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LIÉNARD TYPE P-LAPLACIAN NEUTRAL RAYLEIGH
EQUATION WITH A DEVIATING ARGUMENT

AOMAR ANANE, OMAR CHAKRONE, LOUBNA MOUTAOUEKKIL

Abstract. Based on Manásevich-Mawhin continuation theorem, we prove the
existence of periodic solutions for Liénard type p-Laplacian neutral Rayleigh
equations with a deviating argument,

(φp(x(t)− cx(t− σ))′)′ + f(x(t))x′(t) + g(t, x(t− τ(t))) = e(t).

An example is provided to illustrate our results.

1. Introduction

The existence of periodic solutions for Liénard type p-Laplacian equation with
a deviating argument

(φp(x′(t)))′ + f(x(t))x′(t) + g(t, x(t− τ(t))) = e(t) (1.1)

has been studied using the coincidence degree theory [1]. Zhu and Lu [6], studied the
existence of periodic solution for p-Laplacian neutral functional differential equation
with a deviating argument when p > 2

(φp(x(t)− cx(t− σ))′)′ + g(t, x(t− τ(t))) = e(t). (1.2)

They obtained some results by transforming (1.2) into a two-dimensional system
to which Mawhin’s continuation theorem was applied.

Peng [4] discussed the existence of periodic solution for p-Laplacian neutral
Rayleigh equation with a deviating argument

(φp(x(t)− cx(t− σ))′)′ + f(x′(t)) + g(t, x(t− τ(t))) = e(t) (1.3)

and obtained the existence of periodic solutions under the assumption f(0) = 0 and∫ T

0
e(t)dt = 0.
Throughout this paper, 2 < p < ∞ is a fixed real number. The conjugate

exponent of p is denoted by q; i.e., 1
p + 1

q = 1. Let φp : R → R be defined by
φp(s) = |s|p−2s for s 6= 0, and φp(0) = 0. In this article, we will investigate the
existence of periodic solution to the Liénard type p-Laplacian neutral Rayleigh
equation

(φp(x(t)− cx(t− σ))′)′ + f(x(t))x′(t) + g(t, x(t− τ(t))) = e(t) (1.4)
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where f , e and τ are real continuous functions on R. τ and e are periodic with
period T , T > 0 is fixed. g is continuous function defined on R2 and T -periodic in
the first argument, c and σ are constants such that |c| 6= 1.

2. Preliminaries

Let CT = {x ∈ C(R, R) : x(t + T ) = x(t)} and C1
T = {x ∈ C1(R, R) : x(t + T ) =

x(t)}. CT is a Banach space endowed with the norm ‖x‖∞ = max |x(t)|t∈[0,T ]. C1
T

is a Banach space endowed with the norm ‖x‖ = max{‖x‖∞, ‖x′‖∞}. In what
follows, we will use ‖.‖p to denote the LP -norm. We also define a linear operator
A : CT → CT ,

(Ax)(t) = x(t)− cx(t− σ).

Lemma 2.1 ([2, 5]). If |c| 6= 1, then A has continuous bounded inverse on CT , and

(1) ‖A−1x‖∞ ≤ ‖x‖∞
|1−|c|| , for all x ∈ CT ;

(2)

(A−1x)(t) =

{∑
j≥0 cjx(t− jσ), |c| < 1

−
∑

j≥1 c−jx(t + jσ), |c| > 1.

(3) ∫ T

0

|(A−1x)(t)|dt ≤ 1
|1− |c||

∫ T

0

|x(t)|dt, ∀x ∈ CT .

Lemma 2.2 ([4]). If |c| 6= 1 and p > 1, then∫ T

0

|(A−1x)(t)|pdt ≤ 1
|1− |c||p

∫ T

0

|x(t)|pdt, ∀x ∈ CT . (2.1)

For the T -periodic boundary value problem

(φp(x′(t)))′ = f̃(t, x, x′), x(0) = x(T ), x′(0) = x′(T ), (2.2)

where f̃ ∈ C(R3, R), we have the following result.

Lemma 2.3 ([3]). Let Ω be an open bounded set in C1
T , and let the following

conditions hold:

(i) For each λ ∈ (0, 1), the problem

(φp(x′(t)))′ = λf̃(t, x, x′), x(0) = x(T ), x′(0) = x′(T )

has no solution on ∂Ω.
(ii) The equation

F (a) =
1
T

∫ T

0

f̃(t, a, 0)dt = 0

has no solution on ∂Ω ∩ R.
(iii) The Brouwer degree of F , deg(F,Ω ∩ R, 0) 6= 0.

Then the T -periodic boundary value problem (2.2) has at least one periodic solution
on Ω.
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3. Main results

Theorem 3.1. Suppose that p > 2 and there exist constants r1 ≥ 0, r2 ≥ 0, d > 0
and k > 0 such that

(A1) |f(x)| ≤ k + r1|x|p−2 for x ∈ R;
(A2) x[g(t, x)− e(t)] < 0 for |x| > d and t ∈ R;
(A3) limx→−∞

|g(t,x)−e(t)|
|x|p−1 = r2.

Then (1.4) has at least one T -periodic solution if
1

2p−1
(1 + |c|)T p−1(r1 + Tr2) < |1− |c||p.

Proof. Consider the homotopic equation of (1.4) as follows:

(φp(x(t)−cx(t−σ))′)′+λf(x(t))x′(t)+λg(t, x(t−τ(t))) = λe(t), λ ∈ (0, 1). (3.1)

We claim that the set of all possible periodic solution of (3.1) are bounded in C1
T .

Let x(t) ∈ C1
T be an arbitrary solution of (3.1) with period T . By integrating

two sides of (3.1) over [0, T ], and noticing that x′(0) = x′(T ), we have∫ T

0

[g(t, x(t− τ(t)))− e(t)]dt = 0. (3.2)

By the integral mean value theorem, there is a constant ξ ∈ [0, T ] such that
g(ξ, x(ξ− τ(ξ)))−e(ξ) = 0. So from assumption (A2), we can get |x(ξ− τ(ξ))| ≤ d.
Let ξ − τ(ξ) = mT + ξ, where ξ ∈ [0, T ], and m is an integer. Then, we have

|x(t)| = |x(ξ) +
∫ t

ξ

x′(s)ds| ≤ d +
∫ t

ξ

|x′(s)|ds, t ∈ [ξ, ξ + T ],

and

|x(t)| = |x(t− T )| = |x(ξ)−
∫ ξ

t−T

x′(s)ds| ≤ d +
∫ ξ

t−T

|x′(s)|ds, t ∈ [ξ, ξ + T ].

Combining the above two inequalities, we obtain

‖x‖∞ = max
t∈[0,T ]

|x(t)| = max
t∈[ξ,ξ+T ]

|x(t)|

≤ max
t∈[ξ,ξ+T ]

{
d +

1
2

( ∫ t

ξ

|x′(s)|ds +
∫ ξ

t−T

|x′(s)|ds
)}

≤ d +
1
2

∫ T

0

|x′(s)|ds.

(3.3)

In view of 1
2p−1 (1+ |c|)T p−1(r1 +Tr2) < |1−|c||p, there exist a constant ε > 0 such

that
1

2p−1
(1 + |c|)T p−1(r1 + T (r2 + ε)) < |1− |c||p.

From assumption (A3), there exist a constant ρ > d such that

|g(t, x(t− τ(t)))− e(t)|dt ≤ (r2 + ε)|x|p−1 for t ∈ R and x < −ρ. (3.4)

Denote E1 = {t ∈ [0, T ], x(t − τ(t)) ≤ −ρ}, E2 = {t ∈ [0, T ], |x(t − τ(t))| < ρ},
E3 = {t ∈ [0, T ], x(t− τ(t)) ≥ ρ}. By (3.2), it is easy to see that( ∫

E1

+
∫

E2

+
∫

E3

)
[g(t, x(t− τ(t)))− e(t)]dt = 0. (3.5)
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Hence∫
E3

|g(t, x(t− τ(t)))− e(t)|dt = −
∫

E3

[g(t, x(t− τ(t)))− e(t)]dt

=
( ∫

E1

+
∫

E2

)
[g(t, x(t− τ(t)))− e(t)]dt

≤
( ∫

E1

+
∫

E2

)
|g(t, x(t− τ(t)))− e(t)|dt.

(3.6)

Therefore, by (3.4) and (3.6), we obtain∫ T

0

|g(t, x(t− τ(t)))− e(t)|dt =
( ∫

E1

+
∫

E2

+
∫

E3

)
|g(t, x(t− τ(t)))− e(t)|dt

≤ 2
( ∫

E1

+
∫

E2

)
|g(t, x(t− τ(t)))− e(t)|dt

≤ 2
∫

E1

(r2 + ε)|x(t− τ(t))|p−1dt + 2g̃ρT

≤ 2(r2 + ε)T‖x‖p−1
∞ + 2g̃ρT.

(3.7)
Where g̃ρ = maxt∈E2 |g(t, x(t − τ(t))) − e(t)|. Multiplying both sides of (3.1) by
(Ax)(t) = x(t)− cx(t− σ) and integrating them over [0, T ], we have

‖Ax′‖p
p = λ

∫ T

0

(Ax)(t) [f(x(t))x′(t) + g(t, x(t− τ(t)))− e(t)] dt

≤ (1 + |c|)‖x‖∞
∫ T

0

[|f(x(t))x′(t)|+ |g(t, x(t− τ(t)))− e(t)|] dt.

(3.8)

From assumption (A1), we obtain.∫ T

0

|f(x(t))x′(t)|dt ≤ k

∫ T

0

|x′(t)|dt + r1

∫ T

0

|x′(t)||x(t)|p−2dt. (3.9)

Using Hölder inequality, and substituting (3.3) into (3.9), we obtain∫ T

0

|f(x(t))x′(t)|dt ≤ kT 1/q‖x′‖p + r1T
1/q‖x′‖p

(
d +

1
2

∫ T

0

|x′(t)|dt
)p−2

. (3.10)

From (3.3) and (3.7), we have∫ T

0

|g(t, x(t−τ(t)))−e(t)|dt ≤ 2 g̃ρ T +2(r2 +ε)T
(
d+

1
2

∫ T

0

|x′(t)|dt
)p−1

. (3.11)

Substituting (3.10), (3.11) and (3.3) into (3.8), we obtain

‖Ax′‖p
p

≤ (1 + |c|)
[
kT 1/q‖x′‖p

(
d +

1
2

∫ T

0

|x′(t)|dt
)

+
(
d +

1
2

∫ T

0

|x′(t)|dt
)p−1

r1T
1/q‖x′‖p

+ 2(r2 + ε)T
(
d +

1
2

∫ T

0

|x′(t)|dt
)p

+ 2g̃ρT
(
d +

1
2

∫ T

0

|x′(t)|dt
)]

.

(3.12)

Case(1). If
∫ T

0
|x′(t)|dt = 0, from (3.3), we have ‖x‖∞ < d.
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Case(2). If
∫ T

0
|x′(t)|dt > 0, then(

d +
1
2

∫ T

0

|x′(t)|dt
)p−1

=
(1

2

∫ T

0

|x′(t)|dt
)p−1(

1 +
2d∫ T

0
|x′(t)|dt

)p−1

. (3.13)

By elementary analysis, there is a constant δ > 0 such that

(1 + u)p−1 ≤ 1 + pu, ∀u ∈ [0, δ]. (3.14)

If 2d/
∫ T

0
|x′(t)|dt > δ, then

∫ T

0
|x′(t)|dt < 2d/δ, so from (3.3), we have ‖x‖∞ <

d + (d/δ).
If 2d/

∫ T

0
|x′(t)|dt ≤ δ, by (3.13) and (3.14),(

d +
1
2

∫ T

0

|x′(t)|dt
)p−1

≤
(1

2

∫ T

0

|x′(t)|dt
)p−1(

1 +
2pd∫ T

0
|x′(t)|dt

)
≤

(1
2
)p−1

( ∫ T

0

|x′(t)|dt
)p−1

+
(1
2
)p−2

pd
( ∫ T

0

|x′(t)|dt
)p−2

≤
(1
2
)p−1

T
p−1

q ‖x′‖p−1
p +

(1
2
)p−2

pdT
p−2

q ‖x′‖p−2
p .

(3.15)

Similarly, from(3.14), there is a constant δ′ > 0 such that

(1 + u)p ≤ 1 + (1 + p)u, ∀u ∈ [0, δ′] (3.16)

If 2d/
∫ T

0
|x′(t)|dt > δ′, then

∫ T

0
|x′(t)|dt < 2d/δ′, so from (3.3), we have ‖x‖∞ <

d + (d/δ′).
If 2d/

∫ T

0
|x′(t)|dt ≤ δ′, by (3.16), we have(

d +
1
2

∫ T

0

|x′(t)|dt
)p

≤
(1

2

∫ T

0

|x′(t)|dt
)p(

1 +
2(p + 1)d∫ T

0
|x′(t)|dt

)
≤

(1
2
)p

( ∫ T

0

|x′(t)|dt
)p

+
(1
2
)p−1(p + 1)d

( ∫ T

0

|x′(t)|dt
)p−1

≤
(1
2
)p

T
p
q ‖x′‖p

p +
(1
2
)p−1(p + 1)dT

p−1
q ‖x′‖p−1

p .

(3.17)

Substituting (3.15) and (3.17) into (3.12) and using Hölder inequality, we obtain

‖Ax′‖p
p ≤ (1 + |c|)[( 1

2p−1
(r2 + ε)T p +

1
2p−1

r1T
p
q )‖x′‖p

p + a0‖x′‖p−1
p

+ a1‖x′‖2p + a2‖x′‖p + 2g̃ρTd],
(3.18)

where a0, a1 and a2 are constants depending on T, r1, k, r2, d, p and c. Then from
Lemma(2.2), we have

|1− |c||p‖x′‖p
p = |1− |c||p‖A−1Ax′‖p

p ≤ ‖Ax′‖p
p .
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So it follows from (3.18) that

|1− |c||p‖x′‖p
p ≤ (1 + |c|)[( 1

2p−1
T p−1(r1 + T (r2 + ε)))‖x′‖p

p + a0‖x′‖p−1
p

+ a1‖x′‖2p + a2‖x′‖p + 2g̃ρTd].
(3.19)

As p > 2 and 1
2p−1 (1+ |c|)T p−1(r1 +Tr2) < |1−|c||p, there exists a constant R3 > 0

such that
‖x′‖p ≤ R3. (3.20)

Which together with (3.3) implies that there is a positive number R4 such that

‖x‖∞ ≤ R4. (3.21)

From (3.1), we have∫ T

0

|(φp(Ax′)(t))′|dt

≤
∫ T

0

[|f(x(t))x′(t)|+ |g(t, x(t− τ(t))) + |e(t)|]dt

≤ kT 1/q‖x′‖p +
∫ T

0

r1|x|p−2|x′(t)|+ TgR4 +
∫ T

0

|e(t)|dt

≤ kT 1/q‖x′‖p + r1‖x‖p−2
∞ T 1/q‖x′‖p + TgR4 +

∫ T

0

|e(t)|dt

≤ kT 1/qR3 + r1R
p−2
4 T 1/qR3 + TgR4 +

∫ T

0

|e(t)|dt = R5,

(3.22)

where gR4 = max|x|≤R4,t∈[0,T ] |g(t, x(t−τ(t)))|. As (Ax)(0) = (Ax)(T ), there exists
t0 ∈]0, T [ such that (Ax′)(t0) = 0, while φp(0) = 0 we see φp(Ax′)(t0) = 0. Thus,
for any t ∈ [0, T ], we have

|φp(Ax′)(t))| = |
∫ t

t0

φp(Ax′)(s))ds| ≤
∫ T

0

|(φp(Ax′)(s))′|dt ≤ R5.

From which, it follows that
‖Ax′‖∞ ≤ Rq−1

5 . (3.23)

From Lemma 2.1, we derive

‖x′‖∞ = ‖A−1Ax′‖∞ ≤ ‖Ax′‖∞
|1− |c||

≤ Rq−1
5

|1− |c||
= R6. (3.24)

Now, let y(t) = (Ax)(t), we can see that (3.1) is equivalent to the equation

(φp(y′(t)))′ + λf((A−1y)(t))(A−1y′)(t) + λg(t, (A−1y)(t− τ(t))) = λe(t). (3.25)

So, if y is an periodic solution of (3.25), then x = A−1y is T -periodic solution of
(3.1).

Let R7 = 2(1 + |c|) max{R4, R6, d}, Ω = {y ∈ C1
T : ‖y‖ < R7}, we can see

that (3.25) has no solution on ∂Ω for λ ∈ (0, 1). In fact, if y = Ax is a solution
(3.25) on ∂Ω, then ‖y‖ = R7, ‖y‖∞ = R7 or ‖y′‖∞ = R7. If ‖y‖∞ = R7, then
‖x‖∞ ≥ ‖y‖∞

1+|c| = 2max{R4, R6, d} > R4, from (3.21) which is a contradiction.
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Similarly, ‖y′‖∞ = R7 is also impossible. If y ∈ ∂Ω ∩ R, then y is a constant and
|y| = R7, x = A−1y = y

1−c , |x| ≥ 2 max{R4, R6, d}. Let

F (y) =
1
T

∫ T

0

[e(t)− f((A−1y)(t))(A−1y′)(t)− g(t, (A−1y)(t− τ(t)))].

Then F (y) = 1
T

∫ T

0
[e(t) − g(t, y

1−c )]dt for y ∈ ∂Ω ∩ R. From (A2), we know that
F (y) 6= 0 on ∂Ω ∩ R, so condition (ii) in Lemma 2.3 is satisfied. Define

H(y, µ) = µ(A−1y) + (1− µ)F (y),

y ∈ ∂Ω ∩ R, µ ∈ [0, 1]. Then

(−A−1y)H(y, µ) = −µ(A−1y)2−(1−µ)(A−1y)
1
T

∫ T

0

[e(t)−g(t, (A−1y)(t−τ(t)))]dt.

From (A2) we obtain (A−1y)H(y, µ) > 0. Thus H(y, µ) is a homotopic transforma-
tion and deg[F,Ω∩R, 0] = deg[A−1y, Ω∩R, 0] 6= 0. So, for (3.25), all of conditions
of Lemma 2.3 are satisfied. Applying Lemma 2.3, we conclude that

(φp(y′(t)))′ + f((A−1y)(t))(A−1y′)(t) + g(t, (A−1y)(t− τ(t))) = e(t) (3.26)

has at least one T -periodic solution y. Therefore, x = A−1y is an T -periodic
solution of (1.4). �

Similarly, we can prove the following Theorem.

Theorem 3.2. Suppose that p > 2 and that there exist constants r1 ≥ 0, r2 ≥ 0,
d > 0 and k > 0 such that

(A1) |f(x)| ≤ k + r1|x|p−2 for x ∈ R;
(A2) x[g(t, x)− e(t)] < 0 for |x| > d and t ∈ R;
(A3) limx→+∞

|g(t,x)−e(t)|
|x|p−1 = r2.

then (1.4) has at least one T -periodic solution if

1
2p−1

(1 + |c|)T p−1(r1 + Tr2) < |1− |c||p.

4. Example

In this section, we illustrate Theorem 3.1 with the following example. Consider
the equation

(φ3(x(t)− 5x(t− π))′)′ + f(x(t))x′(t) + g(t, x(t− sin(t))) = ecos2 t, (4.1)

where p = 3, c = 5, σ = 4, T = 2π, τ(t) = sin t, e(t) = ecos2 t, f(x) = 2 +
√
|x|

π2 ,

g(t, x) =

{
−xesin2 t, x ≥ 0

x2

18π2 , x < 0.

Let d = 3π
√

2e, r1 = 1
π2 , r2 = 1

18π2 , k = 4 + max|x|≤1 |f(x)|
π2 . We can easily check the

condition (A1), (A2) and (A3) of Theorem 3.1 hold. Furthermore,

1
2p−1

(1 + |c|)T p−1(r1 + Tr2) = 6 +
2π

3
< |1− |c||p = 64.

By Theorem 3.1, (4.1) has at least one 2π-periodic solution.
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