Electronic Journal of Differential Equations, Vol. 2010(2010), No. 164, pp. 1-7. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

# GROWTH OF SOLUTIONS TO HIGHER ORDER LINEAR HOMOGENEOUS DIFFERENTIAL EQUATIONS IN ANGULAR DOMAINS 

NAN WU


#### Abstract

In this article, we discuss the growth of meromorphic solutions to higher order homogeneous differential equations in some angular domains, instead of the whole complex plane.


## 1. Introduction and statement of main results

By a transcendental meromorphic function, we mean a function that is meromorphic on the whole complex plane, and is not a rational function; in other words, $\infty$ is an essential singular point. We assume the reader is familiar with the Nevanlinna theory of meromorphic functions and basic notation such as: Nevanlinna characteristic $T(r, f)$, integrated counting function $N(r, f)$, and proximity function $m(r, f)$, and the deficiency $\delta(a, f)$ of $f(z)$. For the details, see [4, 7]. The order $\lambda$ and the lower order $\mu$ are defined as follows:

$$
\lambda(f)=\limsup _{r \rightarrow \infty} \frac{\log T(r, f)}{\log r}, \quad \mu(f)=\liminf _{r \rightarrow \infty} \frac{\log T(r, f)}{\log r} .
$$

It is known the growth of meromorphic solutions of differential equations with meromorphic coefficients in the complex plane $\mathbb{C}$ attracted a lot research. In this article, we discuss the growth of meromorphic solutions of differential equations with transcendental meromorphic coefficients in a proper subset of $\mathbb{C}$. Let $f(z)$ be a meromorphic function in an angular region $\bar{\Omega}(\alpha, \beta)=\{z: \alpha \leq \arg z \leq \beta\}$. Recall the definition of Ahlfors-Shimizu characteristic in an angle (see [6]). Set

$$
\Omega(r)=\Omega(\alpha, \beta) \cap\{z: 1<|z|<r\}=\{z: \alpha<\arg z<\beta, 1<|z|<r\} .
$$

Define

$$
\mathcal{S}(r, \Omega, f)=\frac{1}{\pi} \iint_{\Omega(r)}\left(\frac{\left|f^{\prime}(z)\right|}{1+|f(z)|^{2}}\right)^{2} d \sigma, \quad \mathcal{T}(r, \Omega, f)=\int_{1}^{r} \frac{\mathcal{S}(t, \Omega, f)}{t} d t
$$

The order and lower order of $f$ on $\Omega$ are defined as follows

$$
\sigma_{\alpha, \beta}(f)=\limsup _{r \rightarrow \infty} \frac{\log \mathcal{T}(r, \Omega, f)}{\log r}, \quad \mu_{\alpha, \beta}(f)=\liminf _{r \rightarrow \infty} \frac{\log \mathcal{T}(r, \Omega, f)}{\log r}
$$

[^0]Remark 1.1. The order $\sigma_{\alpha, \beta}(f)$ of a meormorphic function $f$ on an angular region here we give is reasonable, because $\mathcal{T}(r, \mathbb{C}, f)=T(r, f)+O(1)$.

Nevanlinna theory on the angular domain plays an important role in value distribution of meromrorphic functions. Let us recall the following terms [3]:

$$
\begin{gathered}
A_{\alpha, \beta}(r, f)=\frac{\omega}{\pi} \int_{1}^{r}\left(\frac{1}{t^{\omega}}-\frac{t^{\omega}}{r^{2 \omega}}\right)\left\{\log ^{+}\left|f\left(t e^{i \alpha}\right)\right|+\log ^{+}\left|f\left(t e^{i \beta}\right)\right|\right\} \frac{d t}{t} \\
B_{\alpha, \beta}(r, f)=\frac{2 \omega}{\pi r^{\omega}} \int_{\alpha}^{\beta} \log ^{+}\left|f\left(r e^{i \theta}\right)\right| \sin \omega(\theta-\alpha) d \theta \\
C_{\alpha, \beta}(r, f)=2 \sum_{1<\left|b_{n}\right|<r}\left(\frac{1}{\left|b_{n}\right|^{\omega}}-\frac{\left|b_{n}\right|^{\omega}}{r^{2 \omega}}\right) \sin \omega\left(\theta_{n}-\alpha\right)
\end{gathered}
$$

where $\omega=\pi /(\beta-\alpha)$, and $b_{n}=\left|b_{n}\right| e^{i \theta_{n}}$ is a pole of $f(z)$ in the angular domain $\Omega(\alpha, \beta)$, appears according to its multiplicity. The Nevanlinna's angular characteristic is defined as follows:

$$
S_{\alpha, \beta}(r, f)=A_{\alpha, \beta}(r, f)+B_{\alpha, \beta}(r, f)+C_{\alpha, \beta}(r, f)
$$

Some articles define the order and lower order of $f$ on $\Omega$ as:

$$
\bar{\sigma}_{\alpha, \beta}(f)=\limsup _{r \rightarrow \infty} \frac{\log S_{\alpha, \beta}(r, f)}{\log r}, \quad \bar{\mu}_{\alpha, \beta}(f)=\liminf _{r \rightarrow \infty} \frac{\log S_{\alpha, \beta}(r, f)}{\log r} .
$$

According to the inequality

$$
S_{\alpha, \beta}(r, f) \leq 2 \omega^{2} \frac{\mathcal{T}(r, \Omega, f)}{r^{\omega}}+\omega^{3} \int_{1}^{r} \frac{\mathcal{T}(t, \Omega, f)}{t^{\omega+1}} d t+O(1)
$$

showed by Zheng [13, Theorem 2.4.7], if $\sigma_{\alpha, \beta}(r, f)<\infty$, then $\bar{\sigma}_{\alpha, \beta}(r, f)<\infty$.
We consider $q$ pairs of real numbers $\left\{\alpha_{j}, \beta_{j}\right\}$ such that

$$
\begin{equation*}
-\pi \leq \alpha_{1}<\beta_{1} \leq \alpha_{2}<\beta_{2} \leq \ldots \alpha_{q}<\beta_{q} \leq \pi \tag{1.1}
\end{equation*}
$$

and the angular domains $X=\cup_{j=1}^{q}\left\{z: \alpha_{j} \leq \arg z \leq \beta_{j}\right\}$. For a function $f$ meromorphic in the complex plane $\mathbb{C}$, we define the order of $f$ on $X$ as

$$
\sigma_{X}(f)=\limsup _{r \rightarrow \infty} \frac{\log \mathcal{T}(r, X, f)}{\log r}
$$

It is obvious that $\sigma_{\alpha_{j}, \beta_{j}}(f) \leq \sigma_{X}(f) \leq \sum_{j=1}^{q} \sigma_{\alpha_{j}, \beta_{j}}(f) . j=1,2, \ldots, q$. And $\sigma_{X}(f)=+\infty$ if and only if there exists at least one $1 \leq j_{0} \leq q$ such that $\sigma_{\alpha_{j_{0}}, \beta_{j_{0}}}(f)=+\infty$. We will establish the following results.
Theorem 1.2. Let $A_{0}(z)$ be a meromorphic function in $\mathbb{C}$ with finite lower order $\mu<\infty$ and nonzero order $0<\lambda \leq \infty$ and $\delta=\delta\left(\infty, A_{0}\right)>0$. For $q$ pair of real numbers $\left\{\alpha_{j}, \beta_{j}\right\}$ satisfying (1.1) and

$$
\begin{equation*}
\sum_{j=1}^{q}\left(\alpha_{j+1}-\beta_{j}\right)<\frac{4}{\sigma} \arcsin \sqrt{\delta / 2} \tag{1.2}
\end{equation*}
$$

where $\sigma>0$ with $\mu \leq \sigma \leq \lambda$. If $A_{j}(z)(j=1,2, \ldots, n)$ are meromorphic functions in $\mathbb{C}$ with $T\left(r, A_{j}\right)=o\left(T\left(r, A_{0}\right)\right)$, then every solution $f \not \equiv 0$ to the equation

$$
A_{n} f^{(n)}+A_{n-1} f^{(n-1)}+\cdots+A_{0} f=0
$$

has the order $\sigma_{X}(f)=+\infty$ in $X=\cup_{j=1}^{q}\left\{z: \alpha_{j} \leq \arg z \leq \beta_{j}\right\}$.

If we remove the condition $\mu\left(A_{0}\right)<\infty$ in Theorem 1.2 we can establish the following result.

Theorem 1.3. Let $A_{0}(z)$ be a meromorphic function in $\mathbb{C}$ with nonzero order $0<\lambda \leq \infty$ and $\delta\left(\infty, A_{0}\right)>0$. Suppose that for $q$ directions $\arg z=\alpha_{j}(1 \leq j \leq q)$, satisfying

$$
-\pi \leq \alpha_{1}<\alpha_{2}<\cdots<\alpha_{q}<\pi, \alpha_{q+1}=\alpha_{1}+2 \pi
$$

$A_{j}(z), j=1,2, \ldots, n$, are meromorphic functions in $\mathbb{C}$ with finite lower order and $T\left(r, A_{j}\right)=o\left(T\left(r, A_{0}\right)\right)$. Then every solution $f \not \equiv 0$ to the equation

$$
A_{n} f^{(n)}+A_{n-1} f^{(n-1)}+\cdots+A_{0} f=0
$$

has order $\sigma_{X}(f)=+\infty$ in $X=\mathbb{C} \backslash \cup_{j=1}^{q}\left\{z: \arg z=\alpha_{j}\right\}$.
The method in this paper was firstly used by Zheng [14] to investigate the growth of transcendental meromorphic functions with radially distributed values.

## 2. Some auxiliary Results

To prove the theorems, we give some lemmas. The following result is from [12, 13, 14].

Lemma 2.1. Let $f(z)$ be a transcendental meromorphic function with lower order $\mu<\infty$ and order $0<\lambda \leq \infty$, then for any positive number $\mu \leq \sigma \leq \lambda$ and any set $E$ with finite measure, there exist a sequence $\left\{r_{n}\right\}$, such that
(1) $r_{n} \notin E, \lim _{n \rightarrow \infty} \frac{r_{n}}{n}=\infty$;
(2) $\liminf _{n \rightarrow \infty} \frac{\log T\left(r_{n}, f\right)}{\log r_{n}} \geq \sigma$;
(3) $T(t, f)<(1+o(1))\left(\frac{2 t}{r_{n}}\right)^{\sigma} T\left(r_{n} / 2, f\right), t \in\left[r_{n} / n, n r_{n}\right]$;
(4) $T(t, f) / t^{\sigma-\varepsilon_{n}} \leq 2^{\sigma+1} T\left(r_{n}, f\right) / r_{n}^{\sigma-\varepsilon_{n}}, 1 \leq t \leq n r_{n}, \varepsilon_{n}=[\log n]^{-2}$.

We recall that $\left\{r_{n}\right\}$ is called the Pólya peaks of order $\sigma$ outside $E$. Given a positive function $\Lambda(r)$ satisfying $\lim _{r \rightarrow \infty} \Lambda(r)=0$. For $r>0$ and $a \in \mathbb{C}$, define

$$
D_{\Lambda}(r, a)=\left\{\theta \in[-\pi, \pi): \log ^{+} \frac{1}{\left|f\left(r e^{i \theta}\right)-a\right|}>\Lambda(r) T(r, f)\right\}
$$

and

$$
D_{\Lambda}(r, \infty)=\left\{\theta \in[-\pi, \pi): \log ^{+}\left|f\left(r e^{i \theta}\right)\right|>\Lambda(r) T(r, f)\right\}
$$

The following result is called the spread relation, which was conjectured by Edrei [2] and proved by Baernstein [1].

Lemma 2.2. Let $f(z)$ be transcendental and meromorphic in $\mathbb{C}$ with the finite lower order $\mu<\infty$ and the positive order $0<\lambda \leq \infty$ and has one deficient values $a \in \widehat{\mathbb{C}}=\mathbb{C} \cup\{\infty\}$. Then for any sequence of Pólya peaks $\left\{r_{n}\right\}$ of order $\sigma>0, \mu \leq \sigma \leq \lambda$ and any positive function $\Lambda(r) \rightarrow 0$ as $r \rightarrow+\infty$, we have

$$
\liminf _{n \rightarrow \infty} \operatorname{meas} D_{\Lambda}\left(r_{n}, a\right) \geq \min \left\{2 \pi, \frac{4}{\sigma} \arcsin \sqrt{\delta(a, f) / 2}\right\}
$$

To make it clearly, we give the definition of $\mathbb{R}$-set on the complex plane $\mathbb{C}$.
Definition 2.3. Let $B\left(z_{n}, r_{n}\right)=\left\{z:\left|z-z_{n}\right|<r_{n}\right\}$ be an open disk on the complex plane. If $\sum_{n=1}^{\infty} r_{n}<\infty, \cup_{n=1}^{\infty} B\left(z_{n}, r_{n}\right)$ is called an $\mathbb{R}$-set.

Lemma 2.4 ( $[8)$. Let $f$ be a meromorphic function on the angular region $\bar{\Omega}(\alpha, \beta)$ with finite order $\rho$, let $\Gamma=\left\{\left(n_{1}, m_{1}\right),\left(n_{2}, m_{2}\right), \ldots,\left(n_{j}, m_{j}\right)\right\}$ denote a finite set of distinct pair of integers which satisfying $n_{i}>m_{i} \geq 0$ for $i=1,2, \ldots, j$, and let $\varepsilon>0$ and $\delta>0$ be given constants. Then there exists $K>0$ depending only on $f, \varepsilon, \delta$ such that

$$
\begin{equation*}
\left|\frac{f^{(n)}(z)}{f^{(m)}(z)}\right|<K|z|^{(n-m)\left(k_{\delta}+2 \rho+1+\varepsilon\right)}\left(\sin k_{\delta}(\varphi-\alpha-\delta)\right)^{-2^{n-m}} \tag{2.1}
\end{equation*}
$$

for all $(n, m) \in \Gamma$ and all $z=r e^{i \varphi} \in \Omega(\alpha+\delta, \beta-\delta)$ except for a $\mathbb{R}$-set, that is, a countable union of discs whose radii have finite sum, where $k_{\delta}=\frac{\pi}{\beta-\alpha-2 \delta}$.

To prove Theorem 1.3, we need a result from Edrei 2].
Lemma 2.5. Let $f(z)$ be a meromorphic function with $\delta=\delta(\infty, f)>0$. Then given $\varepsilon>0$, we have

$$
\text { meas } E(r, f)>\frac{1}{T^{\varepsilon}(r, f)[\log r]^{1+\varepsilon}}, r \notin F
$$

where

$$
E(r, f)=\left\{\theta \in[-\pi, \pi): \log ^{+}\left|f\left(r e^{i \theta}\right)\right|>\frac{\delta}{4} T(r, f)\right\}
$$

and $F$ is a set of positive real numbers with finite logarithmic measure depending on $\varepsilon$.

## 3. Proof of the Theorems

Proof of Theorem 1.2. We suppose that there exists a nontrival meromorphic solution $f$ such that $\sigma_{\alpha_{j}, \beta_{j}}(f)<+\infty, j=1,2, \ldots, q$. In view of Lemma 2.4. there exists a constant $M>0$ not depending on $z$ such that

$$
\left|\frac{f^{(j)}(z)}{f(z)}\right|<|z|^{M}, \quad j=1,2, \ldots, n .
$$

for all $z \in \Omega\left(\alpha_{j}+\varepsilon, \beta_{j}-\varepsilon\right), j=1,2, \ldots, q$, except for a $\mathbb{R}$-set $E$. For $E$, we can define a set $F=\{r>0 \mid \exists z \in E$, s.t. $|z|=r\}$ thus
meas $F<\infty$.
(I) $\lambda\left(A_{0}\right)>\mu\left(A_{0}\right)$. Then $\lambda\left(A_{0}\right)>\sigma \geq \mu\left(A_{0}\right)$. By the inequality (1.2), we can take a real number $\varepsilon>0$ such that

$$
\begin{equation*}
\sum_{j=1}^{q}\left(\alpha_{j+1}-\beta_{j}+2 \varepsilon\right)+2 \varepsilon<\frac{4}{\sigma+2 \varepsilon} \arcsin \sqrt{\delta / 2} \tag{3.1}
\end{equation*}
$$

where $\alpha_{q+1}=2 \pi+\alpha_{1}$, and

$$
\lambda\left(A_{0}\right)>\sigma+2 \varepsilon>\mu\left(A_{0}\right)
$$

Applying Lemma 2.1 to $A(z)$ gives the existence of the Pólya peak $\left\{r_{n}\right\}$ of order $\sigma+2 \varepsilon$ of $A(z)$ such that $r_{n} \notin F$, and then from Lemma 2.2 for sufficiently large $n$ we have

$$
\begin{equation*}
\text { meas } D\left(r_{n}, \infty\right)>\frac{4}{\sigma+2 \varepsilon} \arcsin \sqrt{\delta / 2}-\varepsilon \tag{3.2}
\end{equation*}
$$

We can assume for all the $n$, above holds. Set

$$
K:=\operatorname{meas}\left(D\left(r_{n}, \infty\right) \cap \cup_{j=1}^{q}\left(\alpha_{j}+\varepsilon, \beta_{j}-\varepsilon\right)\right)
$$

Then from (3.1) and (3.2 it follows that

$$
\begin{aligned}
K & \geq \operatorname{meas}\left(D\left(r_{n}, \infty\right)\right)-\operatorname{meas}\left([0,2 \pi) \backslash \cup_{j=1}^{q}\left(\alpha_{j}+\varepsilon, \beta_{j}-\varepsilon\right)\right) \\
& =\operatorname{meas}\left(D\left(r_{n}, \infty\right)\right)-\operatorname{meas}\left(\cup_{j=1}^{q}\left(\beta_{j}-\varepsilon, \alpha_{j+1}+\varepsilon\right)\right) \\
& =\operatorname{meas}\left(D\left(r_{n}, \infty\right)\right)-\sum_{j=1}^{q}\left(\alpha_{j+1}-\beta_{j}+2 \varepsilon\right)>\varepsilon>0
\end{aligned}
$$

It is easy to see that there exists a $j_{0}$ such that for infinitely many $n$, we have

$$
\begin{equation*}
\operatorname{meas}\left(D\left(r_{n}, \infty\right) \cap\left(\alpha_{j_{0}}+\varepsilon, \beta_{j_{0}}-\varepsilon\right)\right)>\frac{K}{q} \tag{3.3}
\end{equation*}
$$

We can assume for all the $n, 3.3$ holds. We define a real function by

$$
\Lambda(r)^{2}=\max \left\{\frac{T\left(r_{n}, A_{j}\right)}{T\left(r_{n}, A_{0}\right)}, \frac{\log r_{n}}{T\left(r_{n}, A_{0}\right)} ; j=1,2, \ldots, n\right\}
$$

for $r_{n} \leq r<r_{n+1}$. Obviously $\lim _{r \rightarrow \infty} \Lambda(r)=0$ and

$$
\operatorname{meas} D_{\Lambda}^{\prime}\left(r_{n}\right)=\operatorname{meas}\left\{\theta: r_{n} e^{i \theta} \in E\right\}=0
$$

Set

$$
D_{n}=\left(\alpha_{j_{0}}+\varepsilon, \beta_{j_{0}}-\varepsilon\right) \backslash D_{\Lambda}^{\prime}\left(r_{n}\right), \quad E_{n}=D\left(r_{n}, \infty\right) \cap\left(\alpha_{j_{0}}+\varepsilon, \beta_{j_{0}}-\varepsilon\right)
$$

Thus from the definition of $D(r, \infty)$ it follows that

$$
\begin{align*}
\int_{\alpha_{j_{0}}+\varepsilon}^{\beta_{j_{0}}-\varepsilon} \log ^{+}\left|A_{0}\left(r_{n} e^{i \theta}\right)\right| d \theta & \geq \int_{E_{n}} \log ^{+}\left|A_{0}\left(r_{n} e^{i \theta}\right)\right| d \theta \\
& \geq \operatorname{meas}\left(E_{n}\right) \Lambda\left(r_{n}\right) T\left(r_{n}, A_{0}\right)  \tag{3.4}\\
& >\frac{K}{q} \Lambda\left(r_{n}\right) T\left(r_{n}, A_{0}\right)
\end{align*}
$$

Thus, we have

$$
\begin{align*}
& \int_{\alpha_{j_{0}}+\varepsilon}^{\beta_{j_{0}}-\varepsilon} \log ^{+}\left|A_{0}\left(r_{n} e^{i \theta}\right)\right| d \theta \\
& \leq \int_{\alpha_{j_{0}}+\varepsilon}^{\beta_{j_{0}-\varepsilon}} \sum_{j=1}^{n}\left(\log ^{+}\left|\frac{f^{(j)}\left(r_{n} e^{i \theta}\right)}{f\left(r_{n} e^{i \theta}\right)}\right|+\log ^{+}\left|A_{j}\left(r_{n} e^{i \theta}\right)\right|\right) d \theta \\
& =\left(\int_{D_{\Lambda}^{\prime}\left(r_{n}\right)}+\int_{D_{n}}\right) \sum_{j=1}^{n}\left(\log ^{+}\left|\frac{f^{(j)}\left(r_{n} e^{i \theta}\right)}{f\left(r_{n} e^{i \theta}\right)}\right|+\log ^{+}\left|A_{j}\left(r_{n} e^{i \theta}\right)\right|\right) d \theta  \tag{3.5}\\
& \leq \int_{\alpha_{j_{0}}+\varepsilon}^{\beta_{j_{0}}-\varepsilon} \sum_{j=1}^{n} \log ^{+}\left|A_{j}\left(r_{n} e^{i \theta}\right)\right| d \theta+O\left(\log r_{n}\right) \\
& \leq \sum_{j=1}^{n} T\left(r_{n}, A_{j}\right)+O\left(\log r_{n}\right) \\
& \leq \Lambda^{2}\left(r_{n}\right) T\left(r_{n}, A_{0}\right)
\end{align*}
$$

Therefore,

$$
\frac{K}{q} \Lambda\left(r_{n}\right)<\Lambda^{2}\left(r_{n}\right) .
$$

This contradicts that $\Lambda(r) \rightarrow 0$.
(II) $\lambda\left(A_{0}\right)=\mu\left(A_{0}\right)$. Then $\lambda\left(A_{0}\right)=\sigma=\mu\left(A_{0}\right)$. By the same argument as in (I) with all the $\sigma+2 \varepsilon$ replaced by $\sigma$, we can derive a contradiction. The proof is complete.

Proof of Theorem 1.3. Applying Lemma 2.1 to $A_{0}(z)$ confirms the existence of a sequence $\left\{r_{n}\right\}$ of positive numbers such that $r_{n} \notin E$ and

$$
\begin{equation*}
\operatorname{meas} E\left(r_{n}, A_{0}\right)>\frac{1}{T^{\varepsilon}\left(r_{n}, A_{0}\right)\left[\log r_{n}\right]^{1+\varepsilon}} \tag{3.6}
\end{equation*}
$$

where $E\left(r_{n}, A_{0}\right)$ is defined as in Lemma 2.5. Set

$$
\varepsilon_{n}=\frac{1}{2 q+1} \frac{1}{T^{\varepsilon}\left(r_{n}, A_{0}\right)\left[\log r_{n}\right]^{1+\varepsilon}}
$$

Then for (3.6) it follows that

$$
\begin{aligned}
& \operatorname{meas}\left(E\left(r_{n}, A_{0}\right) \cap \cup_{j=1}^{q}\left(\alpha_{j}+\varepsilon_{n}, \alpha_{j+1}-\varepsilon_{n}\right)\right) \\
& \geq \operatorname{meas} E\left(r_{n}, A_{0}\right)-\operatorname{meas}\left(\cup_{j=1}^{q}\left(\alpha_{j}+\varepsilon_{n}, \alpha_{j+1}-\varepsilon_{n}\right)\right) \\
& \geq(2 q+1) \varepsilon_{n}-2 q \varepsilon_{n}=\varepsilon_{n}>0 .
\end{aligned}
$$

so that there exists a $j$ such that for infinitely many $n$, we have

$$
\begin{equation*}
\text { meas } E_{n}>\frac{\varepsilon_{n}}{q} \tag{3.7}
\end{equation*}
$$

where $E_{n}=E\left(r_{n}, A_{0}\right) \cap\left(\alpha_{j}+\varepsilon_{n}, \alpha_{j+1}-\varepsilon_{n}\right)$. We can assume that 3.7 holds for all the $n$. Thus

$$
\begin{align*}
\int_{\alpha_{j}+\varepsilon_{n}}^{\alpha_{j+1}-\varepsilon_{n}} \log ^{+}\left|A_{0}\left(r_{n} e^{i \theta}\right)\right| d \theta & \geq \int_{E_{n}} \log ^{+}\left|A_{0}\left(r_{n} e^{i \theta}\right)\right| d \theta \\
& \geq \operatorname{meas}\left(E_{n}\right) \frac{\delta}{4} T\left(r_{n}, A_{0}\right)  \tag{3.8}\\
& \geq \frac{\delta \varepsilon_{n}}{4 q} T\left(r_{n}, A_{0}\right)
\end{align*}
$$

On the other hand,

$$
\begin{equation*}
\int_{\alpha_{j}+\varepsilon_{n}}^{\alpha_{j+1}-\varepsilon_{n}} \log ^{+}\left|A_{0}\left(r_{n} e^{i \theta}\right)\right| d \theta<\sum_{j=1}^{n} T\left(r_{n}, A_{j}\right)+O\left(\log r_{n}\right) \tag{3.9}
\end{equation*}
$$

Combining (3.8) and (3.9) gives

$$
\varepsilon_{n} T\left(r_{n}, A_{0}\right) \leq \frac{4 q}{\delta} \sum_{j=1}^{n} T\left(r_{n}, A_{j}\right)+O\left(\log r_{n}\right)
$$

so that

$$
T^{1-\varepsilon}\left(r_{n}, A_{0}\right) \leq \frac{4 q(2 q+1)}{\delta}\left[\log r_{n}\right]^{1+\varepsilon} \sum_{j=1}^{n} T\left(r_{n}, A_{j}\right)+O\left(\log ^{2+\varepsilon} r_{n}\right)
$$

we have $\mu\left(A_{0}\right) \leq \max _{1 \leq j \leq q}\left(\mu\left(A_{j}\right)\right) /(1-\varepsilon)$. By the same method as in Theorem 1.2 , we obtain a contradiction, which completes the proof.

## References

[1] A. Baerstein; Proof of Edrei's spead conjecture, Proc. London Math. Soc, 26 (1973), pp. 418-434.
2] A. Edrei; Sums of deficiencies of meromorphic functions, J. Analyse Math., I. 14 (1965), pp. 79-107; II. 19 (1967), pp. 53-74.
[3] A. A. Goldberg and I. V. Ostrovskii; The distribution of values of meromorphic functions (in Russian), Izdat. Nauk. Moscow 1970
[4] W. K. Hayman; Meromorphic Functions, Oxford, 1964.
[5] I. Laine; Nevanlinna Theory and Complex Differential Equations, W. de Gruyter, Berlin, 1993.
[6] M. Tsuji; Potential theory in modern function theory, Maruzen Co. LTD Tokyo, 1959.
[7] L. Yang; Value Distribution And New Research, Springer-Verlag, Berlin, 1993.
[8] S. J. Wu; Estimates for the logarithmic derivative or a meromorphic function in an angle, and their application. Proceeding of international conference on complex analysis at the Nankai Institute of Mathematics, 1992, pp. 235-241.
[9] S. J. Wu; On the growth of solution of second order linear differential equation in an angle. Complex Variable., 24 (1994), pp. 241-248.
[10] J. F. Xu, H. X. Yi; Solutions of higher order linear differential equations in an angle, Applied Mathematics Letters, Volume 22, Issue 4, April 2009, pp. 484-489.
[11] J. F. Xu, H. X. Yi; On uniqueness of meromorphic functions with shared four values in some angular domains, Bull. Malays. Math. Sci. Soc., (2) 31(2008), pp. 57-65.
[12] L. Yang; Borel directions of meromorphic functions in an angular domain, Science in China, Math. Series(I) (1979), pp. 149-163.
[13] J. H. Zheng; Value Distribution of Meromorphic Functions, Springer-Verlag, Berlin, 2010.
[14] J. H. Zheng; On transcendental meromorphic functions with radially distributed values, Sci. in China Ser. A. Math., 47. 3 (2004), pp. 401-416.
[15] J. H. Zheng; On uniqueness of meromorphic functions with shared values in some angular domains, Canad J. Math., 47 (2004), pp. 152-160.
[16] J. H. Zheng; On uniqueness of meromorphic functions with shared values in one angular domains, Complex variables, 48 (2003), pp. 777-785.

Nan Wu
Department of Mathematical Sciences, Tsinghua University, Beijing, 100084, China
E-mail address: wunan07@gmail.com


[^0]:    2000 Mathematics Subject Classification. 30D10, 30D20, 30B10, 34M05.
    Key words and phrases. Meromorphic solutions; Nevanlinna theory; order.
    (C) 2010 Texas State University - San Marcos.

    Submitted February 23, 2010. Published November 17, 2010.
    Supported by grant 10871108 from the NSF of China.

