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CONTINUABILITY AND BOUNDEDNESS OF SOLUTIONS TO
NONLINEAR SECOND-ORDER DIFFERENTIAL EQUATIONS

LIANWEN WANG, RHONDA MCKEE, LARYSA USYK

Abstract. Continuability, boundedness, and monotonicity of solutions for a
class of second-order nonlinear differential equations are discussed. It is proved
that all solutions are eventually monotonic and can be extended to infinity
under some natural assumptions. Moreover, necessary and sufficient conditions
for boundedness of all solutions are established. The results obtained have
extended and improved some analogous existing ones.

1. Introduction

In this article we consider the continuability, boundedness, and monotonicity of
solutions for the second-order nonlinear differential equation

[p(t)h(x(t))f(x′(t))]′ = q(t)g(x(t)), t ≥ a. (1.1)

The behavior, such as continuability, boundedness, monotonicity, osciallation, and
asymptoticity, of solutions to second-order differential equations

[p(t)x′(t)]′ = q(t)g(x(t)), t ≥ a, (1.2)

[p(t)h(x(t))x′(t)]′ = q(t)g(x(t)), t ≥ a, (1.3)

both are special cases of (1.1) with f(r) = r, has been extensively discussed by
many authors; see, e.g., [7, 8, 9, 15, 18] and references therein. In the case of
f(r) = Φp(r) = |r|p−2r, p > 1, the so-called p-Laplacian operator, that are for
half-linear equations

[p(t)Φp(x′(t))]′ = q(t)Φp(x(t)), t ≥ a, (1.4)

Emden-Fowler type equations

[p(t)Φp(x′(t))]′ = q(t)Φβ(x(t)), t ≥ a, (1.5)

and more general equations

[p(t)Φp(x′(t))]′ = q(t)g(x(t)), t ≥ a. (1.6)

A considerable effort has been devoted to the study of continuability, boundedness,
monotonicity, and asymptoticity of solutions due to their various applications; see
for example [1, 3, 4, 5, 6, 10, 11, 12, 14, 16, 17, 19].
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Wang [20] discussed properties of solutions for (1.1) with general increasing func-
tions f in the case h ≡ 1; the results in [20] extended and improved many results
obtained for (1.4), (1.5), and (1.6). However, we discovered that nontrivial func-
tions h play an important role to the continuability, boundedness, and monotonicity
for solutions of (1.1). The main contribution of this article is to address the role
of the functions h in the discussion of the continuability and boundedness for so-
lutions of (1.1); see Theorems 2.3, 2.4, and 4.1. For example, from [13] we know
that the assumption (H3) (see Section 2) can not be omitted for the continuability
and boundedness of solutions to Emden-Fowler equation (1.5), but (H3) does not
hold in the case β > p. This situation can be improved by introducing a nontrivial
function h in the differential operator; consider a simple differential equation

[t2h(x)x′]′ =
1
t2

Φ3(x), t ≥ 1. (1.7)

we can not use the results in [13] to decide the continuability and boundedness of
all solutions for (1.7) in the case h ≡ 1 since (H3) is obviously invalid. However,
with h(r) = r2 + 1, (H3) holds since∫ ∞

1

dr

f−1(z(r))
=

∫ ∞

1

(r2 + 1)dr

r3
= ∞

and ∫ −1

−∞

dr

f−1(z(r))
= −

∫ −1

−∞

(r2 + 1)dr

r3
= −∞.

By Theorem 2.3 all solutions of (1.7) can be extended to [1,∞). Moreover, it is
easy to verify that

J1 =
∫ ∞

1

( 1
t2

∫ t

1

1
s2

ds
)

dt < ∞, J2 = −
∫ ∞

1

( 1
t2

∫ t

1

1
s2

ds
)

dt > −∞.

It follows from Theorem 4.1 that all solutions of (1.7) are bounded on [1,∞).
The results obtained in this article generalize, complement, or improve some

analogous ones existing in the literature. By solution of (1.1) we mean a differ-
entiable function x such that p(t)h(x(t))f(x′(t)) is differentiable and satisfies (1.1)
on [a, αx), αx ≤ ∞, the maximum existence interval of x. A solution x of (1.1) is
said to be eventually monotonic if there exists a t1 ≥ a such that it is monotonic
on [t1, αx).

In this article we consider only nontrivial solutions of (1.1), in other words,
solutions that are not identically equal to zero on their existence interval.

Throughout this article, we assume that
(H) – p(t), q(t) : [a,∞) → R are continuous and p(t) > 0 and q(t) > 0;

– h(r) : R → R is continuous and h(r) > 0;
– g(r) : R → R is continuous and rg(r) > 0 for r 6= 0;
– f(r) : R → R is continuous, increasing, and rf(r) > 0 for r 6= 0.

(H1) There exists a constant M1 > 0 such that

|f−1(uv)| ≤ M1|f−1(u)||f−1(v)|, ∀u, v ∈ R.

Remark 1.1. Assumption (H1) holds for f(r) = Φp(r) with M1 = 1. In fact, we
have

f−1(uv) = f−1(u)f−1(v), ∀u, v ∈ R. (1.8)
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Remark 1.2. Let

f(r) =

{
r, |r| ≤ 1,
3
√

r, |r| > 1.

Then

f−1(r) =

{
r, |r| ≤ 1,

r3, |r| > 1.

It is easy to see that (H1) holds with M1 = 1, but (1.8) does not hold in this case.

We will prove that the monotonicity and boundedness properties of solutions
to (1.1) can be characterized by means of the convergence of the following two
integrals

J1 :=
∫ ∞

a

f−1
( 1

p(t)

∫ t

a

q(s)ds
)
dt,

J2 :=
∫ ∞

a

f−1
(
− 1

p(t)

∫ t

a

q(s)ds
)
dt.

This article is organized as follows: Section 1 is the introduction. The back-
ground, motivation, and the main contributions of the paper are briefly addressed
in this section. Continuability of solutions is discussed in Section 2. Section 3 deals
with the existence of class A and class B solutions. In Section 4, necessary and
sufficient conditions for boundedness of all solutions are established. Also, several
examples and remarks are provided in this section to compare our results with some
known results in the literature.

2. Continuability of Solutions

In this section we discuss the continuability of solutions to (1.1). First of all, we
give two lemmas that will be used later on. The first lemma is a minor extension
of Proposition 1 in [15].

Lemma 2.1. If x(·) is a solution of (1.1) with maximal existence interval [a, αx),
0 < αx ≤ ∞, then x(·) is eventually monotonic.

Proof. Let F (t) = p(t)h(x(t))f(x′(t))x(t). Note that F (t) is continuous on [a, αx)
and F ′(t) = q(t)g(x(t))x(t) + p(t)h(x(t))f(x′(t))x′(t) ≥ 0, then F (t) is nondecreas-
ing on [a, αx). The rest part of the proof is omitted. �

Lemma 2.2. If a solution x(·) of (1.1) is bounded on every finite subinterval of
[a, αx), the maximal existence interval, then αx = ∞.

Proof. Assume that αx is a finite number. By Lemma 2.1 there exists a b ≥ a
such that x(t) is monotone on [b, αx). We assume x(t) > 0, t ∈ [b, αx), without
loss of generality. Since x(t) is bounded on any finite subinterval of [b, αx), then
limt→αx− x(t) exists finitely and limt→αx− x′(t) = ∞. Integrating (1.1) from a to t
implies

p(t)h(x(t))f(x′(t)) = p(a)h(x(a))f(x′(a)) +
∫ t

a

q(s)g(x(s))ds.
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Hence,

lim
t→αx−

p(t)h(x(t))f(x′(t)) = p(a)h(x(a))f(x′(a)) +
∫ αx

a

q(s)g(x(s))ds

:= A ∈ (−∞,∞).

Define H(t) = p(t)h(x(t))f(x′(t)). Then

x′(t) = f−1
( H(t)

p(t)h(x(t))

)
.

The continuity of f−1(r) implies

lim
t→αx−

x′(t) = f−1
( A

p(αx)h(x(αx))

)
< ∞.

This is a contradiction. Therefore, αx = ∞ and the proof is complete. �

It follows from Lemmas 2.1 and 2.2 that all solutions of (1.1) except the trivial
solution can be divided into two classes:

A = {x solution of (1.1) defined on [a, αx) : x(t)x′(t) > 0

in a left neighborhood of αx},
B = {x solution of (1.1) defined on [a,∞) : x(t)x′(t) < 0 for t ≥ a}.

It is well-known that for some equations of type (1.1), class A solutions are not
continuable at infinity; see [13] for the discussion of the binomial equations of type
x′′ = q(t)|x|γ sgn x.

In the next we consider the continuability of solutions to (1.1). Let

(H2) g(r) is nondecreasing for |r| ≥ m where m > 0 is a real number.
(H3) ∫ ∞

1

dr

f−1(z(r))
= ∞,

∫ −1

−∞

dr

f−1(z(r))
= −∞,

where z(r) = g(r)/h(r).

Theorem 2.3. Under assumptions (H2),(H3), all solutions of (1.1) can be extended
to [a,∞).

Proof. We consider class A solutions only since all class B solutions can be extended
to [a,∞). Let x(·) be a class A solution of (1.1) and without loss of generality we
assume that x(t) > 0 and x′(t) > 0 for all t ∈ [b, αx). If αx < ∞, by Lemma 2.2,
x(t) →∞ as t → αx−. Hence, there exists a real number d > b such that x(t) ≥ m
for d ≤ t < αx.

Integrating (1.1) from d to t we have

p(t)h(x(t))f(x′(t)) = p(d)h(x(d))f(x′(d)) +
∫ t

d

q(s)g(x(s))ds.
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It follows from (H2) that

f(x′(t)) =
p(d)h(x(d))f(x′(d))

p(t)h(x(t))
+

1
p(t)h(x(t))

∫ t

d

q(s)g(x(s))ds

≤ p(d)h(x(d))f(x′(d))
p(t)h(x(t))

+
g(x(t))

p(t)h(x(t))

∫ t

d

q(s)ds

=
g(x(t))

p(t)h(x(t))

(p(d)h(x(d))f(x′(d))
g(x(t))

+
∫ t

d

q(s)ds
)

≤ g(x(t))
p(t)h(x(t))

(p(d)h(x(d))f(x′(d))
g(x(d))

+
∫ t

d

q(s)ds
)
.

Since q(t) > 0, we can choose k > 1 and t1 ≥ d such that for t ≥ t1,

p(d)h(x(d))f(x′(d))
g(x(d))

+
∫ t

d

q(s)ds ≤ k

∫ t

d

q(s)ds.

Then

f(x′(t)) ≤ kg(x(t))
p(t)h(x(t))

∫ t

d

q(s)ds,

x′(t) ≤ f−1
( kg(x(t))

p(t)h(x(t))

∫ t

d

q(s)ds
)
.

Taking into account (H1) we have

x′(t) ≤ f−1
(
kz(x(t))

1
p(t)

∫ t

d

q(s)ds
)

≤ M2
1 f−1(k)f−1

(
z(x(t))

)
f−1

( 1
p(t)

∫ t

d

q(s)ds
)
.

Dividing both sides by f−1(z(x(t))) and integrating from t1 to t we have∫ x(t)

x(t1)

dr

f−1(z(r))
≤ M2

1 f−1(k)
∫ t

t1

f−1
( 1

p(s)

∫ s

d

q(σ)dσ
)
ds. (2.1)

Letting t → αx−, we have∫ ∞

x(t1)

dr

f−1(z(r))
≤ M2

1 f−1(k)
∫ αx

t1

f−1
( 1

p(s)

∫ s

d

q(σ)dσ
)
ds < ∞,

which is a contradiction to (H3). Therefore, all solutions of (1.1) can be extended
to [a,∞). �

Without the monotonic condition (H2), we have the following theorem. Let

(H4) There exists a constant M2 > 0 such that |g(r)| ≤ M2 for all r ∈ R.
(H5) ∫ ∞

1

dr

f−1( 1
h(r) )

= ∞,

∫ −1

−∞

dr

f−1( 1
h(r) )

= ∞.

Theorem 2.4. Under assumptions (H4), (H5), all solutions of (1.1) can be ex-
tended to [a,∞).
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Proof. Similar to the proof of Theorem 2.3, we consider positive class A solutions
only. Let x be a positive class A solution of (1.1) with maximum existence interval
[a, αx) such that x(t) > 0 and x′(t) > 0 for all t ∈ [b, αx). If αx < ∞, then
x(t) →∞ as t → αx−. From

p(t)h(x(t))f(x′(t)) = p(b)h(x(b))f(x′(b)) +
∫ t

b

q(s)g(x(s))ds

and (H4) we have

p(t)h(x(t))f(x′(t)) ≤ p(b)h(x(b))f(x′(b)) + M2

∫ t

b

q(s)ds.

Choosing k > 1 and t1 ≥ b such that for t ≥ t1

p(b)h(x(b))f(x′(b)) + M2

∫ t

b

q(s)ds ≤ k

∫ t

b

q(s)ds.

By (H1), we have

x′(t) ≤ M2
1 f−1(k)f−1

( 1
h(x(t))

)
f−1

( 1
p(t)

∫ t

b

q(s)ds
)
.

Dividing both sides by f−1
(

1
h(x(t))

)
, integrating from t1 to t, and letting t → αx−,

we have∫ ∞

x(t1)

dr

f−1
(

1
h(r)

) ≤ M2
1 f−1(k)

∫ αx

t1

f−1
( 1

p(s)

∫ s

d

q(σ)dσ
)
ds < ∞,

which is a contradiction to (H5). Therefore, x(·) can be extended to infinity. �

3. Existence of Class A & B Solutions

In this section we discuss the existence of class A and class B solutions of (1.1).
We assume that (1.1) has a unique solution for any initial conditions (x(a), x′(a))
with x(a) 6= 0.

Theorem 3.1. Equation (1.1) has both positive and negative class A solutions.

Proof. Let x be the solution of (1.1) with initial conditions x(a) > 0 and x′(a) > 0.
From the proof of Lemma 2.1 we have F (t) > 0 for t ∈ [a, αx) because of F (a) > 0
in this case. Therefore, x(t)x′(t) > 0 for t ∈ [a, αx) and x is a positive class A
solution. Similarly, let x̃ be the solution of (1.1) with initial conditions x̃(a) < 0
and x̃′(a) < 0. We can show that x̃ is a negative class A solution. �

Now, we discuss sufficient conditions for the existence of class B solutions. The
following simple lemma is needed for the proof.

Lemma 3.2. If x is a solution of (1.1) on [t1, t2] such that x(t1) = x(t2) = 0, then
x(t) = 0 for all t ∈ [t1, t2].

Notice that if otherwise x(t1) = x(t2) = 0, then F (t1) = F (t2) = 0 which
contradicts the monotonicity of F . Let
(H2A) g(r) is nondecreasing on (−∞,∞).

(H6) There exists r0 > 0 such that∫ ±r0

0

dr

f−1(z(r))
= ∞.
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Theorem 3.3. Assume (H2A), (H6). Then
(a) Equation (1.1) has both positive and negative class B solutions.
(b) Equation (1.1) has no solution which is nonzero but eventually identically

equal to zero.

Proof. (a) We prove that (1.1) has a positive solution, the case of negative solution
is similar. Assume x0 > 0. The solution of (1.1) with initial conditions x(a) = x0

and x′(a) = c is denoted by x(t) := x(t, c) that has the form

x(t) = x0 +
∫ t

a

f−1
(p(a)h(x0)f(c)

p(s)h(x(s))
+

1
p(s)h(x(s))

∫ s

a

q(σ)g(x(σ))dσ
)
ds.

Define two sets U and L as

U = {c ∈ R : there exists some t̄ ≥ a such that x′(t̄, c) > 0},
L = {c ∈ R : there exists some t̄ ≥ a such that x(t̄, c) < 0}.

Then U ∩ L = ∅. Clearly, U 6= ∅. With the same argument as Theorem 4 in
[20] we are able to prove that U is open. Next we show L 6= ∅. Define M2 :=
max0≤r≤x0 h(r) > 0 and M3 := maxa≤t≤a+1 p(t) > 0. Let

c < f−1
(M2M3f

−1(−x0)− g(x0)
∫ a+1

a
q(s)ds

p(a)h(x0)

)
. (3.1)

We claim x′(t, c) < 0 for a ≤ t ≤ a + 1. Otherwise, there exists t1 ∈ (a, a + 1] such
that x′(t1, c) = 0 and x′(t, c) < 0 for t ∈ [a, t1). It follows from (3.1) that

0 = p(t)h(x(t1, c))f(x′(t1, c)) = p(a)h(x0)f(c) +
∫ t1

a

q(s)g(x(s, c))ds

≤ p(a)h(x0)f(c) + g(x0)
∫ a+1

a

q(s)ds < 0.

This is a contradiction and hence x(t, c) is decreasing on [a, a + 1].
If there exists a b ∈ (a, a + 1] such that x(b, c) < 0, then c ∈ L and L 6= ∅.

Otherwise, x(t) ≥ 0 on [a, a + 1]. Hence, we have from (3.1) that

x(a + 1, c) = x0 +
∫ a+1

a

f−1
(p(a)h(x0)f(c)

p(t)h(x(t))
+

1
p(t)h(x(t))

∫ t

a

q(s)g(x(s))ds
)
dt

≤ x0 +
∫ a+1

a

f−1
(p(a)h(x0)f(c) + g(x0)

∫ a+1

a
q(s)ds

M2M3

)
dt < 0.

This shows that c ∈ L. Clearly, L is open. Therefore, R − (U ∪ L) 6= ∅. For any
c ∈ R− (U ∪L), x(t, c) is a non-increasing nonnegative solution on [a,∞). We will
show that x(t, c) > 0 on [a,∞). If not, there exists t0 > a such that x(t0) = 0 and
x(t) = 0 for t ≥ t0 and x′(t0) = 0. Note that for t ∈ [a, t0] we have

x′(t) = f−1
(
− 1

p(t)h(x(t))

∫ t0

t

q(s)g(x(s))ds
)

≥ M1f
−1(z(x(t)))f−1

(
− 1

p(t)

∫ t0

t

q(s)ds
)
.

Dividing both sides by f−1(z(x(t))) and integrating from a to t0, we have∫ t0

a

x′(t)
f−1(z(x(t)))

dt ≥ M1

∫ t0

a

f−1
(
− 1

p(t)

∫ t0

t

q(s)ds
)
dt.
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That is, ∫ x0

0

1
f−1(z(r))

dr ≤ −M1

∫ t0

a

f−1
(
− 1

p(t)

∫ t0

t

q(s)ds
)
dt < ∞,

a contradiction to (H6). Therefore, x(t) > 0 for t ≥ a. Note that x′(t) ≤ 0 for
t ≥ a. It follows from equation (1.1) and x(t) > 0 that x′(t) 6= 0 for t ≥ a. Hence,
x′(t) < 0 for t ≥ a and x ∈ B.

The proof of part (b) follows from the end part of the proof of part (a). �

4. Boundedness of Solutions

In this section we discuss the boundedness of all solutions of (1.1), some necessary
and sufficient conditions are obtained.

Theorem 4.1. Assume (H2), (H3). Then all positive (negative) solutions of (1.1)
are bounded if and only if J1 < ∞ (J2 > −∞).

Proof. We consider positive solutions only since the case of negative solutions can
be handled similarly.

Necessity. Let x(·) be a positive bounded class A solution. Then x(t) > 0 and
x′(t) > 0 for t ≥ b > a and limt→∞ x(t) = l ∈ (0,∞). By the Extreme Value
Theorem we have L1 := minx(b)≤r≤l g(r) > 0. Hence

p(t)h(x(t))f(x′(t)) = p(b)h(x(b))f(x′(b)) +
∫ t

b

q(s)g(x(s))ds ≥ L1

∫ t

b

q(s)ds.

Since x(·) is continuous and bounded and h(r) is continuous, h(x(·)) is bounded.
Let h(x(t)) ≤ K for t ∈ [a,∞). Then

Kp(t)f(x′(t)) ≥ p(t)h(x(t))f(x′(t)) ≥ L1

∫ t

b

q(s)ds,

K

L1
f(x′(t)) ≥ 1

p(t)

∫ t

b

q(s)ds.

By (H1) we have

f−1
( 1

p(t)

∫ t

b

q(s)ds
)
≤ f−1

( K

L1
f(x′(t))

)
≤ M1f

−1
( K

L1

)
x′(t).

Integrating from b to t and letting t →∞ we have

J1 =
∫ ∞

b

f−1
( 1

p(t)

∫ t

b

q(s)ds
)
dt ≤ M1f

−1
( K

L1

)
(l − x(b)) < ∞.

Sufficiency. We will prove by contradiction. Let x(·) be a unbounded class
A solution of (1.1). Then x(t) > 0 and x′(t) > 0 on [b,∞), and there exists a
real number d ≥ b such that x(t) ≥ m for d ≤ t < ∞. Similar to the proof of
Theorem 2.3, we have the inequality∫ x(t)

x(t1)

dr

f−1(z(r))
≤ M2

1 f−1(k)
∫ t

t1

f−1
( 1

p(s)

∫ s

d

q(σ)dσ
)
ds.

Letting t →∞ and noting that x(∞) = ∞, we have∫ ∞

x(t1)

dr

f−1(z(r))
≤ M2

1 f−1(k)
∫ ∞

t1

f−1
( 1

p(s)

∫ s

b

q(σ)dσ
)
ds ≤ M2

1 f−1(k)J1 < ∞.

This is a contradiction to (H3). Therefore, x is bounded. �
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Corollary 4.2. Assume (H2), (H3). If (1.1) has a positive (negative) bounded
class A solution, then all positive (negative) solutions in class A are bounded. On
the other hand, if (1.1) has an unbounded positive (negative) class A solution, then
all positive (negative) solutions in class A are unbounded.

Theorem 4.3. Assume (H4), (H5). Then all positive (negative) solutions of (1.1)
are bounded if and only if J1 < ∞ (J2 > −∞).

Proof. We prove only the case of positive solutions, since the argument is similar
for negative solutions.

Necessity. Let x(·) be a positive bounded class A solution, i.e., x(t) > 0 and
x′(t) > 0 for t ∈ [b,∞). Then limt→∞ x(t) = l1 ∈ (0,∞). By the Extreme Value
Theorem we have L2 := minx(b)≤r≤l1 g(r) > 0. Hence

p(t)h(x(t))f(x′(t)) = p(b)h(x(b))f(x′(b)) +
∫ t

b

q(s)g(x(s))ds ≥ L2

∫ t

b

q(s)ds.

Similar to the proof of Theorem 4.1, let h(x(t)) ≤ K for t ∈ [b,∞). We have

K

L2
f(x′(t)) ≥ 1

p(t)

∫ t

b

q(s)ds.

Hence

f−1
( 1

p(t)

∫ t

b

q(s)ds
)
≤ M1f

−1
( K

L2

)
x′(t).

Integrating from b to t and letting t →∞, we have

J1 =
∫ ∞

b

f−1
( 1

p(t)

∫ t

b

q(s)ds
)
dt ≤ M1f

−1
( K

L2

)
(l2 − x(b)) < ∞.

Sufficiency. Assume that x(·) is any positive class A solution. It follows from

p(t)h(x(t))f(x′(t)) = p(b)h(x(b))f(x′(b)) +
∫ t

b

q(s)g(x(s))ds

and (H4) that

p(t)h(x(t))f(x′(t)) ≤ p(b)h(x(b))f(x′(b)) + M2

∫ t

b

q(s)ds.

Similar to the proof of Theorem 2.4, we have∫ ∞

x(t1)

dr

f−1
(

1
h(r)

) ≤ M2
1 f−1(k)

∫ ∞

t1

f−1
( 1

p(t)

∫ t

d

q(s)ds
)
dt ≤ M2

1 f−1(k)J1 < ∞.

Therefore, x(·) is bounded and the proof is complete. �

Corollary 4.4. Let (H4) and (H5) hold. If (1.1) has a positive (negative) bounded
class A solution, then all positive (negative) solutions in class A are bounded. On
the other hand, if (1.1) has an unbounded positive (negative) class A solution, then
all positive (negative) solutions in class A are unbounded.

Remark 4.5. The condition (H3) of Theorem 4.1 is sharp. For example, consider
the following equation

(t6(x2(t) + 1)(x′(t))3)′ =
162
t4

(3x7(t) + 2x5(t)), t ≥ 1, (4.1)
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where p(t) = t6, h(r) = r2 + 1, f(r) = r3, g(r) = 3r7 + 2r5, q(t) = 162
t4 . Clearly,

conditions (H), (H1), and (H2) are satisfied. By simple computation, we have∫ ∞

1

dr

f−1(z(r))
< ∞,

∫ −1

−∞

dr

f−1(z(r))
> −∞.

This shows that (H3) does not hold. We claim J1 < ∞ and J2 > −∞. Indeed,

J1 =
∫ ∞

1

3

√
54
t6

(
− 1

t3
+ 1

)
dt ≤ 3 3

√
2

∫ ∞

1

1
t2

dt = 3 3
√

2,

and

J2 = −
∫ ∞

1

3

√
54
t6

(
− 1

t3
+ 1

)
dt ≥ −3 3

√
2

∫ ∞

1

1
t2

dt = −3 3
√

2.

However, x(t) = t3 is a positive unbounded class A solution of (4.1) on [1,∞)
and x(t) = −t3 is a negative unbounded class A solution on [1,∞). Therefore,
Theorem 4.1 fails without (H3).

Remark 4.6. The condition (H5) of Theorem 4.3 is sharp. For example, consider
the following equation( t4

x4(t) + 1
(x′(t))3

)′
=

4t3

(t2 + 1)2
g(x(t)), t ≥ 1, (4.2)

where p(t) = t4, h(r) = 1
r4+1 , f(r) = r3, q(t) = 4t3

(t2+1)2 , and

g(r) =


1, r ≥ 1,

|r|, |r| ≤ 1,

−1, r ≤ −1.

Clearly, conditions (H), (H1), and (H4) are satisfied. We claim J1 < ∞ and J2 >
−∞. Indeed,

J1 =
∫ ∞

1

3

√
1
t4

( t4

t4 + 1
− 1

2

)
dt <

∫ ∞

1

3

√
1

t4 + 1
dt < ∞,

and

J2 = −
∫ ∞

1

3

√
1
t4

( t4

t4 + 1
− 1

2

)
dt > −

∫ ∞

1

3

√
1

t4 + 1
dt > −∞.

However, (H5) does not hold since∫ ∞

1

dr

f−1( 1
h(r) )

=
∫ ∞

1

3

√
1

r4 + 1
dr < ∞,

and ∫ −1

−∞

dr

f−1( 1
h(r) )

=
∫ −1

−∞

3

√
1

r4 + 1
dr < ∞.

It is easy to check that x(t) = t is a positive unbounded class A solution of (4.1) on
[1,∞) and x(t) = −t is a negative unbounded class A solution on [1,∞). Therefore,
Theorem 4.1 fails without (H5).
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Remark 4.7. Theorem 2.3 and Theorem 4.1 generalize [15, Theorem 1] since (H3)
reduces to (iii) of [15] if f(r) = r. Moreover, the differentiability of p(·) and h(·)
is not required as of [15]. Theorems 2.3, 3.1, and 4.1 generalize [6, Theorem 8].
Moreover, under (H2), Theorems 2.3, 3.1, and 4.1 improve [6, Theorem 8] since
(H3) improves [6, (22)]; see the discussion in [20]. Theorem 2.3 generalizes [17,
Theorem 3.9]. Theorems 2.3, 3.1, and 4.1 generalize [20, Theorem 1]. Theorem 3.3
generalizes [17, Theorem 2.1]. Under (H2A), Theorem 3.3 improves [7, Theorem 6]
since [7, (hp)] is replaced by a weaker condition (H6).

Acknowledgments. The authors wish to thank the anonymous referee for the
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this paper.
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[5] M. Cecchi, Z. Došlá and M. Marini; On the dynamics of the generalized Emden-Fowler
equations, Georgian Math. J., 7 (2000), 269–282.
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