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PERSISTENCE OF SOLUTIONS TO NONLINEAR EVOLUTION
EQUATIONS IN WEIGHTED SOBOLEV SPACES

XAVIER CARVAJAL PAREDES, PEDRO GAMBOA ROMERO

Abstract. In this article, we prove that the initial value problem associated
with the Korteweg-de Vries equation is well-posed in weighted Sobolev spaces
X s,θ, for s ≥ 2θ ≥ 2 and the initial value problem associated with the nonlinear
Schrödinger equation is well-posed in weighted Sobolev spaces X s,θ, for s ≥
θ ≥ 1. Persistence property has been proved by approximation of the solutions
and using a priori estimates.

1. Introduction

In this paper we consider the initial value problem (IVP) for the Korteweg-de
Vries (KdV) equation

∂tu+ uxxx + a(u)ux = 0, (t, x) ∈ R× R,
u(x, 0) = u0(x),

(1.1)

where u a real-valued function and a ∈ C∞(R,R) is a real function.
And the initial value problem for the nonlinear Schrödinger (NLS) equation

∂tu = i(∆u− F (u)) = 0, (t, x) ∈ R× Rn,

u(x, 0) = u0(x),
(1.2)

where u a complex-valued function and F satisfies:
(F1) F ∈ C [s]+1(C,C) with F (0) = 0.
(F2) If s ≤ n/2 and if F (η) is a polynomial in η and η̄, then deg(F ) = k ≤

χ(s) := 1 + 4/(n − 2σ), −∞ ≤ σ ≤ n/2. If s ≤ n/2 and if F (η) is not a
polynomial, then

|DiF (η)| ≤ c|η|k−i, i = 0, 1, . . . , [s] + 1, as |η| → ∞, (1.3)

where [s] + 1 ≤ k ≤ χ(s).
The above conditions on a and F guarantee the well-posedness for (1.1) and

(1.2) in the usual Sobolev spaces Hs, s ≥ 2 and Hs, s ≥ 1 respectively, see [4, 7].
We are mainly concerned with the question of the persistence property in weighted
Sobolev spaces. The aim of this work is to use Lemmas proved in [10, Lemmas 3
and 4 ] and to apply this result to show persistence property of (1.1) in X s,θ (see

2000 Mathematics Subject Classification. 35A07, 35Q53.
Key words and phrases. Schrödinger equation; Korteweg-de Vries equation;
global well-posed; persistence property; weighted Sobolev spaces.
c©2010 Texas State University - San Marcos.
Submitted October 18, 2010. Published November 24, 2010.

1



2 X. CARVAJAL, P. GAMBOA EJDE-2010/169

definition in (1.15)) for s ≥ 2θ ≥ 2 and persistence property of (1.2) in X s,θ for
s ≥ θ ≥ 1. The notation we took are from [2].

In what follows we introduce the notion of well-posedness that we are going to
use throughout this work. We say that (1.1) is locally well-posed in a Banach space
X, if the following hold.

(1) There exist T > 0 and a unique solution u in the time interval [−T, T ]
(unique existence).

(2) The solution varies continuously depending upon the initial data (continu-
ous dependence); that is, continuity of the application

u0 → u from X to C([−T, T ];X).

In particular if un
0 → u0 when n→∞, then

sup
t∈[−T,T ]

‖un(t)− u(t)‖Hs → 0, (1.4)

where un(t) is solution of (1.1) with initial data un
0 .

(3) The solution describes a continuous curve in X in the time interval [−T, T ]
whenever initial data belongs to X (persistence).

Moreover, we say that (1.1) is globally well-posed in X if the same properties
hold for all time T > 0. If some of the hypotheses in the definition of local well-
posedness fail, we say that the IVP is well-posed.

Our main focus in this work will be to show the persistence property. In [2]
they proved the persistence property for an equation mixed Korteweg-de Vries -
Nonlinear Schrödinger with a weight of low regularity. To accomplish this they
used an abstract interpolation lemma ([2, Lemma 2.2]).

The interpolation lemma proved in [2] is quite general and applies to several
equations provided they satisfy certain a priori estimates. These a priori estimates
are related to the conserved quantities and are as follows.

‖u(t)‖L2 ≤ C‖u0‖L2 . (1.5)

‖u(t)‖Ḣ1 ≤ C‖u0‖Ḣ1 +A1(‖u0‖L2). (1.6)

‖u(t)‖Ḣ2 ≤ CA2(‖u0‖Ḣ2 , ‖u0‖Ḣ1 , ‖u0‖L2). (1.7)

‖u(t)‖L2(dµ̇r) ≤ C‖u0‖L2(dµ̇r) +A3(‖Da
xu0‖L2 , ‖Da−1

x u0‖L2 , . . . , ‖u0‖L2), (1.8)

where a = a(r) ≥ 1, r ∈ Z+, Aj are continuous functions with A1(0) = 0,
A2(0, 0, 0) = 0 and A3(0, . . . , 0) = 0.

It can be inferred that, if one has local well-posedness result for given data in Hs

and if the model under consideration satisfies a priori estimates (1.5)-(1.8), then
with the help of an abstract interpolation lemma, it is easy to prove persistence
property in weighted Sobolev spaces.

A typical example of (1.1) that satisfies the properties (1.5)–(1.8) listed above is
the IVP associated to the generalized Korteweg-de Vries (gKdV) equation (a(x) =
xk in (1.1))

∂tu+ ∂xxxu+ uk∂xu = 0, (t, x) ∈ R2, k = 1, 2, 3, . . .

u(x, 0) = u0(x).
(1.9)
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Another typical example is the IVP associated to the Nonlinear Schrödinger (NLS)
equation, (1.2) when F (x) = µ|x|α−1.

i∂tu+ ∆u = µ|u|α−1u, µ = ±1, α > 1, x ∈ Rn, t ∈ R
u(x, 0) = u0(x),

(1.10)

the local well-posedness has been studied in [3] for given data in the weighted
Sobolev spaces. More precisely, the following result that deals with the persistence
property has been proved in [3].

Theorem 1.1. Suppose that u0 ∈ Hs(Rn)∩L2(|x|2mdx), m ∈ Z+, with m ≤ α−1
if α is not an odd integer.

(A) If s ≥ m, then there exist T = T (‖u0‖s,2) > 0 and a unique solution
u = u(x, t) of (1.10) with

u ∈ C([−T, T ];Hs ∩ L2(|x|2mdx)) ∩ Lq([−T, T ];Lp
s ∩ Lp(|x|2mdx)). (1.11)

(B) If 1 ≤ s < m, then (1.11) holds with [s] instead of m, and

Γβu = (xj + 2it∂xj
)βu ∈ C([−T, T ];L2) ∩ Lq([−T, T ];Lp), (1.12)

for any β ∈ (Z+)n with |β| ≤ m.

The power m of the weight in Theorem 1.1 is assumed to be a positive integer.
In the recent work of Nahas and Ponce [10], this restriction in m is relaxed by
proving that the persistence property holds for positive real m. To be more precise,
the result in [10] is the following.

Theorem 1.2. Suppose that u0 ∈ Hs(Rn) ∩ L2(|x|2mdx), m > 0, with m ≤ α− 1
if α is not an odd integer.

(A) If s ≥ m, then there exist T = T (‖u0‖s,2) > 0 and a unique solution
u = u(x, t) of (1.10) with

u ∈ C([−T, T ];Hs ∩ L2(|x|2mdx)) ∩ Lq([−T, T ];Lp
s ∩ Lp(|x|2mdx)). (1.13)

(B) If 1 ≤ s < m, then (1.13) holds with [s] instead of m, and

ΓbΓβu ∈ C([−T, T ];L2) ∩ Lq([−T, T ];Lp), (1.14)

where Γb = ei|x|2/4t2btbDb(ei|x|2/4t.) with |β| = [m] and b = m− [m].

Kato [5] studied the IVP associated to the gKdV equation for given data in the
weighted Sobolev spaces and proved the following result.

Theorem 1.3 (Kato). Let r ∈ Z+, then the IVP for (1.9) is locally well-posed in
weighted Sobolev spaces X 2r,r, and globally well-posed in X 2r,r if the initial data
satisfies ‖u0‖L2 < γ.

In this work we are interested in removing the requirement that the power of the
weight in Theorem 1.3 is integer, by proving the similar result for the non integer
values of r ≥ 1 and also we present a proof simples for the persistence in weighted
Sobolev spaces for the generalized non-linear Schrödinger equation (1.10) for the
non integer values of r ≥ 1. In [10] they cover all possible values of the parameters
s, θ in the spaces X s,θ. The main results of this paper are the following.

Theorem 1.4. Problems (1.1) and (1.2) are local well-posed in weighted Sobolev
spaces X s,θ, for s ≥ 2θ ≥ 2 and X s,θ, for s ≥ θ ≥ 1 respectively.
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Without loss of generality in the proof of Theorem 1.4, we will restrict our at-
tention to (1.9) and (1.10). As an application of Theorem 1.4 we have the following
result.

Theorem 1.5. Problem (1.1) is globally well-posed in X s,θ, for s ≥ 2θ ≥ 2, if the
initial data satisfies ‖u0‖L2 < γ.

Is not difficult to see that a similar proof as in [2] proves local well-posedness for
(1.1), in weighted Sobolev spaces X s,θ, s ≥ 2 and θ ∈ [0, 1].

For other results about persistence, for the problems (1.9) and (1.10) see the
work of Nahas and Ponce in [9], see also Nahas, [8] for persistence of the modified
Korteweg-de Vries equation (k=2 in (1.10)).

Notation and Background: We follow the notation introduced in earlier paper
[2]. For the sake of clarity we recall them here. We use dx to denote the Lebesgue
measure on R and, for θ ≥ 0, we use

dµθ(x) := (1 + |x|2)θ dx,

dµ̇θ(x) := |x|2θ dx

to denote the Lebesgue-Stieltjes measures on R. Hence, given a set X, a measurable
function f ∈ L2(X; dµθ) means that

‖f‖2L2(X;dµθ) =
∫

X

|f(x)|2 dµθ(x) <∞.

When X = R, we write: L2(dµθ) ≡ L2(R; dµθ), and for simplicity

L2 ≡ L2(dµ0), L2(dµ) ≡ L2(dµ1).

Analogously, for the measure dµ̇θ. We will use the Lebesgue space-time Lp
xLq

τ

endowed with the norm

‖f‖Lp
xLq

τ
=

∥∥‖f‖Lq
τ

∥∥
Lp

x
=

( ∫
R

( ∫ τ

0

|f(x, t)|qdt
)p/q

dx
)1/p

(1 ≤ p, q <∞).

When the integration in the time variable is on the whole real line, we use the
notation ‖f‖Lp

xLq
t
. The notation ‖u‖Lp is used when there is no doubt about the

variable of integration. Similar notations when p or q are ∞.
As usual, Hs ≡ Hs(Rn), Ḣs ≡ Ḣs(Rn) are the classic Sobolev spaces in Rn,

endowed respectively with the norms

‖f‖Hs := ‖f̂‖L2(dµs), ‖f‖Ḣs := ‖f̂‖L2(dµ̇s).

In this work, we study the solutions of (1.1) in the Sobolev spaces with weight
X s,θ, defined as

X s,θ := Hs ∩ L2(dµθ), (1.15)
with the norm

‖f‖X s,θ := ‖f‖Hs + ‖f‖L2(dµθ).

Remark 2. We remark that, X s,1 ⊆ X s,θ, for all s ∈ R and θ ∈ [0, 1].

Indeed, using Hölder’s inequality

‖f‖L2(dµ̇θ) ≤ ‖f‖1−θ
L2 ‖f‖θ

L2(dµ̇).

Remark 3. Let b ∈ R to denote

Dbf(x) = ((2π|ξ|)bf̂ )
∨
(x).
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We follow the notation of the classical ψ. d.o’s in Sm
1,0:

Sm
1,0 := {a ∈ C∞(R2n) : |∂α

x ∂
β
ξ a(x, ξ)| ≤ Cα,β(1 + |ξ|)m−|β| ∀α, β ∈ (Z+)n}.

The proof of the following lemmas can be found in [10].

Lemma 3.1. If a ∈ S0
1,0 and 〈x〉 := (1 + |x|2)1/2, then

a(x,D) : L2(Rn; dµb) → L2(Rn; dµb), ∀ b ≥ 0.

is the differential, limited operator.

Lemma 3.2. Let a, b > 0. Suppose that Daf ∈ L2(Rn) and 〈x〉bf = (1+|x|2)b/2f ∈
L2(Rn). Then

‖〈x〉θbD(1−θ)af‖L2 ≤ C‖〈x〉bf‖θ
L2‖Daf‖1−θ

L2 . (3.1)

4. Statement of the well-posedness result

In this section we prove the well-posedness of the Cauchy problem (1.1) in the
weighted Sobolev space X s,θ, for θ ≥ 1 and s ≥ 2θ.

Lemma 4.1. If u0 ∈ L2(dµ̇θ), θ ∈ [0, 1], λ > 0 and uλ
0 (x) = F−1(χ{|ξ|<λ}û0)(x),

then
‖uλ

0‖L2(dµ̇θ) ≤ ‖u0‖L2(dµ̇θ). (4.1)

If θ = 0, (4.1) is a direct consequence of Plancherel’s theorem and definition of
uλ

0 . If θ = 1, using properties of Fourier transform we obtain

|x̂uλ
0 (ξ)| = |∂ξûλ

0 (ξ)| = |χ{|ξ|<λ}∂ξû0(ξ)| = χ{|ξ|<λ}|x̂u0(ξ)|.
Thus by Plancherel’s equality∫

R
x2|uλ

0 (x)|2dx =
∫

R
|x̂uλ

0 (ξ)|2dξ ≤
∫

R
|x̂u0(ξ)|2dξ =

∫
R
|xu0(x)|2dx.

When θ ∈ (0, 1), we obtain (4.1) by interpolation between the cases θ = 0 and
θ = 1, see [1].

Lemmas 4.4 and 4.5 tells nothing new; we present a proof for the sake of com-
pleteness

4.1. A priori estimates for the nonlinear Schrödinger equation.

Lemma 4.2. If u ∈ S(Rn), r ≥ 1. Then∫
Rn

〈x〉2r−2|Dxu|2 dx ≤
( ∫

Rn

〈x〉2r|u|2 dx
)1− 1

r
( ∫

Rn

|Dru|2 dx
)1/r

.

Proof. We apply the Lemma 3.2, taking a = b = r and θ = 1− 1
r
, then r ≥ 1 since

0 ≤ θ ≤ 1. �

Lemma 4.3. If u ∈ S(Rn). Then∫
Rn

〈x〉2b|∇u(t, x)|2dx ≤ br,n

∫
Rn

〈x〉2b|Dxu(t, x)|2dx+ br,n

∫
Rn

〈x〉2b|u(t, x)|2dx.

Proof. Since D̂xu(ξ) = |ξ|û(ξ), we consider a(x, ξ) :=
ξj

1 + |ξ|
and using the Lemma

3.1, we can see that the operator a(x, ξ) is bounded and a ∈ S0
1,0. �
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Lemma 4.4. If u is a solution of the IVP for the NLS (1.10) with u0 ∈ X s,r,
s ≥ r ≥ 1. Then∫

Rn

ϕ|u|2 dx ≤
{
Cr,n sup

t∈[−T,T ]

‖u(t)‖2Hr(Rn) + ‖u(0)‖2L2(dµr)

}
ecr,nT . (4.2)

Proof. Consider ϕ(x) := (1 + |x|2)r = 〈x〉2r to x ∈ Rn Multiplying the term ϕu
where u ∈ S(Rn) in equation (1.10) and after integrating on Rn, we obtain taking
real part

2<
{ ∫

Rn

utϕudx
}
− 2<

{
i

∫
Rn

∆uϕu dx
}

= −2µ<
{
i

∫
Rn

|u|αϕdx
}

(4.3)

observe that ∂tu.u = 2<{u.ut}. Replacing in (4.3), we obtain

∂t

∫
Rn

ϕdx|u|2 = 2<
{
i

∫
Rn

∆uϕu dx
}
, (4.4)

on the other hand∫
Rn

ϕ∂2
xi
uu dx = −

∫
Rn

∂xi(ϕu)∂xiu dx

=
∫

Rn

(ϕ∂2
xi
u+ 2∂xiϕ∂xiu+ ∂2

xi
ϕu)u dx,

(4.5)

of (4.5), we obtain∫
Rn

ϕ∆uu dx =
∫

Rn

(ϕ∆u+ 2∇ϕ.∇u+ ∆ϕu )u dx,

which leads us to

2i
∫

Rn

ϕ={∆uu} dx =
∫

R
∆ϕ|u|2 dx+ 2

∫
Rn

∇ϕ.∇uu dx, (4.6)

of (4.4) and (4.6), we obtain

∂t

∫
Rn

ϕ|u|2 dx = i

∫
R

∆ϕ|u|2 dx+ 2i
∫

Rn

∇ϕ.∇uu dx,

and taking real part

∂t

∫
Rn

ϕ|u|2 dx = 2<
{
i

∫
Rn

∇ϕ.∇uu dx
}
. (4.7)

Notice that
|∇ϕ| ≤ 2r〈x〉2r−1, (4.8)

so ∣∣={ ∫
Rn

∇ϕ.∇uu dx
}∣∣ ≤ ∫

Rn

|∇ϕ‖∇u‖u| dx

≤ 2r
∫

Rn

〈x〉r|u|〈x〉r−1|∇u| dx

≤ r

∫
Rn

ϕ|u|2 dx+ r

∫
Rn

〈x〉2r−2|∇u|2 dx.

(4.9)

Applying Lemma 4.3, (4.4) and (4.9), we have

∂t

∫
Rn

ϕ|u|2 dx ≤ cr,n

∫
Rn

ϕ|u|2 dx+ cr,n

∫
Rn

〈x〉2r−1|Dxu|2 dx, (4.10)
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and using Lemma 4.2, we obtain

∂t

∫
Rn

ϕ|u|2 dx ≤ cr,n

∫
Rn

ϕ|u|2 dx+ cr,n

∫
Rn

|Dxu|2 dx+ cr,n

∫
Rn

|Dru|2 dx.

Thus

∂t

∫
Rn

ϕ|u|2 dx ≤ cr,n

∫
Rn

ϕ|u|2 dx+ cr,n‖u‖2Hr(Rn), (4.11)

applying Gronwall, we obtain the result. �

4.2. A priori estimates for the generalized Korteweg-de Vries equation.

Lemma 4.5. If u is a solution of the IVP for (1.9) with u0 ∈ X s,θ, s ≥ 2θ ≥ 2.
Then ∫

R
ϕ|u|2 dx ≤ Cθ,k{ sup

t∈[−T,T ]

‖u‖2H1(R) + sup
t∈[−T,T ]

‖u‖2H2θ(R)}e
cθ,kT

+ ‖u(0)‖2L2(dµθ) e
cθ,kT .

Proof. Let u ∈ S(R). In (1.9) consider k ∈ N, s ≥ 2θ, θ ≥ 1. Now multiply the
equation by the term ϕu and after integrating on R, where ϕ(x) := (1 + |x|2)θ.

∂t

∫
R
ϕ|u|2 dx = −2

∫
R
ϕuuxxx dx− 2

∫
R
ϕuk+1ux dx

= −1
2

∫
R
ϕxxxu

2 dx+ 3
∫

R
ϕxuxxu dx−

2
k + 2

∫
R
ϕ∂xu

k+2 dx

=
∫

R
ϕxxxu

2 dx− 3
∫

R
ϕx|ux|2 dx︸ ︷︷ ︸

I3

− 2
k + 2

∫
R
ϕ∂xu

k+2 dx︸ ︷︷ ︸
I4

.

(4.12)

Is obvious that ∫
R
ϕxxx|u|2 dx ≤ Cθ

∫
R
ϕ|u|2 dx.

Applying interpolation

|I3| ≤ Cθ‖u‖2H1(R) +
( ∫

R
|x|2θ|u|2 dx

)1− 1
2θ

( ∫
R
|D2θ

x |2 dx
)1/(2θ)

|I4| ≤ Cθ sup
t∈[−T,T ]

‖u(t)‖k
H1(R)

∫
R
ϕ|u|2 dx.

(4.13)

Using Young

|I3| ≤ Cθ,k

(
sup

t∈[−T,T ]

‖u(t)‖H1(R)2 + sup
t∈[−T,T ]

‖u(t)‖2H2θ(R)

)
+ Cθ,k

(
1 + sup

t∈[−T,T ]

‖u(t)‖k
H1(R)

) ∫
R
ϕ|u|2 dx.

(4.14)

Applying similar ideas to the case Nonlinear Schrödinger (NLS) equation and using
Gronwall, we complete the proof. �
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4.3. Proof of Theorems 1.4 and 1.5.

Proof of Theorem 1.4 (case gKdV). The case NLS follows a similar argument. Let
u0 ∈ X s,θ, s ≥ 2θ ≥ 2, u0 6= 0, we know that that there exists an function
u ∈ C([−T, T ],Hs) such that (1.9) is local well-posed in Hs. Is well know that
S(R) is dense in X s,θ. Then for u0 ∈ X s,θ there exist a sequence (uλ

0 ) in S(R) such
that

uλ
0 → u0 in X s,θ. (4.15)

By (1.4) (continuous dependence) the sequence of solutions uλ(t) associated to
IVP (1.1) with initial data uλ

0

∂tu
λ + uλ

xxx + (uλ)kuλ
x = 0, (t, x) ∈ R2,

uλ(x, 0) = uλ
0 (x),

(4.16)

satisfy

sup
t∈[−T,T ]

‖uλ(t)− u(t)‖Hs
λ→∞→ 0, s ≥ 2θ ≥ 2. (4.17)

The solutions uλ of (4.16) satisfy the conditions (1.5)-(1.8) of Section 1. Therefore,
Lemma 4.5 gives∫

R
ϕ|uλ|2 dx ≤ Cθ,k{ sup

t∈[−T,T ]

‖uλ‖2H1(R) + sup
t∈[−T,T ]

‖uλ‖2H2θ(R)}e
cθ,kT

+ ‖uλ(0)‖2L2(dµθ) e
cθ,kT ,

Taking the limit when λ→∞, (4.17) implies∫
R
ϕ|u|2 dx ≤ Cθ,k{ sup

t∈[−T,T ]

‖u‖2H1(R) + sup
t∈[−T,T ]

‖u‖2H2θ(R)}e
cθ,kT

+ ‖u(0)‖2L2(dµθ) e
cθ,kT .

Thus u(t) ∈ X s,θ, t ∈ [−T, T ], which proves the persistence. The local well-
posedness theory in Hs implies the uniqueness and continuous dependence upon
the initial data in Hs, this imply uniqueness in X s,θ.

Now we will prove continuous dependence in the norm ‖ · ‖L2(dµ̇θ). Let u(t) and
v(t) be two solutions in X s,θ, of (1.10) with initial dates u0 and v0 respectively,
let uλ(t), vλ(t) be the solutions associated with (1.10) with initial dates uλ

0 and vλ
0

respectively such that uλ
0 , v

λ
0 ∈ S(R),

uλ
0 → u0, vλ

0 → v0 in X s,θ (4.18)

and with λ� 1, we have

‖u(t)− v(t)‖L2(dµ̇θ) ≤ ‖u(t)− uλ(t)‖L2(dµ̇θ) + ‖uλ(t)− vλ(t)‖L2(dµ̇θ)

+ ‖vλ(t)− v(t)‖L2(dµ̇θ).

The convergence

sup
t∈[−T,T ]

‖uλ(t)− u(t)‖Hs → 0, sup
t∈[−T,T ]

‖vλ(t)− v(t)‖Hs → 0, (4.19)

as λ→∞, where s ≥ 2θ ≥ 2, implies for λ� 1 that

|u(x, t)− uλ(x, t)| ≤ 2|u(x, t)| and |v(x, t)− vλ(x, t)| ≤ 2|v(x, t)|.
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The Dominated Convergence Lebesgue’s Theorem gives

‖u(t)− uλ(t)‖L2(dµ̇θ) → 0 and ‖vλ(t)− v(t)‖L2(dµ̇θ) → 0.

Let wλ := uλ − vλ, then wλ satisfies the equation

wλ
t + wλ

xxx + (uλ)kwλ
x + vλ

xA(uλ, uλ)wλ = 0,

where A(x, y) = xk−1 + xk−2y + · · ·+ xyk−2 + yk−1.
Then, we multiply the above equation by ϕw̄λ, integrate on R, to obtain by

Gronwall’s Lemma that∫
R
ϕ|wλ(t, x)|2 dx ≤

{ ∫
R
ϕ|wλ(0, x)|2 dx+ cθ sup

t∈[−T,T ]

‖wλ(t)‖2H2θ

}
ek0T , (4.20)

where k0 is a constant to λ � 1. Observe that the convergence (4.18) and (4.19)
imply

‖wλ(0)‖L2(dµθ) = ‖uλ
0 − vλ

0 ‖L2(dµθ) ≤ 2‖u0 − v0‖L2(dµθ),

and
‖wλ(t)‖H2θ = ‖uλ(t)− vλ(t)‖H2θ ≤ 2 sup

t∈[−T,T ]

‖u(t)− v(t)‖H2θ ,

if λ� 1, which together with (4.20) gives the continuous dependence. �

Proof of Theorem 1.5. Is a direct consequence of the proof of Theorem 1.4 and the
global theory for the gKDV equation (see [5]). �
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