Electronic Journal of Differential Equations, Vol. 2010(2010), No. 177, pp. 1-8. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

LIÉNARD TYPE P-LAPLACIAN NEUTRAL RAYLEIGH EQUATION WITH A DEVIATING ARGUMENT

AOMAR ANANE, OMAR CHAKRONE, LOUBNA MOUTAOUEKKIL

$$
\begin{aligned}
& \text { AbStract. Based on Manásevich-Mawhin continuation theorem, we prove the } \\
& \text { existence of periodic solutions for Liénard type } p \text {-Laplacian neutral Rayleigh } \\
& \text { equations with a deviating argument, } \\
& \qquad\left(\phi_{p}(x(t)-c x(t-\sigma))^{\prime}\right)^{\prime}+f(x(t)) x^{\prime}(t)+g(t, x(t-\tau(t)))=e(t)
\end{aligned}
$$

An example is provided to illustrate our results.

1. Introduction

The existence of periodic solutions for Liénard type p-Laplacian equation with a deviating argument

$$
\begin{equation*}
\left(\phi_{p}\left(x^{\prime}(t)\right)\right)^{\prime}+f(x(t)) x^{\prime}(t)+g(t, x(t-\tau(t)))=e(t) \tag{1.1}
\end{equation*}
$$

has been studied using the coincidence degree theory [1]. Zhu and Lu [6], studied the existence of periodic solution for p-Laplacian neutral functional differential equation with a deviating argument when $p>2$

$$
\begin{equation*}
\left(\phi_{p}(x(t)-c x(t-\sigma))^{\prime}\right)^{\prime}+g(t, x(t-\tau(t)))=e(t) . \tag{1.2}
\end{equation*}
$$

They obtained some results by transforming 1.2 into a two-dimensional system to which Mawhin's continuation theorem was applied.

Peng [4] discussed the existence of periodic solution for p-Laplacian neutral Rayleigh equation with a deviating argument

$$
\begin{equation*}
\left(\phi_{p}(x(t)-c x(t-\sigma))^{\prime}\right)^{\prime}+f\left(x^{\prime}(t)\right)+g(t, x(t-\tau(t)))=e(t) \tag{1.3}
\end{equation*}
$$

and obtained the existence of periodic solutions under the assumption $f(0)=0$ and $\int_{0}^{T} e(t) d t=0$.

Throughout this paper, $2<p<\infty$ is a fixed real number. The conjugate exponent of p is denoted by q; i.e., $\frac{1}{p}+\frac{1}{q}=1$. Let $\phi_{p}: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $\phi_{p}(s)=|s|^{p-2} s$ for $s \neq 0$, and $\phi_{p}(0)=0$. In this article, we will investigate the existence of periodic solution to the Liénard type p-Laplacian neutral Rayleigh equation

$$
\begin{equation*}
\left(\phi_{p}(x(t)-c x(t-\sigma))^{\prime}\right)^{\prime}+f(x(t)) x^{\prime}(t)+g(t, x(t-\tau(t)))=e(t) \tag{1.4}
\end{equation*}
$$

[^0]where f, e and τ are real continuous functions on \mathbb{R}. τ and e are periodic with period $T, T>0$ is fixed. g is continuous function defined on \mathbb{R}^{2} and T-periodic in the first argument, c and σ are constants such that $|c| \neq 1$.

2. Preliminaries

Let $\mathcal{C}_{T}=\{x \in \mathcal{C}(\mathbb{R}, \mathbb{R}): x(t+T)=x(t)\}$ and $\mathcal{C}_{T}^{1}=\left\{x \in \mathcal{C}^{1}(\mathbb{R}, \mathbb{R}): x(t+T)=\right.$ $x(t)\} . \mathcal{C}_{T}$ is a Banach space endowed with the norm $\|x\|_{\infty}=\max |x(t)|_{t \in[0, T]} . \mathcal{C}_{T}^{1}$ is a Banach space endowed with the norm $\|x\|=\max \left\{\|x\|_{\infty},\left\|x^{\prime}\right\|_{\infty}\right\}$. In what follows, we will use $\|\cdot\|_{p}$ to denote the L^{P}-norm. We also define a linear operator $A: \mathcal{C}_{T} \rightarrow \mathcal{C}_{T}$,

$$
(A x)(t)=x(t)-c x(t-\sigma)
$$

Lemma 2.1 ([2, [5]). If $|c| \neq 1$, then A has continuous bounded inverse on \mathcal{C}_{T}, and
(1) $\left\|A^{-1} x\right\|_{\infty} \leq \frac{\|x\|_{\infty}}{|1-|c||}$, for all $x \in \mathcal{C}_{T}$;

$$
\left(A^{-1} x\right)(t)= \begin{cases}\sum_{j \geq 0} c^{j} x(t-j \sigma), & |c|<1 \tag{2}\\ -\sum_{j \geq 1} c^{-j} x(t+j \sigma), & |c|>1\end{cases}
$$

$$
\begin{equation*}
\int_{0}^{T}\left|\left(A^{-1} x\right)(t)\right| d t \leq \frac{1}{|1-|c||} \int_{0}^{T}|x(t)| d t, \quad \forall x \in \mathcal{C}_{T} \tag{3}
\end{equation*}
$$

Lemma $2.2([4)$. If $|c| \neq 1$ and $p>1$, then

$$
\begin{equation*}
\int_{0}^{T}\left|\left(A^{-1} x\right)(t)\right|^{p} d t \leq \frac{1}{|1-|c||^{p}} \int_{0}^{T}|x(t)|^{p} d t, \quad \forall x \in \mathcal{C}_{T} \tag{2.1}
\end{equation*}
$$

For the T-periodic boundary value problem

$$
\begin{equation*}
\left(\phi_{p}\left(x^{\prime}(t)\right)\right)^{\prime}=\widetilde{f}\left(t, x, x^{\prime}\right), \quad x(0)=x(T), \quad x^{\prime}(0)=x^{\prime}(T) \tag{2.2}
\end{equation*}
$$

where $\tilde{f} \in \mathcal{C}\left(\mathbb{R}^{3}, \mathbb{R}\right)$, we have the following result.
Lemma 2.3 (3). Let Ω be an open bounded set in \mathcal{C}_{T}^{1}, and let the following conditions hold:
(i) For each $\lambda \in(0,1)$, the problem

$$
\left(\phi_{p}\left(x^{\prime}(t)\right)\right)^{\prime}=\lambda \widetilde{f}\left(t, x, x^{\prime}\right), \quad x(0)=x(T), \quad x^{\prime}(0)=x^{\prime}(T)
$$

has no solution on $\partial \Omega$.
(ii) The equation

$$
F(a)=\frac{1}{T} \int_{0}^{T} \widetilde{f}(t, a, 0) d t=0
$$

has no solution on $\partial \Omega \cap \mathbb{R}$.
(iii) The Brouwer degree of $F, \operatorname{deg}(F, \Omega \cap \mathbb{R}, 0) \neq 0$.

Then the T-periodic boundary value problem (2.2) has at least one periodic solution on $\bar{\Omega}$.

3. Main Results

Theorem 3.1. Suppose that $p>2$ and there exist constants $r_{1} \geq 0, r_{2} \geq 0, d>0$ and $k>0$ such that
(A1) $|f(x)| \leq k+r_{1}|x|^{p-2}$ for $x \in \mathbb{R}$;
(A2) $x[g(t, x)-e(t)]<0$ for $|x|>d$ and $t \in \mathbb{R}$;
(A3) $\lim _{x \rightarrow-\infty} \frac{|g(t, x)-e(t)|}{|x|^{p-1}}=r_{2}$.
Then (1.4) has at least one T-periodic solution if

$$
\frac{1}{2^{p-1}}(1+|c|) T^{p-1}\left(r_{1}+T r_{2}\right)<|1-|c||^{p}
$$

Proof. Consider the homotopic equation of $\sqrt{1.4}$ as follows:

$$
\begin{equation*}
\left(\phi_{p}(x(t)-c x(t-\sigma))^{\prime}\right)^{\prime}+\lambda f(x(t)) x^{\prime}(t)+\lambda g(t, x(t-\tau(t)))=\lambda e(t), \quad \lambda \in(0,1) . \tag{3.1}
\end{equation*}
$$

We claim that the set of all possible periodic solution of (3.1) are bounded in \mathcal{C}_{T}^{1}.
Let $x(t) \in \mathcal{C}_{T}^{1}$ be an arbitrary solution of (3.1) with period T. By integrating two sides of (3.1) over $[0, T]$, and noticing that $x^{\prime}(0)=x^{\prime}(T)$, we have

$$
\begin{equation*}
\int_{0}^{T}[g(t, x(t-\tau(t)))-e(t)] d t=0 \tag{3.2}
\end{equation*}
$$

By the integral mean value theorem, there is a constant $\xi \in[0, T]$ such that $g(\xi, x(\xi-\tau(\xi)))-e(\xi)=0$. So from assumption (A2), we can get $|x(\xi-\tau(\xi))| \leq d$. Let $\xi-\tau(\xi)=m T+\bar{\xi}$, where $\bar{\xi} \in[0, T]$, and m is an integer. Then, we have

$$
|x(t)|=\left|x(\bar{\xi})+\int_{\bar{\xi}}^{t} x^{\prime}(s) d s\right| \leq d+\int_{\bar{\xi}}^{t}\left|x^{\prime}(s)\right| d s, \quad t \in[\bar{\xi}, \bar{\xi}+T]
$$

and

$$
|x(t)|=|x(t-T)|=\left|x(\bar{\xi})-\int_{t-T}^{\bar{\xi}} x^{\prime}(s) d s\right| \leq d+\int_{t-T}^{\bar{\xi}}\left|x^{\prime}(s)\right| d s, \quad t \in[\bar{\xi}, \bar{\xi}+T] .
$$

Combining the above two inequalities, we obtain

$$
\begin{align*}
\|x\|_{\infty} & =\max _{t \in[0, T]}|x(t)|=\max _{t \in[\bar{\xi}, \bar{\xi}+T]}|x(t)| \\
& \leq \max _{t \in[\bar{\xi}, \bar{\xi}+T]}\left\{d+\frac{1}{2}\left(\int_{\bar{\xi}}^{t}\left|x^{\prime}(s)\right| d s+\int_{t-T}^{\bar{\xi}}\left|x^{\prime}(s)\right| d s\right)\right\} \tag{3.3}\\
& \leq d+\frac{1}{2} \int_{0}^{T}\left|x^{\prime}(s)\right| d s .
\end{align*}
$$

In view of $\frac{1}{2^{p-1}}(1+|c|) T^{p-1}\left(r_{1}+T r_{2}\right)<|1-|c||^{p}$, there exist a constant $\varepsilon>0$ such that

$$
\frac{1}{2^{p-1}}(1+|c|) T^{p-1}\left(r_{1}+T\left(r_{2}+\varepsilon\right)\right)<|1-|c||^{p}
$$

From assumption (A3), there exist a constant $\rho>d$ such that

$$
\begin{equation*}
|g(t, x(t-\tau(t)))-e(t)| d t \leq\left(r_{2}+\varepsilon\right)|x|^{p-1} \quad \text { for } t \in \mathbb{R} \text { and } x<-\rho \tag{3.4}
\end{equation*}
$$

Denote $E_{1}=\{t \in[0, T], x(t-\tau(t)) \leq-\rho\}, E_{2}=\{t \in[0, T],|x(t-\tau(t))|<\rho\}$, $E_{3}=\{t \in[0, T], x(t-\tau(t)) \geq \rho\}$. By (3.2), it is easy to see that

$$
\begin{equation*}
\left(\int_{E_{1}}+\int_{E_{2}}+\int_{E_{3}}\right)[g(t, x(t-\tau(t)))-e(t)] d t=0 \tag{3.5}
\end{equation*}
$$

Hence

$$
\begin{align*}
\int_{E_{3}}|g(t, x(t-\tau(t)))-e(t)| d t & =-\int_{E_{3}}[g(t, x(t-\tau(t)))-e(t)] d t \\
& =\left(\int_{E_{1}}+\int_{E_{2}}\right)[g(t, x(t-\tau(t)))-e(t)] d t \tag{3.6}\\
& \leq\left(\int_{E_{1}}+\int_{E_{2}}\right)|g(t, x(t-\tau(t)))-e(t)| d t
\end{align*}
$$

Therefore, by (3.4) and (3.6), we obtain

$$
\begin{align*}
\int_{0}^{T}|g(t, x(t-\tau(t)))-e(t)| d t & =\left(\int_{E_{1}}+\int_{E_{2}}+\int_{E_{3}}\right)|g(t, x(t-\tau(t)))-e(t)| d t \\
& \leq 2\left(\int_{E_{1}}+\int_{E_{2}}\right)|g(t, x(t-\tau(t)))-e(t)| d t \\
& \leq 2 \int_{E_{1}}\left(r_{2}+\varepsilon\right)|x(t-\tau(t))|^{p-1} d t+2 \widetilde{g}_{\rho} T \\
& \leq 2\left(r_{2}+\varepsilon\right) T\|x\|_{\infty}^{p-1}+2 \widetilde{g}_{\rho} T \tag{3.7}
\end{align*}
$$

Where $\widetilde{g}_{\rho}=\max _{t \in E_{2}}|g(t, x(t-\tau(t)))-e(t)|$. Multiplying both sides of 3.1 by $(A x)(t)=x(t)-c x(t-\sigma)$ and integrating them over $[0, T]$, we have

$$
\begin{align*}
\left\|A x^{\prime}\right\|_{p}^{p} & =\lambda \int_{0}^{T}(A x)(t)\left[f(x(t)) x^{\prime}(t)+g(t, x(t-\tau(t)))-e(t)\right] d t \\
& \leq(1+|c|)\|x\|_{\infty} \int_{0}^{T}\left[\left|f(x(t)) x^{\prime}(t)\right|+|g(t, x(t-\tau(t)))-e(t)|\right] d t \tag{3.8}
\end{align*}
$$

From assumption (A1), we obtain.

$$
\begin{equation*}
\int_{0}^{T}\left|f(x(t)) x^{\prime}(t)\right| d t \leq k \int_{0}^{T}\left|x^{\prime}(t)\right| d t+r_{1} \int_{0}^{T}\left|x^{\prime}(t) \| x(t)\right|^{p-2} d t \tag{3.9}
\end{equation*}
$$

Using Hölder inequality, and substituting (3.3) into (3.9), we obtain

$$
\begin{equation*}
\int_{0}^{T}\left|f(x(t)) x^{\prime}(t)\right| d t \leq k T^{1 / q}\left\|x^{\prime}\right\|_{p}+r_{1} T^{1 / q}\left\|x^{\prime}\right\|_{p}\left(d+\frac{1}{2} \int_{0}^{T}\left|x^{\prime}(t)\right| d t\right)^{p-2} \tag{3.10}
\end{equation*}
$$

From (3.3) and (3.7), we have

$$
\begin{equation*}
\int_{0}^{T}|g(t, x(t-\tau(t)))-e(t)| d t \leq 2 \widetilde{g}_{\rho} T+2\left(r_{2}+\varepsilon\right) T\left(d+\frac{1}{2} \int_{0}^{T}\left|x^{\prime}(t)\right| d t\right)^{p-1} \tag{3.11}
\end{equation*}
$$

Substituting (3.10), (3.11) and (3.3) into (3.8), we obtain

$$
\begin{align*}
&\left\|A x^{\prime}\right\|_{p}^{p} \\
& \leq(1+|c|)\left[k T^{1 / q}\left\|x^{\prime}\right\|_{p}\left(d+\frac{1}{2} \int_{0}^{T}\left|x^{\prime}(t)\right| d t\right)\right. \\
&+\left(d+\frac{1}{2} \int_{0}^{T}\left|x^{\prime}(t)\right| d t\right)^{p-1} r_{1} T^{1 / q}\left\|x^{\prime}\right\|_{p} \tag{3.12}\\
&\left.+2\left(r_{2}+\varepsilon\right) T\left(d+\frac{1}{2} \int_{0}^{T}\left|x^{\prime}(t)\right| d t\right)^{p}+2 \widetilde{g}_{\rho} T\left(d+\frac{1}{2} \int_{0}^{T}\left|x^{\prime}(t)\right| d t\right)\right]
\end{align*}
$$

Case(1). If $\int_{0}^{T}\left|x^{\prime}(t)\right| d t=0$, from (3.3), we have $\|x\|_{\infty}<d$.

Case(2). If $\int_{0}^{T}\left|x^{\prime}(t)\right| d t>0$, then

$$
\begin{equation*}
\left(d+\frac{1}{2} \int_{0}^{T}\left|x^{\prime}(t)\right| d t\right)^{p-1}=\left(\frac{1}{2} \int_{0}^{T}\left|x^{\prime}(t)\right| d t\right)^{p-1}\left(1+\frac{2 d}{\int_{0}^{T}\left|x^{\prime}(t)\right| d t}\right)^{p-1} \tag{3.13}
\end{equation*}
$$

By elementary analysis, there is a constant $\delta>0$ such that

$$
\begin{equation*}
(1+u)^{p-1} \leq 1+p u, \quad \forall u \in[0, \delta] \tag{3.14}
\end{equation*}
$$

If $2 d / \int_{0}^{T}\left|x^{\prime}(t)\right| d t>\delta$, then $\int_{0}^{T}\left|x^{\prime}(t)\right| d t<2 d / \delta$, so from (3.3), we have $\|x\|_{\infty}<$ $d+(d / \delta)$.

If $2 d / \int_{0}^{T}\left|x^{\prime}(t)\right| d t \leq \delta$, by (3.13) and 3.14,

$$
\begin{align*}
& \left(d+\frac{1}{2} \int_{0}^{T}\left|x^{\prime}(t)\right| d t\right)^{p-1} \\
& \leq\left(\frac{1}{2} \int_{0}^{T}\left|x^{\prime}(t)\right| d t\right)^{p-1}\left(1+\frac{2 p d}{\int_{0}^{T}\left|x^{\prime}(t)\right| d t}\right) \tag{3.15}\\
& \leq\left(\frac{1}{2}\right)^{p-1}\left(\int_{0}^{T}\left|x^{\prime}(t)\right| d t\right)^{p-1}+\left(\frac{1}{2}\right)^{p-2} p d\left(\int_{0}^{T}\left|x^{\prime}(t)\right| d t\right)^{p-2} \\
& \leq\left(\frac{1}{2}\right)^{p-1} T^{\frac{p-1}{q}}\left\|x^{\prime}\right\|_{p}^{p-1}+\left(\frac{1}{2}\right)^{p-2} p d T^{\frac{p-2}{q}}\left\|x^{\prime}\right\|_{p}^{p-2}
\end{align*}
$$

Similarly, from 3.14 , there is a constant $\delta^{\prime}>0$ such that

$$
\begin{equation*}
(1+u)^{p} \leq 1+(1+p) u, \quad \forall u \in\left[0, \delta^{\prime}\right] \tag{3.16}
\end{equation*}
$$

If $2 d / \int_{0}^{T}\left|x^{\prime}(t)\right| d t>\delta^{\prime}$, then $\int_{0}^{T}\left|x^{\prime}(t)\right| d t<2 d / \delta^{\prime}$, so from (3.3), we have $\|x\|_{\infty}<$ $d+\left(d / \delta^{\prime}\right)$.

If $2 d / \int_{0}^{T}\left|x^{\prime}(t)\right| d t \leq \delta^{\prime}$, by 3.16, we have

$$
\begin{align*}
& \left(d+\frac{1}{2} \int_{0}^{T}\left|x^{\prime}(t)\right| d t\right)^{p} \\
& \leq\left(\frac{1}{2} \int_{0}^{T}\left|x^{\prime}(t)\right| d t\right)^{p}\left(1+\frac{2(p+1) d}{\int_{0}^{T}\left|x^{\prime}(t)\right| d t}\right) \tag{3.17}\\
& \leq\left(\frac{1}{2}\right)^{p}\left(\int_{0}^{T}\left|x^{\prime}(t)\right| d t\right)^{p}+\left(\frac{1}{2}\right)^{p-1}(p+1) d\left(\int_{0}^{T}\left|x^{\prime}(t)\right| d t\right)^{p-1} \\
& \leq\left(\frac{1}{2}\right)^{p} T^{\frac{p}{q}}\left\|x^{\prime}\right\|_{p}^{p}+\left(\frac{1}{2}\right)^{p-1}(p+1) d T^{\frac{p-1}{q}}\left\|x^{\prime}\right\|_{p}^{p-1}
\end{align*}
$$

Substituting (3.15 and 3.17) into 3.12 and using Hölder inequality, we obtain

$$
\begin{align*}
\left\|A x^{\prime}\right\|_{p}^{p} \leq & (1+|c|)\left[\left(\frac{1}{2^{p-1}}\left(r_{2}+\varepsilon\right) T^{p}+\frac{1}{2^{p-1}} r_{1} T^{\frac{p}{q}}\right)\left\|x^{\prime}\right\|_{p}^{p}+a_{0}\left\|x^{\prime}\right\|_{p}^{p-1}\right. \tag{3.18}\\
& \left.+a_{1}\left\|x^{\prime}\right\|_{p}^{2}+a_{2}\left\|x^{\prime}\right\|_{p}+2 \widetilde{g}_{\rho} T d\right]
\end{align*}
$$

where a_{0}, a_{1} and a_{2} are constants depending on T, r_{1}, k, r_{2}, d, p and c. Then from Lemma 2.2 , we have

$$
|1-|c||^{p}\left\|x^{\prime}\right\|_{p}^{p}=\left|1-|c|^{p}\left\|A^{-1} A x^{\prime}\right\|_{p}^{p} \leq\left\|A x^{\prime}\right\|_{p}^{p}\right.
$$

So it follows from 3.18 that

$$
\begin{align*}
|1-| c\left\|^{p}\right\| x^{\prime} \|_{p}^{p} \leq & (1+|c|)\left[\left(\frac{1}{2^{p-1}} T^{p-1}\left(r_{1}+T\left(r_{2}+\varepsilon\right)\right)\right)\left\|x^{\prime}\right\|_{p}^{p}+a_{0}\left\|x^{\prime}\right\|_{p}^{p-1}\right. \tag{3.19}\\
& \left.+a_{1}\left\|x^{\prime}\right\|_{p}^{2}+a_{2}\left\|x^{\prime}\right\|_{p}+2 \widetilde{g}_{\rho} T d\right]
\end{align*}
$$

As $p>2$ and $\frac{1}{2^{p-1}}(1+|c|) T^{p-1}\left(r_{1}+T r_{2}\right)<|1-|c||^{p}$, there exists a constant $R_{3}>0$ such that

$$
\begin{equation*}
\left\|x^{\prime}\right\|_{p} \leq R_{3} . \tag{3.20}
\end{equation*}
$$

Which together with (3.3 implies that there is a positive number R_{4} such that

$$
\begin{equation*}
\|x\|_{\infty} \leq R_{4} \tag{3.21}
\end{equation*}
$$

From (3.1), we have

$$
\begin{align*}
& \int_{0}^{T}\left|\left(\phi_{p}\left(A x^{\prime}\right)(t)\right)^{\prime}\right| d t \\
& \leq \int_{0}^{T}\left[\left|f(x(t)) x^{\prime}(t)\right|+|g(t, x(t-\tau(t)))+|e(t)|] d t\right. \\
& \leq k T^{1 / q}\left\|x^{\prime}\right\|_{p}+\int_{0}^{T} r_{1}|x|^{p-2}\left|x^{\prime}(t)\right|+T g_{R_{4}}+\int_{0}^{T}|e(t)| d t \tag{3.22}\\
& \leq k T^{1 / q}\left\|x^{\prime}\right\|_{p}+r_{1}\|x\|_{\infty}^{p-2} T^{1 / q}\left\|x^{\prime}\right\|_{p}+T g_{R_{4}}+\int_{0}^{T}|e(t)| d t \\
& \leq k T^{1 / q} R_{3}+r_{1} R_{4}^{p-2} T^{1 / q} R_{3}+T g_{R_{4}}+\int_{0}^{T}|e(t)| d t=R_{5}
\end{align*}
$$

where $g_{R_{4}}=\max _{|x| \leq R_{4}, t \in[0, T]}|g(t, x(t-\tau(t)))|$. As $(A x)(0)=(A x)(T)$, there exists $\left.t_{0} \in\right] 0, T\left[\right.$ such that $\left(A x^{\prime}\right)\left(t_{0}\right)=0$, while $\phi_{p}(0)=0$ we see $\phi_{p}\left(A x^{\prime}\right)\left(t_{0}\right)=0$. Thus, for any $t \in[0, T]$, we have

$$
\left.\left.\mid \phi_{p}\left(A x^{\prime}\right)(t)\right)|=| \int_{t_{0}}^{t} \phi_{p}\left(A x^{\prime}\right)(s)\right) d s\left|\leq \int_{0}^{T}\right|\left(\phi_{p}\left(A x^{\prime}\right)(s)\right)^{\prime} \mid d t \leq R_{5}
$$

From which, it follows that

$$
\begin{equation*}
\left\|A x^{\prime}\right\|_{\infty} \leq R_{5}^{q-1} \tag{3.23}
\end{equation*}
$$

From Lemma 2.1. we derive

$$
\begin{equation*}
\left\|x^{\prime}\right\|_{\infty}=\left\|A^{-1} A x^{\prime}\right\|_{\infty} \leq \frac{\left\|A x^{\prime}\right\|_{\infty}}{|1-|c||} \leq \frac{R_{5}^{q-1}}{|1-|c||}=R_{6} \tag{3.24}
\end{equation*}
$$

Now, let $y(t)=(A x)(t)$, we can see that (3.1) is equivalent to the equation

$$
\begin{equation*}
\left(\phi_{p}\left(y^{\prime}(t)\right)\right)^{\prime}+\lambda f\left(\left(A^{-1} y\right)(t)\right)\left(A^{-1} y^{\prime}\right)(t)+\lambda g\left(t,\left(A^{-1} y\right)(t-\tau(t))\right)=\lambda e(t) \tag{3.25}
\end{equation*}
$$

So, if y is an periodic solution of 3.25 , then $x=A^{-1} y$ is T-periodic solution of (3.1).

Let $R_{7}=2(1+|c|) \max \left\{R_{4}, R_{6}, d\right\}, \Omega=\left\{y \in \mathcal{C}_{T}^{1}:\|y\|<R_{7}\right\}$, we can see that 3.25 has no solution on $\partial \Omega$ for $\lambda \in(0,1)$. In fact, if $y=A x$ is a solution (3.25) on $\partial \Omega$, then $\|y\|=R_{7},\|y\|_{\infty}=R_{7}$ or $\left\|y^{\prime}\right\|_{\infty}=R_{7}$. If $\|y\|_{\infty}=R_{7}$, then $\|x\|_{\infty} \geq \frac{\|y\|_{\infty}}{1+|c|}=2 \max \left\{R_{4}, R_{6}, d\right\}>R_{4}$, from (3.21) which is a contradiction.

Similarly, $\left\|y^{\prime}\right\|_{\infty}=R_{7}$ is also impossible. If $y \in \partial \Omega \cap \mathbb{R}$, then y is a constant and $|y|=R_{7}, x=A^{-1} y=\frac{y}{1-c},|x| \geq 2 \max \left\{R_{4}, R_{6}, d\right\}$. Let

$$
F(y)=\frac{1}{T} \int_{0}^{T}\left[e(t)-f\left(\left(A^{-1} y\right)(t)\right)\left(A^{-1} y^{\prime}\right)(t)-g\left(t,\left(A^{-1} y\right)(t-\tau(t))\right)\right]
$$

Then $F(y)=\frac{1}{T} \int_{0}^{T}\left[e(t)-g\left(t, \frac{y}{1-c}\right)\right] d t$ for $y \in \partial \Omega \cap \mathbb{R}$. From (A2), we know that $F(y) \neq 0$ on $\partial \Omega \cap \mathbb{R}$, so condition (ii) in Lemma 2.3 is satisfied. Define

$$
H(y, \mu)=\mu\left(A^{-1} y\right)+(1-\mu) F(y)
$$

$y \in \partial \Omega \cap \mathbb{R}, \mu \in[0,1]$. Then
$\left(-A^{-1} y\right) H(y, \mu)=-\mu\left(A^{-1} y\right)^{2}-(1-\mu)\left(A^{-1} y\right) \frac{1}{T} \int_{0}^{T}\left[e(t)-g\left(t,\left(A^{-1} y\right)(t-\tau(t))\right)\right] d t$.
From (A2) we obtain $\left(A^{-1} y\right) H(y, \mu)>0$. Thus $H(y, \mu)$ is a homotopic transformation and $\operatorname{deg}[F, \Omega \cap \mathbb{R}, 0]=\operatorname{deg}\left[A^{-1} y, \Omega \cap \mathbb{R}, 0\right] \neq 0$. So, for (3.25), all of conditions of Lemma 2.3 are satisfied. Applying Lemma 2.3, we conclude that

$$
\begin{equation*}
\left(\phi_{p}\left(y^{\prime}(t)\right)\right)^{\prime}+f\left(\left(A^{-1} y\right)(t)\right)\left(A^{-1} y^{\prime}\right)(t)+g\left(t,\left(A^{-1} y\right)(t-\tau(t))\right)=e(t) \tag{3.26}
\end{equation*}
$$

has at least one T-periodic solution \bar{y}. Therefore, $\bar{x}=A^{-1} \bar{y}$ is an T-periodic solution of (1.4).

Similarly, we can prove the following Theorem.
Theorem 3.2. Suppose that $p>2$ and that there exist constants $r_{1} \geq 0, r_{2} \geq 0$, $d>0$ and $k>0$ such that
(A1) $|f(x)| \leq k+r_{1}|x|^{p-2}$ for $x \in \mathbb{R}$;
(A2) $x[g(t, x)-e(t)]<0$ for $|x|>d$ and $t \in \mathbb{R}$;
(A3) $\lim _{x \rightarrow+\infty} \frac{|g(t, x)-e(t)|}{|x|^{p-1}}=r_{2}$.
then (1.4) has at least one T-periodic solution if

$$
\frac{1}{2^{p-1}}(1+|c|) T^{p-1}\left(r_{1}+T r_{2}\right)<|1-|c||^{p}
$$

4. Example

In this section, we illustrate Theorem 3.1 with the following example. Consider the equation

$$
\begin{equation*}
\left(\phi_{3}(x(t)-5 x(t-\pi))^{\prime}\right)^{\prime}+f(x(t)) x^{\prime}(t)+g(t, x(t-\sin (t)))=e^{\cos ^{2} t} \tag{4.1}
\end{equation*}
$$

where $p=3, c=5, \sigma=4, \mathrm{~T}=2 \pi, \tau(t)=\sin t, e(t)=e^{\cos ^{2} t}, f(x)=2+\frac{\sqrt{|x|}}{\pi^{2}}$,

$$
g(t, x)= \begin{cases}-x e^{\sin ^{2} t}, & x \geq 0 \\ \frac{x^{2}}{18 \pi^{2}}, & x<0\end{cases}
$$

Let $d=3 \pi \sqrt{2 e}, r_{1}=\frac{1}{\pi^{2}}, r_{2}=\frac{1}{18 \pi^{2}}, k=4+\frac{\max _{|x| \leq 1}|f(x)|}{\pi^{2}}$. We can easily check the condition (A1), (A2) and (A3) of Theorem 3.1hold. Furthermore,

$$
\frac{1}{2^{p-1}}(1+|c|) T^{p-1}\left(r_{1}+T r_{2}\right)=6+\frac{2 \pi}{3}<|1-|c||^{p}=64
$$

By Theorem 3.1 (4.1) has at least one 2π-periodic solution.

References

[1] B. Liu; Periodic solutions for Liénard type p-Laplacian equation with a deviating arguments, Journal of Computational and Applied Mathematics 214(2008), 13-18.
[2] S. P. Lu, J. Ren, W. Ge; Problems of periodic solutions for a kind of second order neutral functional differential equations, Appl. Anal. Appl. 82(5)(2003), 393-410.
[3] R. Manásevich, J. Mawhin; Periodic solutions for nonlinear systems with p-Laplacian-like operators, J. Differential Equations 145(1998), 367-393.
[4] S. Peng; Periodic solutions for p-Laplacian neutral Rayleigh equation with a deviating arguments, Nonlinear Analysis 69(2008), 1675-1685.
[5] M. R. Zhang; Periodic solutions to linear and quasilinear neutral functional differential equation, J. Math. Anal. Appl. 189(1995), 378-392.
[6] Y. L. Zhu, S. P. Lu; Periodic solutions for p-Laplacian neutral functional differential equation with deviating arguments, J. Math. Anal. Appl. 325(2007), 377-385.

Université Mohamed I, Faculté des Sciences, Département de Mathématiques et Informatique, Oujda, Maroc

E-mail address, Aomar Anane: anane@sciences.univ-oujda.ac.ma
E-mail address, Omar Chakrone: chakrone@yahoo.fr
E-mail address, Loubna Moutaouekkil: loubna_anits@yahoo.fr

[^0]: 2000 Mathematics Subject Classification. 34C25, 34B15.
 Key words and phrases. Periodic solution; neutral Rayleigh equation; Liénard equation;
 Deviating argument; p-Laplacian; Manásevich-Mawhin continuation.
 (C) 2010 Texas State University - San Marcos.

 Submitted September 15, 2010. Published December 22, 2010.

