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LIENARD TYPE P-LAPLACIAN NEUTRAL RAYLEIGH
EQUATION WITH A DEVIATING ARGUMENT

AOMAR ANANE, OMAR CHAKRONE, LOUBNA MOUTAOUEKKIL

ABSTRACT. Based on Manéasevich-Mawhin continuation theorem, we prove the
existence of periodic solutions for Liénard type p-Laplacian neutral Rayleigh
equations with a deviating argument,

(¢p(x(t) — cx(t — 0))) + f(=(t)2'(t) + g(t, 2(t — 7())) = e(t).

An example is provided to illustrate our results.

1. INTRODUCTION

The existence of periodic solutions for Liénard type p-Laplacian equation with
a deviating argument

(¢p(a' (1)) + fz(8)2(t) + g(t, 2(t — 7(t))) = e(t) (1.1)
has been studied using the coincidence degree theory [1]. Zhu and Lu [6], studied the
existence of periodic solution for p-Laplacian neutral functional differential equation
with a deviating argument when p > 2

(¢p(2(t) — cx(t —0))') + g(t, x(t — 7(t))) = e(t). (1.2)
They obtained some results by transforming (|1.2)) into a two-dimensional system
to which Mawhin’s continuation theorem was applied.
Peng [] discussed the existence of periodic solution for p-Laplacian neutral
Rayleigh equation with a deviating argument

(Sp(x(t) — ca(t — 0))') + f(a' (1) + g(t, x(t — 7(2))) = e(?) (1.3)
and obtained the existence of periodic solutions under the assumption f(0) = 0 and
[ e(t)dt = 0.

Throughout this paper, 2 < p < oo is a fixed real number. The conjugate
exponent of p is denoted by ¢; i.e., % + % = 1. Let ¢, : R — R be defined by
bp(s) = |s|P72s for s # 0, and ¢,(0) = 0. In this article, we will investigate the
existence of periodic solution to the Liénard type p-Laplacian neutral Rayleigh
equation

(@p(x(t) — ca(t — 0))") + f(2(t)2'(t) + g(t, x(t — 7(1)) = e(t) (1.4)
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where f, e and 7 are real continuous functions on R. 7 and e are periodic with
period T, T > 0 is fixed. g is continuous function defined on R? and T-periodic in
the first argument, ¢ and o are constants such that |¢| # 1.

2. PRELIMINARIES

Let Cr = {z € C(R,R) : 2(t+T) = z(t)} and C} = {x € C*(R,R) : x(t + T) =
z(t)}. Cr is a Banach space endowed with the norm ||z||oe = max |2(t)|;cf0.7]- Cr
is a Banach space endowed with the norm ||z|| = max{||z||c, ||#']l}. In what

follows, we will use |||, to denote the L¥-norm. We also define a linear operator
A CT — CT,

(Ax)(t) = z(t) — cx(t — o).
Lemma 2.1 ([2L[5]). |c\ # 1, then A has continuous bounded inverse on Cr, and

(1) 4]l < el
@)

for all x € Cr;

~1(4) = Yy da(t = jo), el <1
(A7 2)(1) {_Zj21cjx(t+j0)a e[ > 1.

®
[t o [ o ween

Lemma 2.2 ([4]). If |c| # 1 and p > 1, then

T 1 T
/ (A=L2)() Pt < 7/ w()Pdt, Ve Cr. (2.1)
0 1L =1el” Jo
For the T-periodic boundary value problem
(¢p($/(t)))l = f(tw,x’), ‘T(O) = x(T>7 xl(o) = x/(T)v (2‘2)
where f € C(R3,R), we have the following result.

Lemma 2.3 ([3]). Let Q be an open bounded set in Ck, and let the following
conditions hold:

(i) For each A € (0,1), the problem

(¢p(@' (1)) = Mf(t,w,2'),  2(0) =2(T), a'(0)==2'(T)

has no solution on 0N).

(ii) The equation
1 T
= = 4 dt =
7| Fao

has no solution on 0 NR.
(iii) The Brouwer degree of F, deg(F,QNR,0) # 0.

Then the T-periodic boundary value problem (2.2)) has at least one periodic solution
on Q.
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3. MAIN RESULTS
Theorem 3.1. Suppose that p > 2 and there exist constants ry >0, r0 >0, d >0
and k > 0 such that

(A1) |f(z)] < k+ri|zP~2 forz € R;
(A2) z[g(t,z) —e(t)] <O for |33| >d andt € R;
(A3) lim,_,_ o lg@t)—e(®)] _

El

Then (1.4) has at least one T-periodic solution if

St (L+1eDT?™ Yy +Tre) < [1—|c|fP.

Proof. Consider the homotopic equation of (|1.4) as follows:
(p(2(t)—ca(t—0))) +Af(x(t))2' () +Ag(t, 2(t—7(t))) = Ae(t), A€ (0,1). (3.1)
We claim that the set of all possible periodic solution of (3.1]) are bounded in Ck.

Let z(t) € C} be an arbitrary solution of (3.1)) with period 7. By integrating
two sides of (3.1]) over [0, 7], and noticing that z'(0) = «'(T"), we have

T
/0 [g(t, 2(t — 7(£))) — e()]dt = 0. (3.2)

By the integral mean value theorem, there is a constant & € [0,7] such that
g(&,x(€=7(£))) —e(§) = 0. So from assumption (A2), we can get |z(§ —7(£))| < d.
Let £ — 7(§) = mT + &, where € € [0,T], and m is an integer. Then, we have

()] = (8 + /g Pl i [ s, 1 BEHT]

and

g ¢ .
O] = lalt =T = lo® = [ a'()as| <d+ [ fa'(o)as, teEE+TL

Combining the above two inequalities, we obtain

zloo = nax Ix( )l = max |z(t)]
te[¢,6+T

]
1/ [t 3
< max <{d+ = / 2'(s ds+/ z'(s)|ds
@M{ 3 W@+ | 1'(o)lds) ] (3.3)
T

1
Sd—i-f/ |7’ (s)|ds.
2 Jo

In view of i+ (14 |c[)TP~ 1 (ry +Tra) < |1 —|c|[P, there exist a constant € > 0 such

that
1

2p—1
From assumption (A3), there exist a constant p > d such that
lg(t,z(t — 7(t)) — e(t)|dt < (r2 +€)|[zP~" fort€R and z < —p. (3.4)

Denote By = {t € [0,T],z(t — 7(t)) < p} Ey = {t € [0,T),]|z(t — 7(¥))| < p},
Es={te€[0,T],z(t —7(¢)) > p}. By (3.2), it is easy to see that

/El /E /Ed g(t,z(t = 7(t))) — e(t)ldt = 0. (3.5)

(L+ |e)TP~ 1(r1 +T(ra+e)) <|1—|c|P.
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Hence

lg(t, 2(t = 7(1))) — e(t)]dt = — / [lg(t, 2(t — (1)) — e(t)]dt

E

= ([ + [ Yattate— vy — et

<( [+ [ Viattuate~ v - etoae.
Eq Es
Therefore, by (3.4) and (3.6)), we obtain

E3

(3.6)

/O U gt (t — (1) — e()ldt = ( /E + /E + /E lattate = 7(0) — e(tyr

<2( [+ [ Yottt =) - eolar
< 2/E (ro + &)t — 7(6) P~ 2dt + 25, T

< 2(ra + )T 2|55 + 29, T

(3.7)

Where g, = maxicp, |g(t, z(t — 7(¢))) — e(t)|. Multiplying both sides of (3.1)) by

(Az)(t) = x(t) — cx(t — o) and integrating them over [0,T], we have
T
A= ||} = /\/0 (Az)(t) [f (z(0))a' () + g(t, x(t — 7(1))) — e(t)] dt

T
<@+ ICI)IIJJHOO/O (1f (@)’ ()] + |g(t, =(t — 7(t))) — e(t)]] dt.
From assumption (A1), we obtain.
T T
| 1so) @ <k [ 1wl s [l @p-2ar
0 0 0
Using Holder inequality, and substituting (3.3]) into (3.9), we obtain
T 1 (T p—2
| 1r) @de < k201 e (a4 5 [ e elae)
0 0
From (3.3) and (3.7), we have
T 1 T P
/ lg(t, o(t—7(t)) —e(t)|dt < 25, T+2(r2+5)T<d+§/ |:E’(t)|dt)
0 0

Substituting (3.10)), (3.11) and (3.3)) into (3.8)), we obtain
1 A="[[7

< (1 + Je) KT/l (d + % /OT (1))

T

-1

1 /T p—1
+(d+7/ \z’(t)|dt) TV 2|,
2 0
T

+2(r2+5)T(d+;/OT |x’(t)|dt)p+2§pT(d+%/O |x’(t)\dt)]

Case(1). If fOT |2/ (t)|dt = 0, from (3.3), we have ||z|lo < d.

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)
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Case(2). If fo |z’ (t)|dt > 0, then

IR N U L p=1 2d p=1
(d+§/0 (1)t :(5/0 (1)t (1+W) . (3.13)

By elementary analysis, there is a constant 6 > 0 such that
(1+u)Pt<1+4pu, VYuel0,d]. (3.14)
If(27§)fo |z’ (¢)|dt > &, then fo |2/ (t)|dt < 2d/5, so from (3.3), we have ||z[| <
d+(d

If 2d/ fo |2/ (t)|dt < &, by ([3.13) and (3.14)),
1T, p—1
<d+§/0 |z (t)|dt)

< (% /OT |x’(t)|dt)p_l<1 + foszd)|dt)

' (t (3.15)
< (3" / )+ ([ o)
=5 ; B p ;
1p 1 p—2 p=2 _
< ()T + () par
Similarly, from(3.14)), there is a constant ¢’ > 0 such that
(1+uw? <1+ (1+pu, Yucel,d] (3.16)

If 2d/ fo |z’ (t)|dt > &', then fo |2 (t)|dt < 2d/d', so from (3.3), we have ||z <
d+(d/d).

If 2d/ fo |2/ (t)|dt < &', by (3.16]), we have
1 [T , P
(d+§/0 |z (t)\dt)
17 P 2(p+1)d
< (= / Bt Sy A
7(2/0 @ e)lat)” (1+ = )

Jo 12 (1)l
1

<(5)"( / ) 0t + (5)" o+ 1d( / ' w(0)dr)"

1 p 1,p— p=1 _
< (G)TH I+ ()7 o+ VAT T [l

(3.17)

Substituting (3.15) and (3.17) into (3.12) and using Holder inequality, we obtain

HAq;/”g <(1+ |c|)[(2p71 (ro+e)T? + 2p71r1TE)||q;/||g + Cl()”x’Hg—l

(3.18)
+ar||2'|[ + as 2’|, + 2g,Td],

where ag,a; and ag are constants depending on T',71,k,r2,d,p and ¢. Then from

Lemma(22.2), we have

1= lelPll2"|[p = [1 = |el[P[ A" A’ ||} < [|Aa"]]3.
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So it follows from (3.18]) that

1= lePPll"I} < (14 [eD)I(

5o T7 7 (r 4 T2+ ) [} + o' |5

(3.19)
+ a2’ + az|2’||, + 25,T7d).

Asp > 2and 5+ (1+c[)TP~ (ri+Tre) < |1—|c||P, there exists a constant Ry > 0
such that

2’|, < Rs. (3.20)
Which together with (3.3) implies that there is a positive number R4 such that

[#]lco < Ra. (3.21)
From (3.1, we have

T
/0 [ (Aa’) (1)) |dt
T
< / £ (E)a’ (1)) + lg(t 2t — () + |e(t) 1t
T T

< KTV, + / rilalP=2a’ ()] + T, + / e(lde (3.22)
T

< KT+l T+ Tgn, + [ le(olas
0

T
< kTY9Rg 4+ 1 RE>TY9Rs + Tyg, +/ le(t)|dt = R,
0

where gr, = max;|<g, tejo,7) |9t x(t—7(t)))]. As (Ax)(0) = (Az)(T), there exists
to €]0,T[ such that (Az")(to) = 0, while ¢,(0) = 0 we see ¢,(Ax")(tp) = 0. Thus,
for any ¢ € [0,T], we have

t T
16, (Az")(1))] = | / bp(A')(5))ds| < / [(ép(Aa’)(5))'|dt < Rs.

From which, it follows that
| A2'||oo < RI. (3.23)
From Lemma we derive
Ao _ R
1= lell = 1 =]l
Now, let y(t) = (Ax)(t), we can see that (3.1]) is equivalent to the equation
(@' (1)) + XM (AT ) (O)(ATY)(E) + Ag(t, (A7 y)(t = 7(1))) = Ae(?). (3.25)

So, if y is an periodic solution of ([3.25), then x = A~'y is T-periodic solution of
B1).

Let Ry = 2(1 + |¢|) max{Ry, Re,d}, Q = {y € CL : |ly|| < Rz}, we can see
that has no solution on 99 for A € (0,1). In fact, if y = Az is a solution
(3:25) on 0Q, then [ly|| = Rz, [lylloc = R7 or [[y/[lcc = R7. If [[yllc = Rz, then
lzlloo > % = 2max{Ry, Rs,d} > Ry, from which is a contradiction.

1o/]loe = 14~ A2 o0 < |

Rg. (3.24)
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Similarly, ||3/]|cc = R7 is also impossible. If y € 9Q N R, then y is a constant and
ly| = R7, © = A~y = =, |2| > 2max{Ry4, Rs,d}. Let

1 T
Fly) =7 / [e(t) = F((AT ) O) (A1) — g(t, (A y)(t — 7(1))]-

0

Then F(y) = 7 fo t, 1£)|dt for y € 0Q NR. From (A2), we know that
F(y) # O on 90N ]R S0 condltlon (i) in Lemma [2.3]is satisfied. Define

H(y,p) = n(A™'y) + (1 — p)F(y),
y € 0QNR, u€[0,1]. Then

1

(A~ ') H(y,p) = —M(A‘ly)z—(l—u)(A‘ly)f/o le(t)—g(t, (A~ y)(t—7(t)))]dt.

From (A2) we obtain (A~1y)H (y, ) > 0. Thus H(y, ) is a homotopic transforma-
tion and deg[F,QNR,0] = deg[A~1y, QN R, 0] # 0. So, for (3.25)), all of conditions
of Lemma [2.3] are satisfied. Applying Lemma [2.3] we conclude that

(@p(y' (1)) + F(AT ) O)ATY) () + gt (A y)(t = 7(2)) = e(t)  (3.26)
has at least one T-periodic solution 7. Therefore, T = A~1% is an T-periodic

solution of (|1.4). O

Similarly, we can prove the following Theorem.

Theorem 3.2. Suppose that p > 2 and that there exist constants r1 > 0, ro > 0,
d >0 and k > 0 such that

(A1) |f(2)| < k+7ri|z[P~2 for x € R;

(A2) z[g(t,x) —e(t)] <O for|z| > d and t € R;

(A3) limg— 10 lota)—e®)] _ .,

[P~

then (L1.4]) has at least one T-periodic solution if

ot (L TP (r1 + Tra) < [1—|c|[P.

4. EXAMPLE

In this section, we illustrate Theorem with the following example. Consider
the equation

(s (x(t) = 5a(t —m))') + F(a(£)2'(t) + g(t, 2(t — sin(t))) = e, (4.1)
where p =3, c =5, 0 =4, T = 2r, 7(t) =sint, e(t) = e« f(z) =2+ \/‘?

_wesinzt x>0
g(tvx): 2 7 B
1872 xz < 0.

Let d = 3mv/2e, r = ﬂz, ro = 18#2, k=4+ w We can easily check the

condition (A1), (A2) and (A3) of Theorem-hold Furthermore,
1

2r—1

By Theorem [3 . has at least one 2m-periodic solution.

o
(1+ |e)TP~ (ry + Try) =6 + 5 < 11— |c||P = 64.
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