Electronic Journal of Differential Equations, Vol. 2010(2010), No. 166, pp. 1-10. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

IMPULSIVE BOUNDARY-VALUE PROBLEMS FOR FIRST-ORDER INTEGRO-DIFFERENTIAL EQUATIONS

XIAOJING WANG, CHUANZHI BAI

Abstract

This article concerns boundary-value problems of first-order nonlinear impulsive integro-differential equations: $$
\begin{aligned} & y^{\prime}(t)+a(t) y(t)=f(t, y(t),(T y)(t),(S y)(t)), \quad t \in J_{0} \\ & \Delta y\left(t_{k}\right)=I_{k}\left(y\left(t_{k}\right)\right), \quad k=1,2, \ldots, p \\ & y(0)+\lambda \int_{0}^{c} y(s) d s=-y(c), \quad \lambda \leq 0 \end{aligned}
$$ where $J_{0}=[0, c] \backslash\left\{t_{1}, t_{2}, \ldots, t_{p}\right\}, f \in C(J \times \mathbb{R} \times \mathbb{R} \times \mathbb{R}, \mathbb{R}), I_{k} \in C(\mathbb{R}, \mathbb{R})$, $a \in C(\mathbb{R}, \mathbb{R})$ and $a(t) \leq 0$ for $t \in[0, c]$. Sufficient conditions for the existence of coupled extreme quasi-solutions are established by using the method of lower and upper solutions and monotone iterative technique. Wang and Zhang 18 studied the existence of extremal solutions for a particular case of this problem, but their solution is incorrect.

1. Introduction

In recent years, many authors have paid attention to the research of differential equations with impulsive boundary conditions, because of their potential applications; see for example [4, 6, 9, 12, 13, 15, 17. First-order and second-order impulsive differential equations with anti-periodic boundary conditions have also drawn much attention; see [1, 2, 3, ,5, 7, 8, 14, 16, 19,

Recently, Wang and Zhang [18] studied the existence of extremal solutions of the following nonlinear anti-periodic boundary value problem of first-order integrodifferential equation with impulse at fixed points

$$
\begin{gather*}
y^{\prime}(t)=f(t, y(t),(T y)(t),(S y)(t)), \quad t \in J_{0}, \\
\Delta y\left(t_{k}\right)=I_{k}\left(y\left(t_{k}\right)\right), \quad k=1,2, \ldots, p, \tag{1.1}\\
y(0)=-y(T),
\end{gather*}
$$

where $J=[0, T], J_{0}=J \backslash\left\{t_{1}, t_{2}, \ldots, t_{p}\right\}, 0<t_{1}<t_{2}<\cdots<t_{p}<T, f \in$ $C(J \times \mathbb{R} \times \mathbb{R} \times \mathbb{R}, \mathbb{R}), I_{k} \in C(\mathbb{R}, \mathbb{R}), \Delta y\left(t_{k}\right)=y\left(t_{k}^{+}\right)-y\left(t_{k}^{-}\right)$denotes the jump of

[^0]$y(t)$ at $t=t_{k} ; y\left(t_{k}^{+}\right)$and $y\left(t_{k}^{-}\right)$represent the right and left limits of $y(t)$ at $t=t_{k}$, respectively.
$$
(T y)(t)=\int_{0}^{t} k(t, s) y(s) d s, \quad(S y)(t)=\int_{0}^{T} h(t, s) y(s) d s
$$
$k \in C\left(D, \mathbb{R}^{+}\right), D=\{(t, s) \in J \times J: t \geq s\}, h \in C\left(J \times J, \mathbb{R}^{+}\right)$. Unfortunately, their extremal solutions $y_{*}(t), y^{*}(t)$ are wrong. In fact, by [18, Theorem 3.1] we obtain
\[

$$
\begin{gathered}
y_{*}^{\prime}(t)=f\left(t, y_{*}(t),\left(T y_{*}\right)(t),\left(S y_{*}\right)(t)\right), \quad t \in J_{0} \\
\Delta y_{*}\left(t_{k}\right)=I_{k}\left(y_{*}\left(t_{k}\right)\right), \quad k=1,2, \ldots, p \\
y_{*}(0)=-y^{*}(T)
\end{gathered}
$$
\]

and

$$
\begin{gathered}
y^{* \prime}(t)=f\left(t, y^{*}(t),\left(T y^{*}\right)(t),\left(S y^{*}\right)(t)\right), \quad t \in J_{0} \\
\Delta y^{*}\left(t_{k}\right)=I_{k}\left(y^{*}\left(t_{k}\right)\right), \quad k=1,2, \ldots, p \\
y^{*}(0)=-y_{*}(T)
\end{gathered}
$$

which implies that $y_{*}(t), y^{*}(t)$ are not solutions of 1.1. So the conclusions of [18] are reconsidered here, for a more general equation.

In this paper, we investigate the following integral boundary value problem for first-order integro-differential equation with impulses at fixed points

$$
\begin{align*}
& y^{\prime}(t)+a(t) y(t)=f(t, y(t),(T y)(t),(S y)(t)), \quad t \in J_{0} \\
& \Delta y\left(t_{k}\right)=I_{k}\left(y\left(t_{k}\right)\right), \quad k=1,2, \ldots, p \tag{1.2}\\
& y(0)+\lambda \int_{0}^{c} y(s) d s=-y(c), \quad \lambda \leq 0
\end{align*}
$$

where $J=[0, c], J_{0}=J \backslash\left\{t_{1}, t_{2}, \ldots, t_{p}\right\}, 0<t_{1}<t_{2}<\cdots<t_{p}<c, f \in$ $C(J \times \mathbb{R} \times \mathbb{R} \times \mathbb{R}, \mathbb{R}), I_{k} \in C(\mathbb{R}, \mathbb{R}), a \in C(\mathbb{R}, \mathbb{R})$ and $a(t) \leq 0$ for $t \in J$.

$$
(T y)(t)=\int_{0}^{t} k(t, s) y(s) d s, \quad(S y)(t)=\int_{0}^{c} h(t, s) y(s) d s
$$

$k \in C\left(D, \mathbb{R}^{+}\right), D=\{(t, s) \in J \times J: t \geq s\}, h \in C\left(J \times J, \mathbb{R}^{+}\right)$.
Remark 1.1. If $a(t) \equiv 0$ and $\lambda \equiv 0$, then 1.2 reduces to (1.1).
We will give the concept of coupled quasi-solutions of BVP 1.2 in next section. It is well known that the monotone iterative technique offers an approach for obtaining approximate solutions of nonlinear differential equations, for details, see [10, 11] and the references therein. The aim of this paper is to investigate the existence of coupled quasi-solutions of $\sqrt[1.2]{ }$ by using the method of upper and lower solutions combined with a monotone iterative technique. Our result correct and generalize the main result of [18].

2. Preliminaries

In this section, we present some definitions needed for introducing the concept of quasi-solutions for (1.2). Let
$P C(J)=\left\{y: J \rightarrow \mathbb{R}: y\right.$ is continuous at $t \in J_{0} ;$

$$
\left.y\left(0^{+}\right), y\left(T^{-}\right), y\left(t_{k}^{+}\right), y\left(t_{k}^{-}\right) \text {exist and } y\left(t_{k}^{-}\right)=y\left(t_{k}\right), k=1, \ldots, p\right\}
$$

$$
\begin{aligned}
& P C^{1}(J)=\left\{y \in P C(J): y \text { is continuously differentiable for } t \in J_{0}\right. \\
&\left.y^{\prime}\left(0^{+}\right), y^{\prime}\left(T^{-}\right), y^{\prime}\left(t_{k}^{+}\right), y^{\prime}\left(t_{k}^{-}\right) \text {exist, } k=1, \ldots, p\right\}
\end{aligned}
$$

The sets $P C(J)$ and $P C^{1}(J)$ are Banach spaces with the norms

$$
\|y\|_{P C(J)}=\sup \{|y(t)|: t \in J\}, \quad\|y\|_{P C^{1}(J)}=\|y\|_{P C(J)}+\left\|y^{\prime}\right\|_{P C(J)} .
$$

Definition 2.1. Functions $\alpha_{0}, \beta_{0} \in P C^{1}(J)$ are said to be coupled lower-upper quasi-solutions to the problem (1.2) if

$$
\begin{gather*}
\alpha_{0}^{\prime}(t)+a(t) \alpha_{0}(t) \leq f\left(t, \alpha_{0}(t),\left(T \alpha_{0}\right)(t),\left(S \alpha_{0}\right)(t)\right), \quad t \in J_{0}, \\
\Delta \alpha_{0}\left(t_{k}\right) \leq I_{k}\left(\alpha_{0}\left(t_{k}\right)\right), \quad k=1,2, \ldots, p, \\
\alpha_{0}(0)+\lambda \int_{0}^{c} \alpha_{0}(s) d s \leq-\beta_{0}(c), \quad \lambda \leq 0, \tag{2.1}\\
\beta_{0}^{\prime}(t)+a(t) \beta_{0}(t) \geq f\left(t, \beta_{0}(t),\left(T \beta_{0}\right)(t),\left(S \beta_{0}\right)(t)\right), \quad t \in J_{0}, \\
\Delta \beta_{0}\left(t_{k}\right) \geq I_{k}\left(\beta_{0}\left(t_{k}\right)\right), \quad k=1,2, \ldots, p, \\
\beta_{0}(0)+\lambda \int_{0}^{c} \beta_{0}(s) d s \geq-\alpha_{0}(c), \quad \lambda \leq 0 .
\end{gather*}
$$

Note that if $\alpha_{0}(c)=\beta_{0}(c)$, then the above definition reduces to the notion of lower and upper solutions of 1.2 .
Definition 2.2. Functions $v, w \in P C^{1}(J)$ are said to be coupled quasi-solutions to 1.2 if

$$
\begin{align*}
& v^{\prime}(t)+a(t) v(t)=f(t, v(t),(T v)(t),(S v)(t)), \quad t \in J_{0} \\
& \Delta v\left(t_{k}\right)=I_{k}\left(v\left(t_{k}\right)\right), \quad k=1,2, \ldots, p, \\
& v(0)+\lambda \int_{0}^{c} v(s) d s=-w(c), \quad \lambda \leq 0, \\
& w^{\prime}(t)+a(t) w(t)=f(t, w(t),(T w)(t),(S w)(t)), \quad t \in J_{0} \tag{2.2}\\
& \Delta w\left(t_{k}\right)=I_{k}\left(w\left(t_{k}\right)\right), \quad k=1,2, \ldots, p, \\
& w(0)+\lambda \int_{0}^{c} w(s) d s=-v(c), \quad \lambda \leq 0
\end{align*}
$$

Let $\alpha_{0}, \beta_{0} \in P C^{1}(J)$ and $\alpha_{0}(t) \leq \beta_{0}(t)$ for $t \in J_{0}$. In what follows we define the segment

$$
\left[\alpha_{0}, \beta_{0}\right]=\left\{u \in P C^{1}(J): \alpha_{0}(t) \leq u(t) \leq \beta_{0}(t), t \in J\right\}
$$

Definition 2.3. Let u, v be coupled quasi-solutions of 1.2 such as $u(t) \leq v(t)$ for $t \in J_{0}$. Assume that $\alpha_{0}, \beta_{0} \in P C^{1}(J)$ and $\alpha_{0}(t) \leq \beta_{0}(t)$ for $t \in J_{0}$. Coupled quasi-solutions u, v of 1.2 are called coupled minimal-maximal quasi-solutions in segment $\left[\alpha_{0}, \beta_{0}\right]$ if $\alpha_{0}(t) \leq u(t), v(t) \leq \beta_{0}(t)$ for $t \in J_{0}$ and for any U, V coupled quasi-solutions of 1.2 , such as $\alpha_{0}(t) \leq U(t), V(t) \leq \beta_{0}(t)$ for $t \in J_{0}$ we have $u(t) \leq U(t)$ and $V(t) \leq v(t), t \in J_{0}$.

For convenience, we assume the following conditions are satisfied
(H1) Functions $\alpha_{0}(t), \beta_{0}(t)$ are coupled lower-upper quasi-solutions of 1.2 such that $\alpha_{0}(t) \leq \beta_{0}(t)$ for $t \in J_{0}$.
(H2) There exist $M>0, N, N_{1} \geq 0$ such that

$$
f\left(t, x_{1}, y_{1}, z_{1}\right)-f\left(t, x_{2}, y_{2}, z_{2}\right) \geq-M\left(x_{1}-x_{2}\right)-N\left(y_{1}-y_{2}\right)-N_{1}\left(z_{1}-z_{2}\right)
$$

for $\alpha_{0} \leq x_{2} \leq x_{1} \leq \beta_{0}, T \alpha_{0} \leq y_{2} \leq y_{1} \leq T \beta_{0}, S \alpha_{0} \leq z_{2} \leq z_{1} \leq S \beta_{0}$, $t \in J$.
(H3) There exist $0 \leq L_{k}<1, k=1,2, \ldots, p$, satisfy

$$
I_{k}(x)-I_{k}(y) \geq-L_{k}(x-y)
$$

for $\alpha_{0} \leq y \leq x \leq \beta_{0}, t \in J$.
Now we consider the problem

$$
\begin{gather*}
y^{\prime}(t)+M y(t)+N(T y)(t)+N_{1}(S y)(t)=\sigma(t), \quad t \in J_{0} \\
\Delta y\left(t_{k}\right)=-L_{k} y\left(t_{k}\right)+b_{k}, \quad k=1,2, \ldots, p \tag{2.3}\\
y(0)=b
\end{gather*}
$$

where $M>0, N, N_{1} \geq 0, L_{k}<1, k=1,2, \ldots, p$.
Lemma 2.4. If $y \in P C^{1}(J), M>0, N, N_{1} \geq 0, L_{k}<1, k=1,2, \ldots, p$, and

$$
\begin{equation*}
\bar{k}+\bar{h}+\sum_{i=1}^{p} L_{i}<1 \tag{2.4}
\end{equation*}
$$

where

$$
\begin{gathered}
\bar{k}= \begin{cases}k_{0} c M^{-1}\left(1-e^{-M c}\right), & \text { if } M>1, \\
k_{0} c M^{-1}\left(1-M e^{-M c}\right), & \text { if } 0<M \leq 1, \\
\frac{1}{2} k_{0} c^{2}, & \text { if } M=0,\end{cases} \\
\bar{h}= \begin{cases}h_{0} c M^{-1}\left(1-e^{-M c}\right), & \text { if } M>0, \\
h_{0} c^{2}, & \text { if } M=0,\end{cases}
\end{gathered}
$$

where $k_{0}=\max _{0 \leq s \leq t \leq c} k(t, s)$ and $h_{0}=\max _{0 \leq t, s \leq c} h(t, s)$. Then 2.3 has a unique solution.

Proof. If $y \in P C^{1}(J)$ is a solution of (2.3), then, by integrating, we obtain

$$
\begin{align*}
y(t)= & b e^{-M t}+\int_{0}^{t} e^{-M(t-s)}\left[\sigma(s)-N(T y)(s)-N_{1}(S y)(s)\right] d s \tag{2.5}\\
& +\sum_{0<t_{i}<t} e^{-M\left(t-t_{i}\right)}\left(-L_{i} y\left(t_{i}\right)+b_{i}\right)
\end{align*}
$$

Conversely, if $y(t) \in P C(J)$ is solution of the above-mentioned integral equation (2.5), then it is easy to check that $y^{\prime}(t)=-M y(t)-N(T y)(t)-N_{1}(S y)(t)+\sigma(t)$, $t \neq t_{k}, \Delta y\left(t_{k}\right)=-L_{k} y\left(t_{k}\right)+b_{k}, k=1,2, \ldots, p$, and $y(0)=b$. So (2.3) is equivalent to the integral equation 2.5). Now, we define operator $B: P C(J) \rightarrow P C(J)$ as

$$
\begin{align*}
(B y)(t)= & b e^{-M t}+\int_{0}^{t} e^{-M(t-s)}\left[\sigma(s)-N(T y)(s)-N_{1}(S y)(s)\right] d s \tag{2.6}\\
& +\sum_{0<t_{i}<t} e^{-M\left(t-t_{i}\right)}\left(-L_{i} y\left(t_{i}\right)+b_{i}\right)
\end{align*}
$$

For each $u, v \in P C(J)$, we have

$$
\begin{align*}
|(B u)(t)-(B v)(t)| \leq & N\left|\int_{0}^{t} e^{-M(t-s)}(T u-T v)(s) d s\right| \\
& +N_{1}\left|\int_{0}^{t} e^{-M(t-s)}(S u-S v)(s) d s\right| \tag{2.7}\\
& +\sum_{0<t_{i}<t} L_{i}\left|e^{-M\left(t-t_{i}\right)}\left(u\left(t_{i}\right)-v\left(t_{i}\right)\right)\right|
\end{align*}
$$

We easily check that

$$
\begin{align*}
& \left|\int_{0}^{t} e^{-M(t-s)}(T u-T v)(s) d s\right| \\
& \leq \begin{cases}k_{0} t M^{-1}\left(1-e^{-M t}\right)\|u-v\|_{P C}, & \text { if } M>1 \\
k_{0} t M^{-1}\left(1-M e^{-M t}\right)\|u-v\|_{P C}, & \text { if } 0<M \leq 1 \\
k_{0} \frac{1}{2} t^{2}\|u-v\|_{P C}, & \text { if } M=0\end{cases} \tag{2.8}
\end{align*}
$$

and

$$
\left|\int_{0}^{t} e^{-M(t-s)}(S u-S v)(s) d s\right| \leq \begin{cases}h_{0} c M^{-1}\left(1-e^{-M t}\right)\|u-v\|_{P C}, & \text { if } M>0 \tag{2.9}\\ h_{0} c t\|u-v\|_{P C}, & \text { if } M=0\end{cases}
$$

Substituting (2.8) and (2.9) into (2.7), we obtain

$$
\|B u-B v\|_{P C} \leq\left(\bar{k}+\bar{h}+\sum_{i=1}^{p} L_{i}\right)\|u-v\|_{P C}
$$

This indicates that B is a contraction mapping (by 2.4). Then there is one unique $y \in P C(J)$ such that $B y=y$, that is, 2.3) has a unique solution.

Lemma 2.5 ([18]). Assume that $y \in P C^{1}(J)$ satisfies

$$
\begin{gather*}
y^{\prime}(t)+M y(t)+N(T y)(t)+N_{1}(S y)(t) \leq 0, \quad t \in J_{0} \\
\Delta y\left(t_{k}\right) \leq-L_{k} y\left(t_{k}\right), \quad k=1,2, \ldots, p \tag{2.10}\\
y(0) \leq 0
\end{gather*}
$$

where $M>0, N, N_{1} \geq 0, L_{k}<1, k=1,2, \ldots, p$, and

$$
\begin{equation*}
\int_{0}^{c} q(s) d s \leq \prod_{j=1}^{p}\left(1-\bar{L}_{j}\right) \tag{2.11}
\end{equation*}
$$

with $\bar{L}_{k}=\max \left\{L_{k}, 0\right\}, k=1,2, \ldots, p$,
$q(t)=N \int_{0}^{t} k(t, s) e^{M(t-s)} \prod_{s<t_{k}<c}\left(1-L_{k}\right) d s+N_{1} \int_{0}^{c} h(t, s) e^{M(t-s)} \prod_{s<t_{k}<c}\left(1-L_{k}\right) d s$, then $y \leq 0$.

3. Main result

Theorem 3.1. If $(\mathrm{H} 1),(\mathrm{H} 2),(\mathrm{H} 3)$ are satisfied, and, in addition, if there exist $M>$ $0, N, N_{1} \geq 0, L_{k}<1, k=1,2, \ldots, p$, such that (2.4 and (2.11) hold, then 1.2 has, in segment $\left[\alpha_{0}, \beta_{0}\right]$ the coupled minimal-maximal quasi-solutions.

Proof. For convenience, let $(K \phi)(t)=N(T \phi)(t)+N_{1}(S \phi)(t)$. We now construct two sequences $\left\{\alpha_{n}(t)\right\}$ and $\left\{\beta_{n}(t)\right\}$ that satisfy the following problems

$$
\begin{align*}
& \alpha_{i}^{\prime}(t)+a(t) \alpha_{i-1}(t)+M \alpha_{i}(t)+\left(K \alpha_{i}\right)(t) \\
& =f\left(t, \alpha_{i-1}(t),\left(T \alpha_{i-1}\right)(t),\left(S \alpha_{i-1}\right)(t)\right)+M \alpha_{i-1}(t)+\left(K \alpha_{i-1}\right)(t), \quad t \in J_{0} \\
& \Delta \alpha_{i}\left(t_{k}\right)=I_{k}\left(\alpha_{i-1}\left(t_{k}\right)\right)-L_{k}\left(\alpha_{i}\left(t_{k}\right)-\alpha_{i-1}\left(t_{k}\right)\right), \quad k=1,2, \ldots, p \tag{3.1}\\
& \alpha_{i}(0)+\lambda \int_{0}^{c} \alpha_{i-1}(s) d s=-\beta_{i-1}(c)
\end{align*}
$$

and

$$
\begin{align*}
& \beta_{i}^{\prime}(t)+a(t) \beta_{i-1}(t)+M \beta_{i}(t)+\left(K \beta_{i}\right)(t) \\
& =f\left(t, \beta_{i-1}(t),\left(T \beta_{i-1}\right)(t),\left(S \beta_{i-1}\right)(t)\right)+M \beta_{i-1}(t)+\left(K \beta_{i-1}\right)(t), \quad t \in J_{0}, \\
& \Delta \beta_{i}\left(t_{k}\right)=I_{k}\left(\beta_{i-1}\left(t_{k}\right)\right)-L_{k}\left(\beta_{i}\left(t_{k}\right)-\beta_{i-1}\left(t_{k}\right)\right), \quad k=1,2, \ldots, p, \tag{3.2}\\
& \beta_{i}(0)+\lambda \int_{0}^{c} \beta_{i-1}(s) d s=-\alpha_{i-1}(c) .
\end{align*}
$$

For each $\phi, \psi \in\left[\alpha_{0}, \beta_{0}\right]$, we consider the equation

$$
\begin{align*}
& y^{\prime}(t)+M y(t)+(K y)(t) \\
& =f(t, \phi(t),(T \phi)(t),(S \phi)(t))-a(t) \phi(t)+M \phi(t)+(K \phi)(t), \quad t \in J_{0}, \\
& \Delta y\left(t_{k}\right)=I_{k}\left(\phi\left(t_{k}\right)\right)-L_{k}\left(y\left(t_{k}\right)-\phi\left(t_{k}\right)\right), \quad k=1,2, \ldots, p, \tag{3.3}\\
& y(0)+\lambda \int_{0}^{c} \phi(s) d s=-\psi(c) .
\end{align*}
$$

By condition (2.4) and Lemma 2.4 we know that 3.3 has a unique solution $y(t) \in P C^{1}(J)$. Define the operator $A: P C^{1}(J) \times P C^{1}(J) \rightarrow P C^{1}(J)$ as $A(\phi, \psi)=$ y. Let $\alpha_{n}(t)=A\left(\alpha_{n-1}, \beta_{n-1}\right)(t)$ and $\beta_{n}(t)=A\left(\beta_{n-1}, \alpha_{n-1}\right)(t), n=1,2, \ldots$, we will prove that $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\}$ have the following properties.
(i) $\alpha_{i-1} \leq \alpha_{i}, \beta_{i} \leq \beta_{i-1}$;
(ii) $\alpha_{i} \leq \beta_{i}, i=1,2, \ldots$

Firstly, we prove that $\alpha_{0} \leq \alpha_{1}$. Set $p(t)=\alpha_{0}(t)-\alpha_{1}(t)$, it follows that

$$
\begin{gather*}
p^{\prime}(t)+M p(t)+N(T p)(t)+N_{1}(S p)(t)=p^{\prime}(t)+M p(t)+(K p)(t) \leq 0, \\
\Delta p\left(t_{k}\right) \leq-L_{k} p\left(t_{k}\right), \quad k=1,2, \ldots, p \tag{3.4}\\
p(0) \leq 0
\end{gather*}
$$

Then by condition 2.11) and Lemma 2.5, we get $p(t) \leq 0$, which implies that $\alpha_{0}(t) \leq \alpha_{1}(t)$, for all $t \in J_{0}$. In a similar way, it can be proved that $\beta_{1}(t) \leq \beta_{0}(t)$, for all $t \in J_{0}$. Now we prove that $\alpha_{1}(t) \leq \beta_{1}(t)$, for all $t \in J_{0}$. In fact, setting $p(t)=\alpha_{1}(t)-\beta_{1}(t)$ and using assumption, we obtain

$$
\begin{aligned}
& p^{\prime}(t)+M p(t)+N(T p)(t)+N_{1}(S p)(t) \\
& =\alpha_{1}^{\prime}(t)-\beta_{1}^{\prime}(t)+M\left(\alpha_{1}(t)-\beta_{1}(t)\right)+N\left(T \alpha_{1}(t)-T \beta_{1}(t)\right)+N_{1}\left(S \alpha_{1}(t)-S \beta_{1}(t)\right) \\
& =f\left(t, \alpha_{0}(t),\left(T \alpha_{0}\right)(t),\left(S \alpha_{0}\right)(t)\right)-a(t) \alpha_{0}(t)+M \alpha_{0}(t)+N\left(T \alpha_{0}\right)(t)+N_{1}\left(S \alpha_{0}\right)(t) \\
& \quad-f\left(t, \beta_{0}(t),\left(T \beta_{0}\right)(t),\left(S \beta_{0}\right)(t)\right)+a(t) \beta_{0}(t)-M \beta_{0}(t)-N\left(T \beta_{0}\right)(t)-N_{1}\left(S \beta_{0}\right)(t) \\
& \leq a(t)\left(\beta_{0}(t)-\alpha_{0}(t)\right) \leq 0, \quad t \in J_{0}
\end{aligned}
$$

and

$$
\Delta p\left(t_{k}\right)=-L_{k} p\left(t_{k}\right)+I_{k}\left(\alpha_{0}\left(t_{k}\right)\right)-I_{k}\left(\beta_{0}\left(t_{k}\right)\right)+L_{k} \alpha_{0}\left(t_{k}\right)-L_{k} \beta_{0}\left(t_{k}\right) \leq-L_{k} p\left(t_{k}\right)
$$

$$
p(0)=\alpha_{1}(0)-\beta_{1}(0)=\lambda \int_{0}^{c}\left(\beta_{0}(s)-\alpha_{0}(s)\right) d s+\alpha_{0}(c)-\beta_{0}(c) \leq 0
$$

Again by Lemma 2.5, we obtain $p(t) \leq 0$, that is, $\alpha_{1}(t) \leq \beta_{1}(t)$ for all $t \in J_{0}$. Thus we have $\alpha_{0}(t) \leq \alpha_{1}(t) \leq \beta_{1}(t) \leq \beta_{0}(t)$ for all $t \in J_{0}$. Continuing this process, by induction, one can obtain monotone sequence $\left\{\alpha_{n}(t)\right\}$ and $\left\{\beta_{n}(t)\right\}$ such that

$$
\alpha_{0}(t) \leq \alpha_{1}(t) \leq \cdots \leq \alpha_{n}(t) \leq \cdots \leq \beta_{n}(t) \leq \ldots \beta_{1}(t) \leq \beta_{0}(t), \quad t \in J_{0}
$$

where each $\alpha_{i}(t), \beta_{i}(t) \in P C^{1}(J)$ satisfies (3.1) and (3.2). As the sequences $\left\{\alpha_{n}\right\}$, $\left\{\beta_{n}\right\}$ are uniformly bounded and equi-continuous, by employing the standard arguments Ascoli-Arzela criterion [12], we conclude that the sequences $\left\{\alpha_{n}\right\}$ and $\left\{\beta_{n}\right\}$ converge uniformly on J_{0} with

$$
\lim _{n \rightarrow \infty} \alpha_{n}(t)=y_{*}(t), \quad \lim _{n \rightarrow \infty} \beta_{n}(t)=y^{*}(t)
$$

Obviously, $y_{*}(t), y^{*}(t)$ are coupled lower-upper quasi-solutions of 1.2 . Now we have to prove that $\left(y_{*}, y^{*}\right)$ are coupled minimal-maximal quasi-solutions of problem (1.2) in segment $\left[\alpha_{0}, \beta_{0}\right]$. Let x, z be coupled quasi-solutions of 1.2 such that

$$
\alpha_{n}(t) \leq x(t), \quad z(t) \leq \beta_{n}(t), \quad t \in J_{0}
$$

for some $n \in \mathbf{N}$. Put $q(t)=\alpha_{n+1}(t)-x(t)$, for $t \in J_{0}$. Form definition of α_{n+1} and properties of quasi-solution $x(t)$, we obtain

$$
\begin{aligned}
& q^{\prime}(t)+M q(t)+N(T q)(t)+N_{1}(S q)(t) \\
& =f\left(t, \alpha_{n}(t),\left(T \alpha_{n}\right)(t),\left(S \alpha_{n}\right)(t)\right)-a(t) \alpha_{n}(t)+M \alpha_{n}(t)+N\left(T \alpha_{n}\right)(t) \\
& \quad+N_{1}\left(S \alpha_{n}\right)(t)-f(t, x(t),(T x)(t),(S x)(t))+a(t) x(t)-M x(t) \\
& \quad-N(T x)(t)-N_{1}(S x)(t) \\
& \leq a(t)\left(x(t)-\alpha_{n}(t)\right) \leq 0, \quad t \in J_{0}
\end{aligned}
$$

and

$$
\begin{gathered}
\Delta q\left(t_{k}\right)=-L_{k} q\left(t_{k}\right)+I_{k}\left(\alpha_{n}\left(t_{k}\right)\right)-I_{k}\left(x\left(t_{k}\right)\right)+L_{k} \alpha_{n}\left(t_{k}\right)-L_{k} x\left(t_{k}\right) \leq-L_{k} q\left(t_{k}\right) \\
q(0)=\alpha_{n+1}(0)-x(0)=\lambda \int_{0}^{c}\left(x(s)-\alpha_{n}(s)\right) d s+z(c)-\beta_{n}(c) \leq 0
\end{gathered}
$$

By Lemma 2.5, we have $q(t) \leq 0$ for all $t \in J_{0}$, that is $\alpha_{n+1}(t) \leq x(t)$. Similarly, we can prove that $z(t) \leq \beta_{n+1}(t)$ for all $t \in J_{0}$.

By induction, we obtain

$$
\alpha_{m}(t) \leq x(t), \quad z(t) \leq \beta_{m}(t), \quad t \in J_{0}, \quad \text { for } m \in \mathbf{N}
$$

If $m \rightarrow \infty$, it yields

$$
y_{*}(t) \leq x(t), \quad z(t) \leq y^{*}(t), \quad t \in J_{0}
$$

It shows that $\left(y_{*}, y^{*}\right)$ are coupled minimal-maximal quasi-solutions of problem 1.2 in segment $\left[\alpha_{0}, \beta_{0}\right]$.

Example 3.2. Consider the problem

$$
\begin{gather*}
y^{\prime}(t)-\frac{t}{4}\left(1-e^{-t}\right) y(t)=-y(t)-\frac{1}{8} \int_{0}^{t} t e^{-(t-s)} y(s) d s-\frac{5}{6} \int_{0}^{1} y(s) d s \\
t \in\left[0, t_{1}\right) \cup\left(t_{1}, 1\right] \\
\Delta y\left(t_{1}\right)=-\frac{1}{9} y\left(t_{1}\right), \quad t_{1}=\frac{1}{3} \tag{3.5}\\
y(0)-\frac{1}{6} \int_{0}^{1} y(s) d s=-y(1) .
\end{gather*}
$$

where $a(t)=-\frac{t}{4}\left(1-e^{-t}\right) \leq 0, I_{1}(x)=-\frac{1}{9} x, L_{1}=\frac{1}{9}$ and $\lambda=-\frac{1}{6}<0$. Let $f(t, x, y, z)=-M x-N y-N_{1} z, M=1, N=\frac{3}{8}, N_{1}=\frac{5}{6}, J=[0,1], c=1$, $k(t, s)=\frac{t}{3} e^{-(t-s)}, h(t, s)=1$, then for $t \in J, x_{i}, y_{i}, z_{i} \in \mathbb{R}, i=1,2, x_{1} \geq x_{2}$, $y_{1} \geq y_{2}, z_{1} \geq z_{2}$,

$$
f\left(t, x_{1}, y_{1}, z_{1}\right)-f\left(t, x_{2}, y_{2}, z_{2}\right)=-\left(x_{1}-x_{2}\right)-\frac{3}{8}\left(y_{1}-y_{2}\right)-\frac{5}{6}\left(z_{1}-z_{2}\right)
$$

Thus the condition (H2) holds. It is easy to see that $k_{0}=\frac{1}{3}, h_{0}=1, \bar{k}=\frac{1}{3} \bar{h}=$ $\frac{1}{3}\left(1-e^{-1}\right)$ and

$$
\bar{h}+\bar{k}+L_{1}=0.9359<1
$$

Hence the condition (2.4) holds. Moreover, we have

$$
\begin{aligned}
\int_{0}^{1} q(s) d s & \leq \int_{0}^{1}\left(\frac{3}{8} \int_{0}^{t} \frac{t}{3} e^{-(t-s)} e^{(t-s)}\left(1-L_{1}\right) d s+\frac{5}{6} \int_{0}^{1} e^{(t-s)}\left(1-L_{1}\right) d s\right) d t \\
& =\int_{0}^{1}\left(\frac{t^{2}}{18}+\frac{20}{27}\left(1-e^{-1}\right) e^{t}\right) d t \\
& =\frac{1}{54}+\frac{20}{27}\left(e+e^{-1}-2\right)=0.8231<0.8889=1-L_{1}
\end{aligned}
$$

which implies that the condition (2.11) holds. Let

$$
\alpha_{0}(t)=-\frac{5}{4}, \quad \beta_{0}(t)=2-t, \quad t \in[0,1] .
$$

Then $\alpha_{0}(t)$ and $\beta_{0}(t)$ are coupled lower-upper quasi-solutions of problem (??). In fact,

$$
\begin{aligned}
& \alpha_{0}^{\prime}(t)+a(t) \alpha_{0}(t)=\frac{5}{16} t\left(1-e^{-t}\right) \leq 2+\frac{5}{32} t\left(1-e^{-t}\right) \\
&<\frac{5}{4}+\frac{5}{32} \int_{0}^{t} t e^{-(t-s)} d s+\frac{25}{24} \int_{0}^{1} d s \\
&=f\left(t, \alpha_{0}(t),\left(T \alpha_{0}\right)(t),\left(S \alpha_{0}\right)(t)\right), \\
& \Delta \alpha_{0}(1 / 3)=0<\frac{5}{36}=-L_{1} \alpha_{0}(1 / 3) \\
& \alpha_{0}(0)-\frac{1}{6} \int_{0}^{1} \alpha_{0}(s) d s=-\frac{25}{24}<-1=-\beta_{0}(1),
\end{aligned}
$$

and

$$
\begin{aligned}
\beta_{0}^{\prime}(t)+a(t) \beta_{0}(t) & =-1-\frac{1}{4} t\left(1-e^{-t}\right)(2-t) \\
& \geq-1-\frac{1}{4}\left(1-e^{-1}\right) \\
& >-\frac{27}{12}+\frac{3}{8} e^{-1} \\
& \geq t-2-\frac{1}{8} t(3-t)+\frac{3}{8} t e^{-t}-\frac{15}{12} \\
& =t-2-\frac{1}{8} \int_{0}^{t} t e^{-(t-s)}(2-s) d s-\frac{5}{6} \int_{0}^{1}(2-s) d s \\
& =f\left(t, \beta_{0}(t),\left(T \beta_{0}\right)(t),\left(S \beta_{0}\right)(t)\right), \\
\Delta & \beta_{0}(1 / 3)=0>-\frac{5}{27}=-L_{1} \beta_{0}(1 / 3) \\
\beta_{0}(0) & -\frac{1}{6} \int_{0}^{1} \beta_{0}(s) d s=\frac{7}{4}>\frac{5}{4}=-\alpha_{0}(1) .
\end{aligned}
$$

Obviously, $\alpha_{0}(t) \leq \beta_{0}(t)$. Thus, all the conditions of Theorem 3.1 are satisfied, so problem 3.5 has the coupled minimal-maximal quasi-solutions in the segment $\left[\alpha_{0}(t), \beta_{0}(t)\right]$.

Acknowledgments. The authors want to thank the anonymous referees for their valuable comments and suggestions which improved the presentation of this article.

References

[1] B. Ahmad, A. Alsaedi; Existence of solutions for anti-periodic boundary value problems of nonlinear impulsive functional integro-differential equations of mixed type, Nonlinear Analysis: Hybrid Systems, 3 (2009), 501-509.
[2] B. Ahmad, J. J. Nieto; Existence and approximation of solutions for a class of nonlinear functional differential equations with anti-periodic boundary conditions, Nonlinear Anal. 69 (2008), 3291-3298.
[3] C. Bai; Antiperiodic boundary value problems for second-order impulsive ordinary differential equations, Boundary Value Problems Volume 2008 (2008), Article ID 585378, 14 pages.
[4] Z. Benbouziane, A. Boucherif, S. M. Bouguima; Existence result for impulsive third order periodic boundary value problems, Appl. Math. Comput. 206 (2008), 728-737.
[5] Y. Chen, J. J. Nieto, D. O’Regan; Anti-periodic solutions for fully nonlinear first-order differential equations, Math. Comput. Model. 46 (2007), 1183-1190.
[6] W. Ding, Q. Wang; New results for the second order impulsive integro-differential equations with nonlinear boundary conditions; Communications in Nonlinear Science and Numerical Simulation, 15 (2010), 252-263.
[7] W. Ding, Y. Xing, M. Han; Anti-periodic boundary value problems for first order impulsive functional differential equations, Appl. Math. Comput. 186 (2007), 45-53.
[8] D. Franco, J. J. Nieto; First order impulsive ordinary differential equations with anti-periodic and nonlinear bondary conditions, Nonlinear Anal. 42 (2000), 163-173.
[9] A. Huseynov; On the sign of Greens function for an impulsive differential equation with periodic boundary conditions, Appl. Math. Comput. 208 (2009)
[10] S. Hristova, G. Kulev; Quasilinearizational of a boundary value problem for inpulsive differential equations, J. Comput. Appl. Math. 132 (2001), 399-407.
[11] G. S. Ladde, V. Lakshmikantham, A. S. Vatsals; Monotone Iterative Techniques for Nonlinear Differential Equation, Pitman Advanced Publishing Program, Pitman, London, 1985.
[12] V. Lakshmikantham, D. D. Bainov, P. S. Simeonov; Theory of Impulsive Differential Equation, World Scientific, signapore, 1989.
[13] J. Li, Z. Luo, X. Yang, J. Shen; Maximum principles for the periodic boundary value problem for impulsive integro-differential equations, Nonlinear Anal. 72 (2010), 3837-3841.
[14] B. Liu; An anti-periodic LaSalle oscillation theorem for a class of functional differential equations, J. Comput. Appl. Math. 223 (2009), 1081-1086.
[15] X. Liu (Ed.); Advances in impulsive differential equations, Dynamics of Continuous, Discrete § Impulsive Systems, Series A, vol. 9 (2002), pp. 313-462.
[16] Z. Luo, J. Shen, J.J. Nieto; Antiperiodic boundary value problem for first-order impulsive ordinary differential equations, Comput. Math. Appl. 49 (2005), 253-261.
[17] J. J. Nieto, Rodriguez-Lopez Rosana; Boundary value problems for a class impulsive functional equations, Comput. Math. Appl. 55 (2008), 2715-2731.
[18] X. Wang, J. Zhang; Impulsive anti-periodic boundary value problem of first-order integrodifferential equations, J. Comput. Appl. Math. 234 (2010), 3261-3267.
[19] M. Yao, A. Zhao, J. Yan; Anti-periodic boundary value problems of second order impulsive differential equations, Comput. Math. Appl. 59 (2010), 3617-3629.

Xiaojing Wang
Department of Mathematics, Huaiyin Normal University, Huaian, Jiangsi 223300, China E-mail address: wangxj2010106@sohu.com

Chuanzhi Bai
Department of Mathematics, Huaiyin Normal University, Huaian, Jiangsi 223300, China
E-mail address: czbai8@sohu.com

[^0]: 2000 Mathematics Subject Classification. 34A37, 34B15.
 Key words and phrases. Impulsive integro-differential equation;
 coupled lower-upper quasi-solutions; monotone iterative technique.
 (C) 2010 Texas State University - San Marcos.

 Submitted November 1, 2010. Published November 17, 2010.
 Supported by grant 10771212 from the National Natural Science Foundation of China.

