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EXISTENCE OF SOLUTIONS TO DIFFERENTIAL INCLUSIONS
WITH DELAYED ARGUMENTS

LOTFI BOUDJENAH

Abstract. In this work we investigate the existence of solutions to differential
inclusions with a delayed argument. We use a fixed point theorem to obtain a
solution and then provide an estimate of the solution.

1. Introduction

This note concerns the existence of solutions to differential inclusions with de-
layed argument, x′(t) ∈ F (t, xt) for t ≥ t0 with the initial condition x(t) = ϕ(t) for
t ≤ t0.

The first works on differential inclusions were published in 1934-35 by Marchaud
[16] and Zaremba [22]. They used the terms contingent and paratingent equations.
Later, Wasewski and his collaborators published a series of works and developed
the elementary theory of differential inclusions [20, 21]. Within few years after the
first publications, the differential inclusions became a basic tool in optimal control
theory. Starting from the pioneering work of Myshkis [17], there exists a whole
series of papers devoted to paratingent and contingent differential inclusions with
delay; see for example Campu [5, 6] and Kryzowa [14]. After this, many works
appeared on differential inclusions with delay, for example Anan’ev [1], Deimling
[9], Hong [11] and Zygmunt [23]. Recent results about differential inclusions in
Banach spaces were obtained by Boudjenah [3], Syam [19] and Castaing-Ibrahim
[7]. For more details on differential inclusions see the books by Aubin and Cellina
[2], Deimling [9], Smirnov [18], and Kisielewicz [12].

In this work, we study the existence of solutions to differential inclusions with
delayed argument, and we extend a result obtained by Anan’ev [1].

2. Preliminaries

Let Rn denote the n dimensional Euclidean space and ‖ · ‖ its norm. Let B be
a Banach space with norm ‖ · ‖B . If x ∈ Bn = B × B × · · · × B, then xi ∈ B,
i = 1, . . . , n, and ‖x‖Bn =

( ∑
‖xi‖2B

)1/2.
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Let (M,d) be a metric space, A ⊂ M , and ε a positive number. We denote by
Aε the closed ε-neighborhood of A; i.e., Aε = {x ∈M : d(x, a) ≤ ε}. Let A denote
the closure of A and coA the convex hull of A.

Let C[a,b] be the space of continuous real functions on [a, b] and Lp[a,b] the space
of real-valued functions whose p-power is integrable on [a, b]. For f ∈ Lp[a,b], let
‖f‖p = (

∫ b

a
|f(x)|pdx)1/p.

Let Conv Rn denote the set of all compact, convex and nonempty subsets of Rn.
Fix t0 ∈ R, let h(t) be a continuous and positive function for t ≥ t0 and F be

a set-valued map: [t0,+∞[×Cn
[−h(t),0] → Conv Rn such that: (t, [x]t) → F (t, xt) ∈

Conv Rn, for t ≥ t0 and xt ∈ Cn
[−h(t),0], where xt(ζ) = x(t+ ζ). For −h(t) ≤ ζ ≤ 0,

xt(·) represents the history of the state from time t− h(t) to time t.
For fixed t, the map F (t, .) : Cn

[−h(t),0] → Conv Rn is called upper semi-contin-
uous, u.s.c for short, if: for all ε > 0 there exists δ > 0 such that ‖xt − yt‖Cn ≤ δ
implies F (t, yt) ⊂ F ε(t, xt) where xt, yt ∈ Cn

[−h(t),0] (See [2]).
The map F (., x.) is called Lebesgue-measurable on [t0, γ], if the set Z = {t ∈

[t0, γ] : F (t, xt) ∩K 6= ∅} is Lebesgue-measurable for any closed set K ⊂ Rn (See
[2]).

Let F be a set valued map: [t0,+∞] × Cn
[−h(t),0] → Conv Rn. A relation of the

form
x′(t) ∈ F (t, xt) for t ≥ t0. (2.1)

is called a differential inclusion with delayed argument.
The generalized Cauchy problem consists of searching a solution of the differen-

tial inclusion (2.1) which satisfies the initial condition

x(t) = ϕ(t) for t ≤ t0 . (2.2)

A function x is called solution of (2.1)-(2.2) if x is absolutely continuous on [t0, γ]
and satisfies the differential inclusion (2.1) a.e, (almost everywhere) on [t0, γ] and
the initial condition x(t) = ϕ(t) for t ≤ t0.

For the proof of our main theorem we need some lemmas including Opial’s the-
orem wich is presented next.

Lemma 2.1 ([15]). Let w(t, y) be a continuous function from R+ × R+ to R+,
increasing in y and M(t) a maximal solution of the ordinary differential equation
y′ = w(t, y), with the initial condition y(t0) = y0, on the interval [t0, T ], where
T > t0 an arbitrary positive number. Let m(t) be a continuous function increasing
on [t0, T ] and such that m′(t) ≤ w(t,m(t)) a.e. on [t0, T ]. If m(t0) ≤ y0, then
m(t) ≤M(t) for all t ∈ [t0, T ].

Lemma 2.2 ([8]). Let Γ be an upper semicontinuous set-valued map defined on a
metric space T with compact and nonempty value in a metric space U and {Θn} a
sequence of elements of T converging to Θ0. Then we have

∅ 6= ∩∞k=1co(∪∞n=kΓ(Θn)) ⊂ Γ(Θ0).

Lemma 2.3 ([10]). If X is a Banach space and {xn} a sequence of elements of X
weakly convergent to x, then there exists a sequence of convex combinations of the
elements {xn} which converges strongly to x, in the sense of the norm.

We will recall the fixed point theorem for multivalued mappings due to Borisovich
et al; see [4].
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Lemma 2.4 ([4]). Let X be a normed space, C be a convex subset of X and
Γ : C → 2C be an upper semicontinuous set-valued map. Suppose that for all
x ∈ C, Γ(x) ∈ ConvC, then Γ has at least one fixed point in C.

3. Existence result

First we study the existence of solutions to (2.1)-(2.2) on the interval [t0, γ],
where γ > t0 (γ an arbitrary fixed reel number). Let us consider the interval [tγ , γ],
where tγ = min{t−h(t), t ∈ [t0, γ]}}, then xt denote the restriction of the function
x ∈ Cn

[t0,γ] to the interval [t − h(t), t] where t ∈ [t0, γ]. For x ∈ Cn
[tγ ,γ], we denote

the norm of x by

‖x‖cn = max{‖x(s)‖Rn , s ∈ [t− h(t), t], t ∈ [tγ , γ]}.
We use the following hypotheses:
(H1) For t ≥ t0 the set-valued map F (t, .) : Cn

[−h(t),0] → Conv Rn is upper semi-
continuous.

(H2) For each fixed function x ∈ Cn
[tγ ,γ], the set-valued map F (., x.) : [t0, γ] →

Conv Rn, is Lebesgue-measurable on the interval [t0, γ].
(H3) For any bounded set Q ⊂ Cn

[tγ ,γ], there exists a function m : [t0, γ] →
[0,+∞[ Lebesgue integrable such that for each measurable function y :
[t0, γ] → Rn verifying the condition: y(t) ∈ FQ(t) = ∪{F (t, xt) : x ∈ Q},
almost everywhere on [t0, γ], we have the inequality ‖y(t)‖ ≤ m(t) a.e. on
[t0, γ].

(H4) For each fixed function x ∈ Cn
[tγ ,γ] and a vector y ∈ F (t, xt), we have the

inequality: x′(t).y ≤ Φ(t, ‖xt‖2cn) where Φ(t, z) is a continuous function on
[t0, γ] × R+ → R+, positive, increasing in z and such that the ordinary
differential equation z′ = 2Φ(t, z) with the initial condition z(t0) = A (A
an arbitrary positive number) has a maximal solution on all [t0, γ].

(H5) The initial function ϕ is continuous on [tγ , t0].
Now we are able to state and prove our existence result.

Theorem 3.1. Under hypothesis (H1)–(H5), for each ϕ ∈ Cn
[tγ ,t0]

, problem (2.1)-
(2.2) has at least one solution on the interval [t0, γ].

Proof. First we give an estimate of the solution of the differential inclusion (2.1).
Suppose that (2.1) has a solution on [t0, γ] and let g(t) = 1 + ‖x(t)‖2Rn . Then

g′(t) = 2(x1(t)x′1(t) + x2(t)x′2(t) + · · ·+ xn(t)x′n(t)) = 2x(t)x′(t).

In view of (H4),

g′(t) ≤ 2Φ(t, ‖x‖2cn) = 2Φ(t,max{‖x(s)‖2Rn , t− h(t) ≤ s ≤ t})
= 2Φ(t,max{g(s), s ∈ [t− h(t), t]})
≤ 2Φ(t,max{g(s), s ∈ [tγ , t]}).

For t0 < u ≤ t we have∫ u

t0

g′(τ)dτ ≤ 2
∫ u

t0

Φ(τ,max{g(s), s ∈ [τγ , τ ]})dτ ≤ 2
∫ u

t0

Φ(τ,Λ(τ))dτ,

where Λ(τ) = max{g(s), s ∈ [τν , τ ]}. This implies

g(u) ≤ g(to) + 2
∫ u

t0

Φ(τ,Λ(τ))dτ.
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Then

max{g(u), u ∈ [τν , τ ]} ≤ max{g(t) + 2
∫ t

t0

Φ(τ,Λ(τ))dτ, t ∈ [t0, γ]},

or just

Λ(t) ≤ max{1 + ‖x(t)‖2Rn , t ∈ [t0, γ]}+ 2
∫ t

t0

Φ(τ,Λ(τ))dτ.

Thus

Λ(t) ≤ Λ(t0) + 2
∫ t

t0

Φ(τ,Λ(τ))dτ.

Using Lemma 2.1, we obtain Λ(t) ≤M(t), whereM(t) is the maximal solution of the
ordinary differential equation z′ = 2Φ(t, z) with the initial conditionM(t0) = Λ(t0).
Hence we have the inequalities:

g(t) ≤ Λ(t) < M(γ).

It follows that
‖x(s)‖2Rn ≤M(γ)− 1 ≤M(γ).

On the interval [t0, γ], we obtain the following estimate for the solution x(t) of
(2.1),

‖x(s)‖Rn < L = M(γ)1/2 (3.1)
Let us set Q = {x ∈ Cn

[tγ ,γ], x(t) = ϕ(t) for t ∈ [tγ , t0] and ‖x(t)‖ ≤ L for
t ∈ [t0, γ]}. As the set Q is bounded in space Cn

[tγ ,γ], from (H3), there is a mea-
surable function m : [t0, γ] → [0,+∞[ and Lebesgue integrable, such that for each
measurable function y : [t0, γ] → Rn verifying y(t) ∈ FQ(t) = ∪QF (t, xt), almost
everywhere on [t0, γ], we have the inequality

‖y(t)‖ ≤ m(t) a.e. on [t0, γ].

Then by (3.1), we obtain ‖ϕ(t0)‖Rn < L. Thus, we can choose a real number b1
such that

{x ∈ Rn : ‖x− ϕ(t0)‖Rn ≤ b1} ⊂ {x ∈ Rn : ‖x‖Rn ≤ L}.
As the function m is integrable, we can choose t1 > 0 such that∫ t1

t0

m(t)dt ≤ b1 (3.2)

Now we show that (2.1)-(2.2) has at least one solution on [t0, t1]. Let us consider
the setX of functions x of the space Cn

[t0,t1]
satisfying the following three conditions:

x is absolutely continuous on [t0, t1], x = ϕ ∈ Cn
[tγ ,t0]

for t ∈ [tγ , t0], and

‖x′(t)‖ ≤ m(t) a.e. on [t0, t1] (3.3)

We claim thatX is compact. For this purpose we show thatX is uniformly bounded
and equi-continuous. For x ∈ X, we have

‖x(t)− ϕ(t0)‖ = ‖x(t)− x(t0)‖ = ‖
∫ t1

t0

x′(s)ds‖.

Furthermore, from (3.2), we have
∫ t1

t0
m(t)dt ≤ b1. Then, using (3.3), we obtain

‖
∫ t1

t0

x′(s)ds‖ ≤
∫ t1

t0

‖x′(s)ds‖ ≤
∫ t1

t0

m(s)ds ≤ b1 a.e. on [t0, t1].
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This implies
‖x(t)− ϕ(t0)‖ ≤ b1 a.e. on [t0, t1] . (3.4)

This shows that X is uniformly bounded. Let t0 ≤ t ≤ t′ ≤ t1, then we have

‖x(t)− x(t′)‖ ≤
∫ t′

t

‖x′(s)ds‖ ≤
∫ t′

t

m(s)ds .

As the Lebesgue integral is absolutely continuous, for each ε > 0, there exists δ > 0,
such that

|t− t′| < δ ⇒ ‖x(t)− x(t′)‖ < ε,

which shows that X is equi-continuous. Since X is uniformly bounded and equi-
continuous, it is compact by Arzela’s theorem.

It is easy to show that X is convex. Indeed, let x, y ∈ X and λ ∈ [0, 1], we have

‖ d
dt

(λx(t) + (1− λ)y(t))‖ ≤ λ‖x′(t)‖+ (1− λ)‖y′(t)‖ ≤ m(t)

a.e. on [t0, t1]. Then

λx+ (1− λ)y ∈ X for λ ∈ [0, 1].

Let us fix x ∈ X, and with this function we consider a function y such that

y′(t) ∈ F (t, xt) a.e. on [t0, t1] (3.5)

We denote by G the set of pairs (x, y) ∈ X ×X such that (x, y) fulfills the above
relation (3.5); i.e.,

G = {(x, y) ∈ X ×X : y′(t) ∈ F (t, xt) a.e. on [t0, t1]} .

Now we show that G is nonempty and closed. Let x ∈ X. In view of Hypothesis
(H2) and selector’s theorem (see[13]), there is a measurable function ψ : [t0, t1] → R
such that ψ(t) ∈ F (t, xt) a.e. on [t0, t1]. Define the function ξ as

ξ(t) = ϕ(t0) +
∫ t

t0

ψ(s) ds for t ∈ [t0, t1].

Then ξ′(t) ∈ F (t, xt) a.e. on [t0, t1]. In view of (3.3), we have

‖ξ′(t)‖ ≤ m(t) a.e. on [t0, t1],

which implies that G is nonempty. G is closed. Indeed, let (xk, yk) a sequence of
elements of G converging to (x, y), we will show that the sequence of derivatives
{y′k} is bounded with the norm of Ln

1[t0,t1]
. We have:

‖y′k‖2Ln
1

=
n∑

i=1

‖[y′k
i]‖2Ln

1
=

n∑
i=1

( ∫ t1

t0

|y′k
i(s)|ds

)2

=
n∑

i=1

( ∫ t1

t0

m(s)
)2

d =
n∑

i=1

b21 ≤ nb1.

We will prove that the sequence {y′k} satisfies the condition: lim
∫

Ei
y′k(s)ds = 0

uniformly, and for each decreasing sequence {Ei} of measurable sets E1 ⊃ E2 ⊃
· · · ⊃ En ⊃ . . . such that ∩∞i=1Ei = ∅.
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We have

|
∫

Ei

y′k(s)ds| ≤
∫

Ei

|y′k(s)|ds =
∫ t1

t0

χEi(s)|y′k(s)|ds

≤
∫ t1

t0

χEi(s)m(s)ds =
∫

Ei

m(s)ds,

where χEi denotes the characteristic function of the set Ei. For Ei ⊂ [t0, t1], the
integral exists and

limµ(Ei) = µ(∩∞i=1Ei) = µ(∅) = 0,
where µ denote the Lesbegue’s measure.

From the absolute continuity of the integral, we obtain: For each ε > 0, there
exists j such that

i > j ⇒
∫

Ei

χEi
(s)m(s)ds < ε.

Applying the weak criterion of compactness (see [10]), we show that the sequence
{ yk} is weakly compact in the sequential sense. Therefore, there is a subsequence,
also denoted by {yk}, weakly convergent to a function z ∈ Ln

1[t0,t1]
. Thus, for

t ∈ [t0, t1] we have

y(t) = lim yk(t) = lim(ϕ(t0) +
∫ t

t0

y′k(s)ds) = ϕ(t0) +
∫ t

t0

z(s)ds.

This implies y′(t) = z(t).
Weak convergence in Ln

1[t0,t1]
is equivalent to the convergence of the integrals and

applying Lemma 2.3, we prove the existence of a sequence of convex combinations
zj = {y′j , y′j+1, . . . } strongly convergent to z ∈ Ln

1[t0,t1]
.

As Ln
1[t0,t1]

is a complete space, from any strongly convergent sequence we can
extract a subsequence which converges almost everywhere. Then from the sequence
{zj} we can extract a subsequence, also denoted by {zj}, which converges a.e. to
z. Thus we have

lim zj(t) = z(t) a.e. on [t0, t1].
We claim that y′(t) = z(t) ∈ F (t, xt) a.e. on [t0, t1]. So, we will show that

z(t) ∈ ∩∞j=1co(∪∞n=jy
′
n(t)).

Let {[zj ]} the sequence of the convex combinations of the functions {y′j , y′j+1, . . . } =
∪∞n=jy

′
n. We have

zj =
nj∑

j=1

aiy
′
i, i ∈ {j, j + 1, . . . }, ai > 0,

nj∑
j=1

ai = 1.

Then
zj(t) ∈ co(∪∞n=jy

′
n(t))

for j fixed. As lim zj(t) = z(t) a.e. on [t0, t1], we have that implication: For each
neighborhood Uz(t) of z(t), there exists N0 such that zj(t) ∈ Uz(t) for all j > N0.
Therefore

Uz(t) ∩ co(∪∞n=jy
′
n(t)) 6= ∅

and hence
z(t) ∈ co(∪∞n=jy

′
n(t)).
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We have
co(∪∞n=jy

′
n(t)) = co (∪∞n=jy

′
n(t)).

Whence we obtain
z(t) ∈ co (∪∞n=jy

′
n(t)),

so that
z(t) ∈ ∩∞j=1co(∪∞n=jy

′
n(t)).

From the definition of G, we have y′n(t) ∈ F (t, (xn)t) a.e. on [t0, t1]. This implies

∩∞j=1co(∪∞n=jy
′
n(t)) ⊂ ∩∞j=1co(∪∞n=jn(F (t, (xn)t)

a.e. on [t0, t1]. Using Lemma 2.2, we obtain

∩∞j=1co(∪∞n=jn(F (t, (xn)t) ⊂ F (t, xt).

From which it follows z(t) ∈ F (t, xt); i.e., y′(t) ∈ F (t, xt) a.e. on [t0, t1]. So we
conclude that G is closed.

Let us define the set-valued map Γ : X → 2X such that

Γ(x) = {y : y′(t) ∈ F (t, xt) a.e. on [t0, t1]}.
The set G = {(x, y)} ⊂ X×X} is the graph of Γ. Since G is closed, the application
Γ is upper semi-continuous [2].

Let us show that Γ(x) is compact. As Γ(x) ⊂ X and X is compact, then Γ(x) is
uniformly bounded and we prove the equicontinuity of Γ(x) in the same way as we
did for X. It is also easy to show that Γ(x) is convex.

Using Lemma 2.4, we show that the map Γ has at least one fixed point. Therefore,
there is a function x ∈ X such that x(t) ∈ F (t, xt) a.e. on [t0, t1], then x is a solution
of (2.1)-(2.2) on [t0, t1].

To complete the proof, we extend the solution on [t1, γ]. For t1 < γ, we have the
implication: ‖x(t1)‖ < L implies the existence of b2 > 0 such that

{x ∈ Rn : ‖x(t)− x(t1)‖ ≤ b2} ⊂ {x ∈ Rn : ‖x‖ ≤ L}.

Thus, there exist t2 > t1 such that
∫ t2

t1
m(t)dt ≤ b2 and we extend the solution on

[t1,t2].
We can choose all bi’s such that bi ≥ ε > 0, hence the sequence {bi} does not

converge to 0. After a finite number of steps we can extend the solution to the
entire interval [t0, γ]. �

Remark. Anan’ev [1] assumed that y.x′(t) ≤ K(1 + ‖xt‖2cn) with K > 0. Our
hypothesis (H4) is more general than that the one by Anan’ev.
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