , a1, b1) < 0 on H12 ∪H14. See Figure 2.

Figure 2. The Hopf surface H10 = H1∩{a0 = 0} for E1, the sets
H11, H12, H13, H14 and the curves L3 and L4.
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In the next theorem we give the stability of the equilibrium E1 for parameters
in the curve L3.

Theorem 4.10. Consider system (2.2) with parameter values in L3. Then the
second and third Lyapunov coefficients at E1 vanish; that is,

l2(0, b0c
, a1, b13) = l3(0, b0c

, a1, b13) = 0.

Proof. By Corollary 4.9, l1(0, b0c , a1, b13) = 0. Due to the quadratic nature of the
system the multilinear symmetric functions D, E, K and L satisfy

D(x, y, z, w) = E(x, y, z, w, r) = K(x, y, z, w, r, s) = L(x, y, z, w, r, s, t) = (0, 0, 0).

For a0 = 0 and b1 = b13 = 0 all the complex vectors h11, h20, h21, h22, h30, h31,
h32, h33, h40, h41 and h42 are the zero vector. Therefore, from (3.8) and (3.9),
G32 = G43 = 0 and we have l2(0, b0c , a1, b13) = l3(0, b0c , a1, b13) = 0. �

Based on the above theorem we have a question analogous to Question 4.6 about
the stability of the equilibrium point E1 for the flow of system (2.2) restricted to
the center manifold. Moreover, we can formulate a similar question to Question
4.7 about the number of limit cycles that can bifurcate from E1 for a suitable
perturbation of the parameters.

In the next three theorems we study the stability of the equilibrium E1 for
parameters in the curve L4.

Theorem 4.11. Consider system (2.2) with parameter values in L4. Then the
second Lyapunov coefficient at E1 is

l2(0, b0c
, a1, b14) = −2a5

1(a
3
1 − 2)(a6

1 + 22a3
1 − 105)

3(36 + a3
1(7 + a3

1)2)
. (4.4)

Proof. By Corollary 4.9, l1(0, b0c
, a1, b14) = 0. Due to the quadratic nature of the

system the multilinear symmetric functions D, E, K and L satisfy

D(x, y, z, w) = E(x, y, z, w, r) = (0, 0, 0).

The complex vectors h11, h20, h21, h22, h30 and h31 are

h11 = (0, 0, 0), h20 =
(2ia2

1(a
3
1 − 2)

3(a3/2
1 − 2i)

,−4a
3/2
1 (a3

1 − 2)

3(a3/2
1 − 2i)

,−8ia1(a3
1 − 2)

3(a3/2
1 − 2i)

)
,

h21 =
(
− a3

1(a
3/2
1 − 3i)(a3

1 − 2)

6(a3/2
1 − i)

,
i(−2ia

5/2
1 − 2a4

1 + ia
11/2
1 + a7

1)

6(a3/2
1 − i)

,

− (a2
1(3a

3/2
1 − i)(a3

1 − 2)

6(a3/2
1 − i)

)
,

h22 =
(16a4

1(a
3
1 − 2)

4 + a3
1

, 0, 0
)
,

h30 =
( (3a3

1(a
3
1 − 2)(a3

1 − 2− ia
3/2
1 )

4(−6− 5ia
3/2
1 + a3

1)
,

9a
5/2
1 (ia3

1 − 2i + a
3/2
1 )(a3

1 − 2)

4(−6− 5ia
3/2
1 + a3

1)
,

− 27a2
1(a

3
1 − 2)(−2− ia

3/2
1 + a3

1)

4(a3
1 − 6− 5ia

3/2
1 )

)
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and

h31 =
( (a4

1(a
3
1 − 2)(372 + 370ia

3/2
1 − 150a3

1 − 127ia
9/2
1 + 54a6

1 + 7ia
15/2
1 )

18(a3/2
1 − 2i)2(−3− 4ia

3/2
1 + a3

1)
,

− (a7/2
1 (a3

1 − 2)(−300i + 238a
3/2
1 + 42ia3

1 − 49a
9/2
1 − 18ia6

1 + a
15/2
1 )

9(a3/2
1 − 2i)2(−3− 4ia

3/2
1 + a3

1)
,

2a3
1(a

3
1 − 2)(−228− 106ia

3/2
1 − 66a3

1 − 29ia
9/2
1 + 18a6

1 + 5ia
15/2
1 )

9(a3/2
1 − 2i)2(−3− 4ia

3/2
1 + a3

1)

)
,

respectively. Substituting the above expressions into (3.8) and making the simpli-
fications it follows that

G32 = −8a5
1(a

3
1 − 2)(a6

1 + 22a3
1 − 105)

36 + a3
1(7 + a3

1)2

− i
(a7/2

1 (a3
1 − 2)(−20232 + 17714a3

1 + 93a6
1 + 180a9

1 + 17a12
1 )

36(36 + a3
1(7 + a3

1)2)
.

From the expression of G32 and (3.8) we have

l2(0, b0c , a1, b14) =
1
12

Re G32 = −2a5
1(a

3
1 − 2)(a6

1 + 22a3
1 − 105)

3(36 + a3
1(7 + a3

1)2)
.

The proof is complete. �

Remark 4.12. When a0 = 0 we have a1 > 0, since a1 − a0 > 0 in H1. So
l2(0, b0c , a1, b14) = 0 if and only if a1 = a11 = 3

√
2 or a1 = a12 = 3

√√
226− 11.

From Theorem 4.11 and Remark 4.12 it follows that the sets

L41 = {(b0, a1, b1) ∈ L4 : 0 < a1 <
3
√

2},

L42 = {(b0, a1, b1) ∈ L4 : 3
√

2 < a1 <
3
√√

226− 11},

L43 = {(b0, a1, b1) ∈ L4 : a1 >
3
√√

226− 11}

are arcs of the curve L4 where the second Lyapunov coefficient at E1 is nonzero.
More specifically, l2(0, b0c , a1, b1) < 0 on L41 ∪L43 and l2(0, b0c , a1, b1) > 0 on L42.
See Figure 2. At the points

P1 =
(
( 3
√

2)−1,
3
√

2, 0
)

,

P2 =
( √

226− 14
3
√√

226− 11
,

13−
√

226
3
√√

226− 11
,

3
√√

226− 11
)

the second Lyapunov coefficient at E1 vanishes.
From Theorem 4.11 it follows that the sign of the second Lyapunov coefficient

at E1 is negative on L41 ∪L43. Thus the equilibrium E1 is a weak attracting focus
(for the flow of system (2.2) restricted to the center manifold) and there are two
limit cycles, one stable and the other unstable, near the equilibrium E1 for suitable
values of the parameters. On the other hand, the sign of the second Lyapunov
coefficient at E1 is positive on L42. Thus the equilibrium E1 is a weak repelling
focus (for the flow of system (2.2) restricted to the center manifold) and there are
two limit cycles, one unstable and the other stable, near the equilibrium E1 for
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suitable values of the parameters. See the pertinent bifurcation diagrams in [8, p.
313].

In the next two theorems we study the stability of the equilibrium E1 for the
parameters at P1 and P2, respectively.

Theorem 4.13. Consider system (2.2) with parameter values at P1. Then the
second and third Lyapunov coefficients at E1 vanish, that is

l2(P1) = l3(P1) = 0.

Proof. Substituting a1 = a11 = 3
√

2 into (4.4) results l2(P1) = 0. The calculations
to find l3(P1) follow the same steps presented in the proof of Theorem 4.10 and will
be omitted here. �

Theorem 4.14. Consider system (2.2) with the parameter values at P2. Then the
second and third Lyapunov coefficients at E1 are l2(P2) = 0 and

l3(P2) =
1728

(√
226− 11

)7/3 (
1775502296303

√
226− 26691643307570

)
144

(
430054− 28843

√
226

)2 (
72 +

√
226

) > 0.

Proof. Substituting a1 = a12 into expression (4.4) results l2(P2) = 0. The value of
l3(P2) is obtained following the same steps as presented in the proof of Theorem
4.5 and will be omitted here. The value of l3(P2) is approximately 2.528833 > 0
with five decimal round-off coordinates. �

From Theorem 4.14 it follows that the equilibrium E1 is a weak repelling focus
for the flow of system (2.2) restricted to the center manifold and there are three
limit cycles, one stable and two unstable, near the equilibrium E1 for suitable values
of the parameters. See the pertinent bifurcation diagram in [17, 19].

4.3. Genesio system. Consider the system of quadratic differential equations

x′ = y,

y′ = z,

z′ = cz + by + ax + x2,

(4.5)

where (x, y, z) are the state variables and a < 0, b < 0, c < 0 are parameters.
System (4.5) is called Genesio system and was studied in [5] from the point of view
of its chaotic behavior. In [20] the Hopf bifurcations of system (4.5) were analyzed,
but there are errors in the signs of the first Lyapunov coefficient.

System (4.5) can be obtained from system (2.2) taking the following parameters
values

a1 = b1 = 0, a0 =
c
3
√

a
, b0 = − b

3
√

a2

and performing the following change of coordinates and a reparametrization in time

x =
X

a
, y = − Y

3
√

a4
, z =

Z
3
√

a5
, t = − 3

√
aτ.

Therefore, all the calculations and results obtained in subsections 4.1 and 4.2 for
system (2.2) can be applied to system (4.5). In what follows we will concentrate
our attention only in the Hopf bifurcations of system (4.5).
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It is simple to see that system (4.5) has a Hopf point at E0 = (0, 0, 0) for param-
eters on the surface

H = {a = ac = −bc, b < 0, c < 0}.
By the above change of coordinates and reparametrization in time, in order to study
the Hopf point at E0 = (0, 0, 0) for parameters in H of system (4.5) it is sufficient
to study the Hopf point at E0 = (0, 0, 0) for parameters in H00 of system (2.2).

The following corollary gives the corrected sign of the first Lyapunov coefficient
at E0 for parameters in H.

Corollary 4.15. Consider system (4.5) with parameters in H. Then the first
Lyapunov coefficient at E0 is negative and system (4.5) has a transversal Hopf
point at E0 for all parameters in H. More specifically, the Hopf point at E0 is stable
(weak attracting focus) and for each a < ac, but close to ac, there exists a stable
limit cycle near the unstable equilibrium point E0.

Proof. It is sufficient to study the sign of the first Lyapunov coefficient at E0 for
parameters in H00 of system (2.2). Now, the expression

l1(a0c , b0) = − 1 + 8b3
0

1 + 5b3
0 + 4b6

0

(4.6)

of this first Lyapunov coefficient follows directly from the general expression (4.1)
obtained in Theorem 4.1 taking into account a1 = b1 = 0. The transversality
condition is also a consequence of Theorem 4.1. As b0 > 0 then l1(a0c , b0) < 0 and
system (2.2) has a transversal Hopf point at E0 for all critical parameters. The
corollary is proved. �

4.4. Bogdanov-Takens bifurcation analysis at E∗. In this subsection we an-
alyze the Bogdanov-Takens bifurcation at the equilibrium point E∗ = (0, 0, 0) of
system (1.3) when the quadratic function h has only one real zero. Without loss of
generality, we consider h(x) = x2 + c0 at c0 = 0. Thus system (1.3) has the form

x′ = y,

y′ = z,

z′ = −
(
(a1x + a0)z + (b1x + b0)y + x2 + c0

)
.

(4.7)

We have the following theorem.

Theorem 4.16. System (4.7) undergoes a Bogdanov-Takens bifurcation at equilib-
rium point E∗ = (0, 0, 0) for parameter values b0 = c0 = 0, a0 6= 0, b1 6= 2/a0 and
a1 ∈ R.

Proof. It is simple to see that E∗ = (0, 0, 0) is the only equilibrium point of system
(4.7) when c0 = 0. Take the parameter values b0 = c0 = 0, a0 6= 0. The Jacobian
matrix of system (4.7) at E∗ is written as

A =

0 1 0
0 0 1
0 0 −a0


and its characteristic polynomial is p(λ) = λ2(λ + a0). Thus we have the following
eigenvalues λ1 = −a0 6= 0 and λ2,3 = 0. Consider the vectors

q0 =
( 1
a0

, 0, 0
)
, q1 =

(
0,

1
a0

, 0
)
, p0 =

(
a0, 0,− 1

a0

)
, p1 =

(
0, a0, 1

)
.
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It follows that

Aq0 = 0, Aq1 = q0, AT p1 = 0, AT p0 = p1,

〈q1, p1〉 = 〈q0, p0〉 = 1, 〈q1, p0〉 = 〈q0, p1〉 = 0.

The bilinear symmetric function is written as

B(x, y) = (0, 0,−a1(x1y3 + x3y1)− b1(x1y2 + x2y1)− 2x1y1) .

From (3.10) and (3.11) and the previous calculations we have

a =
1
2
〈p1, B(q0, q0)〉 =

−1
a2
0

6= 0,

b = 〈p0, B(q0, q0)〉+ 〈p1, B(q0, q1)〉 =
2− a0b1

a3
0

6= 0,

since b1 6= 2/a0. Therefore, conditions (BT1), (BT2) and (BT3) are satisfied. See
subsection 3.2. It remains to prove the transversality condition (BT4). Define the
map

G : (x, y, z, b0, c0) 7→ (f1, f2, f3, T, D)(x, y, z, b0, c0).
The transversality condition (BT4) is satisfied if the map G is regular at (0, 0, 0, 0, 0).
Now, the determinant of the derivative of G at (0, 0, 0, 0, 0) is

det DG(0, 0, 0, 0, 0) = 2 6= 0,

proving the regularity of G at (0, 0, 0, 0, 0). The theorem is proved. �

The number a is negative and, from the assumption b1 6= 2/a0, it follows that
b 6= 0. Therefore, the sign s of the product ab is determined by the sign of b1−2/a0.
Therefore it is possible to choose parameters for which s = 1 or s = −1. Recall
that the sign s determines the stability of the limit cycle that bifurcates from the
Hopf point or from the homoclinic loop. See subsection 3.2.

4.5. Fold-Hopf bifurcation analysis at E∗. In this subsection we analyze the
fold-Hopf bifurcation at the equilibrium point E∗ = (0, 0, 0) of system (1.3) when
the quadratic function h has only one real zero. Without loss of generality, we
consider h(x) = x2 + c0 at c0 = 0. Thus system (1.3) has the form presented in
(4.7). We have the following theorem.

Theorem 4.17. System (4.7) undergoes a fold-Hopf bifurcation at the equilibrium
point E∗ = (0, 0, 0) for parameter values

a0 = c0 = 0, b0 > 0, b1 6= 0, a1 /∈
{ 2

b0
,

1
b0

,
9

10b0
, 0

}
.

Proof. It is easy to see that E∗ = (0, 0, 0) is the only equilibrium point of system
(4.7) when c0 = 0. Take the parameter values a0 = c0 = 0, b0 > 0. The Jacobian
matrix of system (4.7) at E∗ is written as

A =

0 1 0
0 0 1
0 −b0 0


and its characteristic polynomial is p(λ) = λ(λ2 + b0). Thus we have the following
eigenvalues λ1 = 0 and λ2,3 = ±iω0, ω0 =

√
b0. Consider the vectors

q0 =
( 1
b0

, 0, 0
)
, q1 =

(
1, i

√
b0,−b0

)
, p0 =

(
b0, 0, 1

)
, p1 =

(
0,

i

2
√

b0

,
−1
2b0

)
.
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It follows that

Aq0 = 0, Aq1 = iω0q1, AT p0 = 0, AT p1 = −iω0p1,

〈p0, q0〉 = 〈p1, q1〉 = 1, 〈p1, q0〉 = 〈p0, q1〉 = 0.

The multilinear symmetric functions B and C are written as

B(x, y) = (0, 0,−a1(x1y3 + x3y1)− b1(x1y2 + x2y1)− 2x1y1) ,

C(x, y, z) = (0, 0, 0).

Performing the calculations, the numbers G200, G110 and G011 defined in (3.14),
(3.15), (3.16), respectively, are

G200 =
−2
b2
0

, G110 =
2− a1b0 + ib1

√
b0

2b2
0

, G011 = 2a1b0 − 2.

From (3.17), (3.18), (3.19) and (3.20), the complex vectors h200, h020, h110 and h011

can be written as

h200 =
(
0,− 2

b3
0

, 0
)
,

h020 =
( ia1b0 + b1

√
b0 − i

3b
3/2
0

,
−2a1b0 + 2ib1

√
b0 + 2

3b0
,−

4i
(
a1b0 − ib1

√
b0 − 1

)
3
√

b0

)
,

h110 =
(
−

3i
(
a1b0 − ib1

√
b0 − 2

)
4b

5/2
0

,
a1b0 − ib1

√
b0 − 2

4b2
0

,−
i
(
a1b0 − ib1

√
b0 − 2

)
4b

3/2
0

)
,

h011 =
(
0, 2a1 −

2
b0

, 0
)
.

Performing the calculations of the numbers G300 (3.21), G111 (3.22), G210 (3.23)
and G021 (3.24), respectively, we have

G300 =
6b1

b4
0

, G111 =
(3− 2a1b0)b1

b2
0

,

G210 = − i(a2
1b

2
0 + b2

1b0 + 4a1b0 − 12ib1

√
b0 − 12)

4b
9/2
0

,

G021 = −
i
(
5a2

1b
2
0 − b2

1b0 − 9ib1

√
b0 + a1(6ib

3/2
0 b1 − 7b0) + 2

)
6b

5/2
0

.

Therefore, the numbers b(0), c(0), d(0) defined in (3.25) are

b(0) = − 1
b2
0

, c(0) = 2(a1b0 − 1), d(0) =
−a1b0 + 3ib1

√
b0 + 2

2b2
0

,

while the number e(0) defined in (3.26) can be written as

e(0) =
a1(9− 10a1b0)b1

16b3
0(a1b0 − 1)

.

The number b(0) is negative and, from the assumption a1 6= 1/b0, it follows that
c(0) 6= 0. Therefore, the sign s of the product b(0)c(0) is determined by the sign of
a1b0 − 1. On the other hand, from our assumptions it follows that e(0) 6= 0 and its
sign can be determined easily if we fix some parameters. So (FH1) is satisfied.
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It remains to prove the transversality condition (FH2) which is equivalent to the
nonvanishing of detDG(x, y, z, a0, c0) evaluated at (x, y, z, a0, c0) = (0, 0, 0, 0, 0),
where the map G is defined by

G(x, y, z, a0, c0) = (f(x, y, z, a0, c0),Tr(fx(x, y, z, a0, c0)),det(fx(x, y, z, a0, c0))).

By simple calculations it follows that det DG(0, 0, 0, 0, 0) = 2 6= 0. Finally, from
(3.27) we have

θ(0) =
1
4

(a1b0 − 2) 6= 0.

The proof is complete. �

It is possible to choose parameters so that s = 1 and θ(0) < 0. For example,
taking 0 < a1 < 1/b0, b0 > 0, it follows that 0 < a1 < 2/b0 and therefore s = 1
and θ(0) < 0. Thus a nontrivial invariant set bifurcates from the equilibrium under
variation of the parameters. See [8, pp. 341–343].

5. Concluding remarks

This paper starts with the stability analysis which accounts for the characteri-
zation, in the space of parameters, of the structural as well as Lyapunov stability
of the equilibria of system (1.3). It continues, after a suitable choice of parame-
ters, with recounting the extension of the analysis to the first order, codimension
one stable points, happening on the complement of the curves L1, L2, L3 and L4

(see Figures 1 and 2) in the critical surfaces H00 and H10 where the criterium of
Lyapunov holds based on the calculation of the first Lyapunov coefficient. Here the
bifurcation analysis at the equilibrium points of system (2.2) is pushed forward to
the calculation of the second and third Lyapunov coefficients which make possible
the determination of the Lyapunov as well as higher order structural stability at
the equilibrium points E0 and E1. See Theorems 4.4, 4.5, 4.10, 4.11, 4.13, 4.14.

With the analytic data provided in the analysis performed here, the bifurcation
diagrams can be established along the points of the curves L1, L2, L3 and L4

where the first Lyapunov coefficient vanishes. These bifurcation diagrams provide
a qualitative synthesis of the dynamical conclusions achieved here at the parameter
values where system (2.2) achieves most complex equilibrium points.

Concerning with the vanishing of the Lyapunov coefficients in a quadratic system
(see Theorems 4.5 and 4.10) a question about the stability of the equilibria E0 and
E1 is formulated. See Question 4.6. Another question (see Question 4.7) about the
number of small limit cycles that can bifurcate from the equilibria E0 and E1, for
a suitable perturbation of the parameters, is also presented.

Two other codimension 2 bifurcations are also analyzed: Bogdanov-Takens and
fold-Hopf bifurcations. See Theorems 4.16 and 4.17. With the analytic data pro-
vided here, the bifurcation diagrams can be established leading to the existence of
global bifurcations such as homoclinic ones. There is also the possibility of torus
bifurcation.

Finally, we would like to stress that although this work ultimately focuses a
quadratic three dimensional system of differential equations (1.3), the method of
analysis and calculations explained in Section 4 can be adapted to the study of
other polynomial systems. A cubic three dimensional system analogous to (1.3)
will be the subject of a future work.
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E-mail address: lfmelo@unifei.edu.br, Tel 00-55-35-36291217, Fax 00-55-35-36291140


	1. Introduction
	2. Linear analysis of system (??)
	2.1. Linear analysis at E0
	2.2. Linear analysis at E1

	3. Generalities on Hopf, Bogdanov-Takens and fold-Hopf bifurcations
	3.1. Hopf bifurcations
	3.2. Bogdanov-Takens bifurcations
	3.3. Fold-Hopf bifurcations

	4. Bifurcation analysis of system (??)
	4.1. Hopf bifurcation analysis at E0
	4.2. Hopf bifurcation analysis at E1
	4.3. Genesio system
	4.4. Bogdanov-Takens bifurcation analysis at E
	4.5. Fold-Hopf bifurcation analysis at E

	5. Concluding remarks
	Acknowledgements

	References

