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LIFE SPAN OF BLOW-UP SOLUTIONS FOR HIGHER-ORDER
SEMILINEAR PARABOLIC EQUATIONS

FUQIN SUN

Abstract. In this article, we study the higher-order semilinear parabolic

equation

ut + (−∆)mu = |u|p, (t, x) ∈ R1
+ × RN ,

u(0, x) = u0(x), x ∈ RN .

Using the test function method, we derive the blow-up critical exponent. And
then based on integral inequalities, we estimate the life span of blow-up solu-

tions.

1. Introduction

This article concerns the cauchy problem for the higher-order semilinear para-
bolic equation

ut + (−∆)mu = |u|p, (t, x) ∈ R1
+ × RN ,

u(0, x) = u0(x), x ∈ RN ,
(1.1)

where m, p > 1. Higher-order semilinear and quasilinear heat equations appear in
numerous applications such as thin film theory, flame propagation, bi-stable phase
transition and higher-order diffusion. For examples of these mathematical models,
we refer the reader to the monograph [9]. For studies of higher-order heat equations
we refer also to [1, 2, 4, 5, 6, 10] and the references therein.

In [6], under the assumption that u0 ∈ L1(RN ) ∩ L∞(RN ), u0 6≡ 0 and∫
RN

u0(x)dx ≥ 0, (1.2)

Galaktionov and Pohozaev studied the Fujita critical exponent of problem (1.1)
and showed that pF = 1 + 2m/N . The critical exponents pF is calculated from
both sides:

(i) blow-up of any solutions with (1.2) for 1 < p ≤ pF and
(ii) global existence of small solutions for p > pF .
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Egorov et al [5] studied the asymptotic behavior of global solutions with suitable
initial data in the supercritical Fujita range p > pF by constructing self-similar
solutions of higher-order parabolic operators and through a stability analysis of the
autonomous dynamical system. For other studies of the problem, we refer to [4]
where global non-existence was proved for p ∈ (1, pF ] by using the test function
approach, and [1] where a general situation was discussed with nonlinear function
h(u) in place of |u|p.

In a recent paper [10], we discussed the system

ut + (−∆)mu = |v|p, (t, x) ∈ R1
+ × RN ,

vt + (−∆)mv = |u|q, (t, x) ∈ R1
+ × RN ,

u(0, x) = u0(x), v(0, x) = v0(x), x ∈ RN .

(1.3)

It is proved that if N/(2m > max
{

1+p
pq−1 , 1+q

pq−1

}
then solutions of (1.3) with small

initial data exist globally in time. Moreover the decay estimates ‖u(t)‖∞ ≤ C(1 +
t)−σ1 and ‖v(t)‖∞ ≤ C(1+ t)−σ2 with σ1 > 0 and σ2 > 0 are also satisfied. On the
other hand, under the assumption that∫

RN

u0(x)dx > 0,

∫
RN

v0(x)dx > 0,

if N/(2m) ≤ max
{

1+p
pq−1 , 1+q

pq−1

}
then every solution of (1.3) blows up in finite time.

In our present work, exploiting the test function method, we shall give the life
span of blow-up solution for some special initial data. The main idea comes from
[7] for discussing cauchy problem of the second order equation

ρ(x)ut −∆um = h(x, t)u1+p, (t, x) ∈ R1
+ × RN ,

u(0, x) = u0(x), x ∈ RN .
(1.4)

Using the test function method, the author gave the blow-up type critical exponent
and the estimates for life span [0, T ) like that in [8]. For the construction of a
test function, the author mainly based on the eigenfunction Φ corresponding to the
principle eigenvalue λ1 of the Dirichlet problem on unit ball B1,

−∆w(x) = λ1w(x), x ∈ B1,

w(x) = 0, x ∈ ∂B1.

However, for the operator (−∆)m, the eigenfunction Φ corresponding to the prin-
cipal eigenvalue λ1 of the Dirichlet problem may change sign (see [3]). We will use
a non-negative smooth function Φ constructed in [1] and [6]. The organization of
this paper is as follows. In section 2, by the test function method, we derive some
integral inequalities and reacquire the Fujita critical exponent pF obtained in the
paper [6]. Section 3 is for the estimate of life span of blow-up solution.

2. Fujita critical exponent

In this section, we shall use the test function method to derive the Fujita critical
exponent and some useful inequalities. From the reference [6], we know that if
u0 ∈ L1(RN ) ∩ L∞(RN ), then the solution u(t, ·) ∈ C1([0, T ];L1(RN ) ∩ L∞(RN ))
for some T > 0. Therefore, without loss of generality, we may consider u0(x)
concentrated around the origin and bounded below by a positive constant in some
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neighborhood of origin. Further, u0(x) → 0 as |x| → ∞. With these choices, the
solution u and its spatial derivatives vanish as |x| → ∞ for t > 0.

First we construct a test function. For this aim, we shall use a non-negative
smooth function Φ which was constructed in the papers [1] and [6].

Let

Φ(x) = Φ(|x|) > 0, Φ(0) = 1; 0 < Φ(r) ≤ 1 for r > 0,

where Φ(r) is decreasing and Φ(r) → 0 as r →∞ sufficiently fast. Moreover, there
exists a constant λ1 > 0 such that

|∆mΦ| ≤ λ1Φ, x ∈ RN , (2.1)

and such that

‖Φ‖1 =
∫

RN

Φ(x)dx = 1.

This can be done by letting Φ(r) = e−rν

for r � 1 with ν ∈ (0, 1], and then
extending Φ to [0,∞) by a smooth approximation. Take θ > p/(p− 1), and define

φ(t) =


0, t > T,

(1− (t− S)/(T − S))θ, 0 ≤ t ≤ T,

1, t < S,

where 0 ≤ S < T . Now set

ξ(t, x) = φ(t/R2m)Φ(x/R), R > 0.

Suppose that u exists in [0, t∗) × RN . For TR2m < t∗, multiply both sides of
equation (1.1) by ξ and integrate over [0, TR2m)× RN by parts to obtain∫ TR2m

0

∫
RN

|u|pξdxdt +
∫

RN

u0(x)ξ(0, x)dx ≤
∫ TR2m

0

∫
RN

|u|{|ξt|+ |∆mξ|}dxdt.

(2.2)
Denote

I(S, T ) =
∫ TR2m

SR2m

∫
RN

|u|pφ(t/R2m)Φ(x/R)dxdt, J =
∫

RN

u0(x)Φ(x/R)dx.

We now estimate I(0, T ) + J . Using the Hölder inequality, since φ′(t) = 0 except
on (S, T ), we obtain∫ TR2m

0

∫
RN

|u||ξt|dxdt =
∫ TR2m

SR2m

∫
RN

|u|φ(t/R2m)1/p|φ′(t/R2m)|

× φ(t/R2m)−1/p Φ(x/R)R−2mdxdt

≤ I(S, T )1/pR−2m
( ∫ TR2m

SR2m

∫
RN

|φ′(t/R2m)|p/(p−1)

× φ(t/R2m)−1/(p−1)Φ(x/R)dxdt
)(p−1)/p

.

(2.3)
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Since ∆m
x Φ(x/R) = R−2m∆m

y Φ(y) for y = x/R, using the Hölder inequality and
(2.1) we have∫ TR2m

0

∫
RN

|u||∆mξ|dxdt

=
∫ TR2m

0

∫
RN

|u|φ(t/R2m)|∆mΦ(x/R)|dxdt

= R−2m

∫ TR2m

0

∫
RN

|u|φ(t/R2m)|∆m
x/RΦ(x/R)|dxdt

≤ λ1R
−2m

∫ TR2m

0

∫
RN

|u|φ(t/R2m)Φ(x/R)dxdt

≤ I(0, T )1/pλ1R
−2m

( ∫ TR2m

0

∫
RN

φ(t/R2m)Φ(x/R)dxdt
)(p−1)/p

.

(2.4)

Making the change of variables τ = t/R2m and η = x/R, from (2.2), (2.3) and (2.4)
we deduce that

I(0, T ) + J

≤ I(S, T )1/pRs
( ∫ TR2m

SR2m

∫
RN

|φ′(τ)|p/(p−1)φ(τ)−1/(p−1)Φ(η)dηdτ
)(p−1)/p

+ I(0, T )1/pλ1R
s
( ∫ T

0

∫
RN

φ(τ)Φ(η)dηdτ
)(p−1)/p

,

(2.5)

where s = −2m + (2m + N)(p− 1)/p. Set

A(S, T ) =
( ∫ T

S

∫
RN

|φ′(τ)|p/(p−1)φ(τ)−1/(p−1)Φ(η)dηdτ
)(p−1)/p

,

B(T ) =
( ∫ T

0

∫
RN

φ(τ)Φ(η)dηdτ
)(p−1)/p

.

Thus (2.5) can be simply written as

I(0, T ) + J ≤ Rs[I(S, T )1/pA(S, T ) + λ1I(0, T )1/pB(T )]. (2.6)

We have the following result:

Theorem 2.1 (Fujita critical exponent). If∫
RN

u0(x)dx ≥ 0, u0(x) 6≡ 0

and s ≤ 0, that is to say p ≤ pc = 1 + 2m/N , then (1.1) has no global solution.

Proof. By slightly shifting the origin in time, we may assume∫
RN

u0(x)dx > 0. (2.7)

Let u be a global solution with u0 satisfying (2.7), then∫ ∞

0

∫
RN

|u|pdxdt > 0.
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Suppose s < 0. Letting R tend to infinity in (2.6) to obtain∫ ∞

0

∫
RN

|u|pdxdt +
∫

RN

u0(x)dx = 0.

Hence u ≡ 0, a contradiction.
Suppose s = 0. We first show J ≥ 0 for all R > 0. In fact, from the assumptions

on initial datum, there exists ε0 > 0 such that u0(x) ≥ δ > 0 for |x| ≤ ε0. Set

J =
∫
|x|≤ε0

u0(x)Φ(x/R)dx +
∫
|x|>ε0

u0(x)Φ(x/R)dx

> δ

∫
|x|≤ε0

Φ(x/R)dx +
∫
|x|>ε0

u0(x)Φ(x/R)dx

= δRN

∫
|η|≤ε0/R

Φ(η)dη +
∫
|x|>ε0

u0(x)Φ(x/R)dx

≥
∫
|x|>ε0

u0(x)Φ(x/R)dx.

By the choice of Φ, we have

lim
R→0

∫
|x|>ε0

u0(x)Φ(x/R)dx = 0.

And so there exists R0 > 0 such that J ≥ 0 for all 0 < R < R0. On the other hand,
there exists M > 0 such that∫

|x|≤R0M

u0(x)dx >

∫
|x|>R0M

|u0(x)|dx.

In addition, by a slight modification of Φ, we may set Φ(x) ≡ 1 in {x : |x| ≤ M}.
Note that since 0 ≤ Φ ≤ 1 we have, for R ≥ R0,

J =
∫
|x|≤R0M

u0(x)Φ(x/R)dx +
∫
|x|>R0M

u0(x)Φ(x/R)dx

≥
∫
|x|≤R0M

u0(x)dx−
∫
|x|>R0M

|u0(x)|Φ(x/R)dx

≥
∫
|x|≤R0M

u0(x)dx−
∫
|x|>R0M

|u0(x)|dx > 0.

Now we are in the position to complete the proof of case s = 0. Since

A(S, T ) =
θ(T − S)−1/p

[θ − 1/(p− 1)](p−1)/p
, B(T ) =

[
S +

T − S

θ + 1

](p−1)/p

,

we may choose S small and θ large, T − S bounded, such that

B(T ) ≤
∫

RN

u0(x)dx/
[
2λ1

( ∫ ∞

0

∫
RN

|u|pdxdt
)1/p]

. (2.8)

Moreover, note that J ≥ 0, from (2.6) we get that I(0, T ) is uniformly bounded for
all R > 0. Then, keeping T − S bounded,

lim
R→∞

I(S, T )1/pA(S, T ) = 0. (2.9)

Letting R →∞, (2.6)–(2.9) give∫ ∞

0

∫
RN

|u|pdxdt +
1
2

∫
RN

u0(x)dx = 0,
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which also implies u ≡ 0. �

Let σ be an arbitrary positive number. For x ∈ [0,∞) and 0 < ω < 1, define

Ψ(ω;σ) := max
x

(σxω − x).

It is easy to check that Ψ(ω;σ) = (1− ω)ω
ω

1−ω σ
1

1−ω . Set

A(T ) = A(0, T ), S(T ) = A(T ) + λ1B(T ).

We have the following result.

Theorem 2.2. If u is a solution of (1.1) defined on [0, t∗)×RN . Then, for R > 0
and 0 ≤ τ ≤ t∗R

−2m, we have∫
RN

u0(x)Φ(x/R)dx ≤ Ψ
(1

p
; S(T )Rs

)
. (2.10)

Moreover, if u is a global solution of (1.1), then

lim
R→∞

supR−ŝ

∫
RN

u0(x)Φ(x/R)dx ≤ λ
1/(p−1)
1 , (2.11)

where ŝ = sp/(p− 1).

Proof. Denote I(T ) = I(0, T ). Firstly, by the definition of Ψ, from (2.6) we know
that

J ≤ I(T )1/pS(T )Rs − I(T ) ≤ Ψ
(1

p
; S(T )Rs

)
.

This is exactly (2.10). By means of (2.10), we deduce that∫
RN

u0(x)Φ(x/R)dx ≤ Ψ
(1

p
; S(T )Rs

)
= (1− 1/p)(1/p)

1/p
1−1/p [S(T )Rs]

1
1−1/p

= (p− 1)pp/(1−p)Rsp/(p−1)S(T )
p

p−1 ,

(2.12)

which leads to

lim
R→∞

supR−ŝ

∫
RN

u0(x)Φ(x/R)dx ≤ (p− 1)pp/(1−p)[inf
T

S(T )]
p

p−1 . (2.13)

To estimate S(T ), we need estimate A(T ) and B(T ) respectively. Denote

ap =
θ

[θ − 1/(p− 1)](p−1)/p
, bp =

λ1

(θ + 1)(p−1)/p
.

We obtain
S(T ) = apT

−1/p + bpT
(p−1)/p.

Since

min
T

S(T ) = p[ap/(p− 1)](p−1)/pb1/p
p

=
p(p− 1)−(p−1)/pλ

1/p
1 θ(p−1)/p

[θ − 1/(p− 1)](p−1)2/p2(1 + θ)(p−1)/p2 ,

we have
lim

θ→∞
min

T
Sp(T ) = p(p− 1)−(p−1)/pλ

1/p
1 . (2.14)

Combining (2.13) and (2.14), we obtain (2.11). The proof is complete. �
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3. Life span of blow-up solutions

In this section, we shall estimate the life span of the blow-up solution with some
special initial datum. To this aim, we assume that u0 satisfies

(H) There exist positive constants C0, L such that

u0(x) ≥

{
δ, |x| ≤ ε0,

C0|x|−κ, |x| > ε0,

where δ and ε0 are as in the proof of Theorem 2.1, and N < κ < 2m/(p−1)
if p < 1 + 2m/N ; 0 < κ < N if p = 1 + 2m/N .

Now we state the main result.

Theorem 3.1. Let (H) be fulfilled and uε be the solution of (1.1) with initial data
uε(0, x) = εu0(x), where ε > 0. Denote [0, Tε) be the life span of uε. Then there
exists a positive constant C such that Tε ≤ Cε1/β̂, where

β̂ =
κ

2m
− 1

p− 1
< 0.

Remark 3.2. When p = 1 + 2m/N , note that β̂ = (κ−N)/(2m).

Proof. Choose R such that R ≥ R0 > 0. By the definition of J and the assumptions
of initial data, we have

J = ε

∫
RN

u0(x)Φ(x/R)dx

≥ ε

∫
|x|>ε0

u0(x)Φ(x/R)dx

= εRN

∫
|η|>ε0/R

u0(Rη)Φ(η)dη

≥ εC0R
N−κ

∫
|η|>ε0/R

|η|−κΦ(η)dη

≥ εC0R
N−κ

∫
|η|>ε0/R0

|η|−κΦ(η)dη

= C̃RN−κ.

(3.1)

Using (2.12), we know from (3.1) that, for 0 < τ < Tε,

ε ≤ Rκ−N C̃−1(p− 1)pp/(1−p)[RsS(T )]p/(p−1)

= C̃−1(p− 1)pp/(1−p)H(τ,R),
(3.2)

where H(τ,R) = Rκ−N [S(τR−2m)Rs]p/(p−1). We write

H(τ,R) = [apτ
−1/pRα1 + bpτ

(p−1)/pR−α2 ]p/(p−1),

where α1 = (p− 1)κ/p, α2 = 2m− (p− 1)κ/p. The choice of κ implies α1, α2 > 0.
Now we derive some estimates on H(τ,R). If we can find a function G(τ) such

that
H(τ,R) ≥ G(τ), ∀ τ > 0,
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and for each value of R ≥ R0 there exists a value of τR such that H(τR, R) = G(τR),
then (3.2) holds for all R ≥ R0 if and only if

ε ≤ C̃−1(p− 1)pp/(1−p)G(τ). (3.3)

Set
y = Rα1+α2 = R2m, β1 = α2/(α1 + α2) = α2/(2m).

Then
H(τ,R) = τ−1/(p−1)h(τ, y)p/(p−1)

with h(τ, y) = apy
1−β1 + bpy

−β1τ . Denote

σ = apb
−1
p (1− β1)β−1

1 y, G(τ) = τ−1/(p−1)g(τ)p/(p−1),

where
g(τ) = [apy

1−β1σβ1−1 + bpy
−β1σβ1 ]τ1−β1 .

It is easy to check that 0 < β1 < 1. Then, ζ = g(τ) ia a concave curve. Furthermore,
ζ = h(τ, y) is a tangent line of ζ = g(τ) at the point of (σ, g(σ)). Therefore, we get
that h(τ, y) ≥ g(τ), for all τ > 0. Hence H(τ,R) ≥ G(τ), for all τ > 0. Moreover,
H(τ,Rτ ) = G(τ) with

τR = apb
−1
p (1− β1)β−1

1 R2m.

By computations,

G(τ) = τ−1/(p−1)g(τ)p/(p−1) = C1τ
β̂ . (3.4)

for some positive constant C, where

β̂ =
κ

2m
− 1

p− 1
.

The choice of κ implies that β̂ < 0. Combining (3.3) and (3.4), we find that

ε ≤ Kτ β̂ (3.5)

for some K > 0. From (3.5), it follows that

τ ≤ Cε1/β̂

for some C > 0. The proof is complete. �
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