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DYNAMICAL PROBLEMS WITHOUT INITIAL CONDITIONS
FOR ELLIPTIC-PARABOLIC EQUATIONS IN SPATIAL

UNBOUNDED DOMAINS

MYKOLA BOKALO

Abstract. We consider a problem without initial conditions for degenerate
nonlinear evolution equations with nonlinear dynamical boundary condition
in spatial unbounded domains. We obtain sufficient conditions for the well-
posedness of this problem without any restrictions at infinity.

1. Introduction

For x = (x1, . . . , xn) ∈ Rn, with n ≥ 1, consider Euclidean norm |x| := (|x1|2 +
· · ·+ xn|2)1/2. Let Ω be a domain in Rn with boundary ∂Ω which is a C1 manifold
of dimension n − 1. Let Γ0 be the closure of an open set on ∂Ω (in particular,
Γ0 = ∂Ω or Γ0 is an empty set), Γ1 := ∂Ω \ Γ0. Let ν = (ν1, . . . , νn) be the unit
vector of the outer normal to ∂Ω. Let S be either (−∞, 0], (−∞,+∞) or (0, 1].
Put Q := Ω× S, Σ0 := Γ0 × S, Σ1 := Γ1 × S. We will use this notation hereafter.
Also we will assume that all quantities in this article are real-valued.

Consider the problem:
Find a function u : Ω× S → R such that

∂

∂t
(b1(x)u)−

n∑
i=1

d

dxi
ai(x, t, u,∇u) + a0(x, t, u,∇u) = f1(x, t), (x, t) ∈ Q, (1.1)

u(y, t) = 0, (y, t) ∈ Σ0, (1.2)

∂

∂t
(b2(y)u) +

n∑
i=1

ai(y, t, u,∇u)νi(y) + c(y, t, u) = f2(y, t), (y, t) ∈ Σ1, (1.3)

and if S = (0, 1] then in addition

b1(x)(u(x, t)− u1(x))|t=0 = 0, x ∈ Ω,

b2(y)(u(y, t)− u2(y))|t=0 = 0, y ∈ Γ1,
(1.4)

where ai (i = 0, n), c, f1, f2, u1, u2, b1 ≥ 0, b2 ≥ 0 are given real-
valued functions.
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We allow at least one of following two relations to hold: b1 = 0 and b2 6= 0 on
subsets of Ω, or Γ1 is of nonzero measure. Moreover we assume that the space part
of the differential expression in the left side of (1.1) is nonlinear elliptic. Thus the
partial differential equation (1.1) is parabolic at those x ∈ Ω for which b1(x) > 0
and elliptic where b1(x) = 0. Note that boundary condition (1.3) is dynamical on
the subset of Γ1 where b2 > 0 and of the second type on the other part of Γ1.

Further we will call this problem: problem (1.1)–(1.4) if S = (0, 1], and problem
(1.1)–(1.3) provided that S is either (−∞, 0] or (−∞,+∞).

In the case when S = (0, 1] and Ω is bounded , (1.1)–(1.4) can be considered as
the Cauchy problem for an implicit evolution equation of the form(

Bu(t)
)′ +A

(
t, u(t)

)
= f(t), t ∈ S, (1.5)

where A(t, ·) and B are some operators (see, e.g., [19]). The well-posedness of this
problem has been studied extensively by many authors [1, 9, 12, 13, 14, 19, 21, 22].
Note if B is linear and A is either linear or nonlinear, the monographs by Showalter
[21, 22] give sufficient conditions for existence and uniqueness of solutions of the
Cauchy problem for equation (1.5).

If S = (0, 1] and Ω is unbounded then it is known that for linear and some
quasilinear equations (1.1) the existence and uniqueness of solutions of (1.1)–(1.4)
need the additional assumptions on the growth of the data-in and the behavior of
a solution as |x| → +∞ [15, 18]. Though such assumptions are not necessary for
some nonlinear equations [2, 8, 10].

In the case when S is either (−∞, 0] or (−∞,+∞) the initial conditions (1.4) are
missed and the problem (1.1)–(1.3) is called the problem without initial conditions
for evolutional equations. These problems arise when describing different non-
stationary processes in nature under hypothesis that we consider so distant the
initial time that the initial condition practically has no influence on present time,
while boundary conditions do affect it. Thus we can assume that either t = 0 or ∞
is the final time, while t = −∞ is the initial time. Sufficiently full survey of results
on the problem can be found in [6]. Here we recall those results which are close to
our investigation.

First of all recall that when dealing with problems related to equations in the
form (1.1) different approaches are needed subject to whether the domain Ω is
either bounded or not. In first case the problem without initial conditions (1.1)–
(1.3) may be written in the form (1.5) (recall that S is either (−∞, 0] or (−∞,+∞)
now). It is known that when B is linear and A is either linear or almost linear this
problem is well-posed if in addition some restrictions on behaviour of the solution
and growth of data-in as t goes to −∞ are imposed [3, 6, 11, 16, 17]. Same results
were obtained in [20] when A may be set-valued. But the papers [3, 5] and others
imply that for some nonlinear operators A equation (1.5) (with linear B) admits a
unique solution without any restrictions on its behaviour at −∞ and the growth of
the right-hand side as t→ −∞ (that is, in the class of locally integrable functions
on S).

When Ω is unbounded, a solution of the problem (1.1) – (1.3) cannot always be
identified with the solution of the abstract equation (1.5). In addition a question
about additional conditions on behaviour of the solution both as t → −∞ and as
|x| → +∞ can arise. The answer to this question can be both positive and negative.
The former one is in case of linear and almost linear equations [4, 15] (in the case
of equations in the forms (1.1) and (1.3) there are b1 = 1, b2 = 0 respectively). The
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letter may be only for some nonlinear evolution equations. The results of such kind
were obtained in [7] for the equations in the form (1.1) provided b1 = 1, and when
Γ0 = ∂Ω (that is, condition (1.3) is missed).

In this paper, we generalize the results of [7] for the problem (1.1)-(1.3) when
possible b1 = 0 on nonzero measure subset of Ω and b2 6= 0 on nonzero surface
measure subset of Γ1. We obtain sufficient conditions for existence and uniqueness
of solutions of this problem without an additional assumptions on the behavior of
the solutions and data-in both as t → −∞ and as |x| → +∞. We also establish
the continuous dependence on data-in of solutions of this problem.

Our paper is organized as follows. In Section 2 we state a problem and formulate
the main results. Section 3 is devoted to some auxiliary statements needed in the
sequel. We prove our main results in Section 4.

2. Statement of the problem and main results

Let us assume hereafter that Ω is unbounded and S is the interval (−∞, 0].
Suppose that 0 ∈ Ω and, for every R > 0, ΩR is the connected component of the
set Ω ∩ {x : |x| < R} containing 0. For arbitrary R > 0 denote Γ0,R := ∂ΩR \ Γ1,
Γ1,R := ∂ΩR \ Γ0,R; SR := (−R, 0], QR := ΩR × SR, Σ1,R := Γ1,R × SR.

Let p > 2, q > 2 be real numbers which remain invariable throughout the paper.
Denote p′ := p/(p− 1), q′ := q/(q − 1).

Hereafter we use some linear locally convex spaces which are introduced here.
Let G is either a domain or a regular surface in Rk for either k = n or k = n+1,

and let Bs(G) be the set consisting of bounded measurable subsets of G. For each
r ∈ [1,∞] define

Lr,loc(G) := {v(z), z ∈ G|v ∈ Lr(G′) for all G′ ∈ Bs(G)}.

It is obvious that Lr,loc(G) = Lr(G) when G is a bounded set. Suppose that on the
space Lr,loc(G) there are introduced the standard linear operations and the system
of semi-norms {‖ · ‖Lr(G′)|G′ ∈ Bs(G)}. In particular, it means that the sequence
{vk}∞k=1 converges to v in Lr,loc(G) provided the sequence {vk|G′}∞k=1 converges to
v|G′ in Lr(G′) for every G′ ∈ Bs(G). (Hereinafter for the function g defined on G
and a subset G′ of the set G the notation g|G′ means the restriction of g on G′.)

Define L0,+
r,loc(G) be the subset of Lr,loc(G) consisting of nonnegative functions,

and L+
r,loc(G) be the subset of L0,+

r,loc(G) whose each element g is a function such
that ess infz∈G′ g(z) > 0 for all bounded G′ ⊂ G.

Let
H1

loc(Ω) := {v ∈ L2,loc(Ω)|v|ΩR
∈ H1(ΩR) for all R > 0}

with the system of semi-norms {‖ · ‖H1(ΩR))|R > 0}. (Hereinafter H1(Ω̃) := {v ∈
L2(Ω̃)|vxi

∈ L2(Ω̃), i = 1, n} is the Sobolev space with the norm ‖v‖H1(eΩ) :=

(‖v‖2
L2(eΩ)

+
∑n

i=1 ‖vxi
‖2

L2(eΩ)
)1/2 for any domain Ω̃ ⊂ Rn.)

Define

L2,loc(S;H1
loc(Ω)) := {v : S → H1

loc(Ω)|v ∈ L2(SR;H1(ΩR)) for all R > 0}

with the system of semi-norms {‖ · ‖L2(SR;H1(ΩR))|R > 0}. Put

C(S;L2,loc(Ω)) := {v : S → L2,loc(Ω)|v ∈ C(SR;L2(ΩR)) for all R > 0}
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with the system of semi-norms {‖ · ‖C(SR;L2(ΩR))|R > 0},

C(S;L2,loc(Γ1)) := {w : S → L2,loc(Γ1)|v ∈ C(SR;L2(Γ1,R)) for all R > 0}

with the system of semi-norms {‖ · ‖C(SR;L2(Γ1,R))|R > 0}. Let

Floc := {(f1, f2)|f1 ∈ Lp′,loc(Q), f2 ∈ Lq′,loc(Σ1)} ≡ Lp′,loc(Q)× Lq′,loc(Σ1)

with the topology generated by the Cartesian product of topological spaces.
The notation Vloc means the linear locally convex space obtained by the closure

of the space {v ∈ C1(Ω) : supp v ∈ Bs(Ω),dist{supp v,Γ0} > 0} in the topology
generated by the system of semi-norms {‖ · ‖R := ‖ · ‖H1(ΩR) + ‖ · ‖Lp(ΩR)+
‖ · ‖Lq(Γ1,R)|R > 0}. Note that ‖ · ‖R is the norm for the space H1(ΩR)∩Lp(ΩR)∩
Lq(Γ1,R), where R > 0.

Now remark that since ∂Ω ∈ C1 then for every element of H1
loc(Ω) there exists

its (uniquely) defined trace on ∂Ω, which is the element of L2,loc(∂Ω) and for
every smooth function on Ω it coincides with restriction of this function on the
∂Ω. Therefore, taking into account the definition of the family of semi-norms on
Vloc (in particular, it follows that Vloc ⊂ H1

loc(Ω)), we can conclude the proper
definiteness, linearity and continuity of the operator γ : Vloc → Lq,loc(Γ1) which is
the restriction of standard trace operator on the space H1

loc(Ω) to Vloc. Put

Vc := {v ∈ Vloc| supp v is a bounded set}.

Let us agree for every linear locally convex space W and interval I ⊂ R to
understand the (I → W ) as the linear space that is the factorization of the linear
space of mappings of the set I to W by such equivalence relation that two mappings
are equivalent if their values coincide for almost every value of the argument.

We will also need the space

Uloc := {u ∈ (S → Vloc)|u ∈ L2,loc(S;H1
loc(Ω)) ∩ Lp,loc(Q), b1/2

1 u ∈ C(S;L2,loc(Ω)),

γu ∈ Lq,loc(Σ1), b
1/2
2 γu ∈ C(S;L2,loc(Γ1))}

with the topology generated by the system of semi-norms{
‖u‖∗R = ‖u‖L2(SR;H1(ΩR)) + ‖u‖Lp(QR) + sup

t∈SR

‖b1/2
1 (·)u(·, t)‖L2(ΩR)

+ ‖γu‖Lq(Σ1,R) + sup
t∈SR

‖b1/2
2 (·)γu(·, t)‖L2(Γ1,R)|R > 0

}
.

Let B be the set of pairs b = (b1, b2) of the functions satisfying the condition
(B) b1 ∈ Lp∗,loc(Ω), b1 ≥ 0 on Ω; b2 ∈ Lq∗,loc(Γ1), b2 ≥ 0 on Γ1, where

p∗ = p/(p− 2), q∗ = q/(q − 2).
Consider the set whose any element is an array (a0, a1, . . . , an) of n+ 1 real-valued
functions satisfying the following conditions:

(A1) for each i ∈ {0, 1, . . . , n} the function Q×R×Rn 3 (x, t, s, ξ) → ai(x, t, s, ξ)
is a Caratheodory; i.e., for all (s, ξ) ∈ R × Rn ≡ R1+n the function
ai(·, ·, s, ξ) : Q → R is Lebesgue measurable and for a.e. (x, t) ∈ Q the
function ai(x, t, ·, ·) : R1+n → R is continuous;

(A1’) ai(x, t, 0, 0) = 0 for a.e. (x, t) ∈ Q and all i ∈ {0, 1, . . . , n};
(A2) for a.e. (x, t) ∈ Q and every (s, ξ) ∈ R1+n,

|a0(x, t, s, ξ)| ≤ h0,1(x, t)(|s|p−1 + |ξ|2/p′) + h0,2(x, t)
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where h0,1 ∈ L+
∞,loc(Q), h0,2 ∈ L0,+

p′,loc(Q);
(A3) for a.e. (x, t) ∈ Q and every (s, ξ), (r, η) ∈ R1+n,

n∑
i=1

|ai(x, t, s, ξ)− ai(x, t, r, η)| ≤ d1(x, t)|ξ − η|+ d2(x, t)|s− r|,

where d1 ∈ L+
∞,loc(Q), d2 ∈ L0,+

∞,loc(Q) are arbitrary functions;
(A4) for a.e. (x, t) ∈ Q and every (s, ξ), (r, η) ∈ R1+n,

n∑
j=1

(ai(x, t, s, ξ)− ai(x, t, r, η))(ξi − ηi) + (a0(x, t, s, ξ)− a0(x, t, r, η))(s− r)

≥ ρ1(x, t)|ξ − η|2 + ρ2(x, t)|s− r|p,

where ρ1, ρ2 ∈ L+
∞,loc(Q).

On this set, define an equivalence relation such that the element (a0, a1, . . . , an)
is equivalent to the element (ã0, ã1, . . . , ãn) if for every i ∈ {0, 1, . . . , n} the equality
ai(x, t, s, ξ) = ãi(x, t, s, ξ) holds for every (s, ξ) ∈ R1+n and a.e. (x, t) ∈ Q . We
denote by A the quotient-space obtained by this equivalence relation. We will
not distinguish the notations of the elements of the space A (that are the classes
of equivalent functions arrays) and their representatives. On the set A introduce
the notion of convergence in such a way that a sequence {(ak

0 , a
k
1 , . . . , a

k
n)}∞k=1 is

convergent to (a0, a1, . . . , an) in A, provided

lim
k→∞

ess sup
(x,t)∈Q′

sup
(s,ξ)∈R1+n

[ n∑
i=1

|ak
i (x, t, s, ξ)− ai(x, t, s, ξ)|/(1 + |s|+ |ξ|)

+ |ak
0(x, t, s, ξ)− a0(x, t, s, ξ)|/(1 + |s|p−1 + |ξ|2/p′)

]
= 0

(2.1)

for every bounded domain Q′ ⊂ Q.

Remark 2.1. It is easy to show that if a0(x, t, s, ξ) = ā0(x, t)|s|p−2s, ai(x, t, s, ξ) =
āi(x, t)ξi (i = 1, n), where āj ∈ L+

∞,loc(Q) (j = 0, n), then the array (a0, a1, . . . , an)
is an element of A. Also note that for ak

0(x, t, s, ξ) = āk
0(x, t)|s|p−2s, ak

i (x, t, s, ξ) =
āk

i (x, t)ξi (i = 1, n), where k ∈ N, āk
j ∈ L+

∞,loc(Q) (j = 0, n), the sequence
{(ak

0 , a
k
1 , . . . , a

k
n)}∞k=1 is convergent to (a0, a1, . . . , an) in A if and only if āk

j → āj in
L∞,loc(Q) (j = 0, n).

Consider the set of real-valued functions c(y, t, s), (y, t, s) ∈ Σ1 × R, satisfying
the conditions:

(C1) c is a Caratheodory function, that is for every s ∈ R the function c(·, ·, s) :
Σ1 → R is Lebesgue measurable and for a.e. (in the sense of surface mea-
sure) (y, t) ∈ Σ1 the function c(y, t, ·) : R → R is continuous;

(C1’) c(y, t, 0) = 0 for a.e. (y, t) ∈ Σ1;
(C2) for a.e. (y, t) ∈ Σ1 and every s ∈ R,

|c(y, t, s)| ≤ g1(y, t)|s|q−1 + g2(y, t),

where g1 ∈ L+
∞,loc(Σ1), g2 ∈ L0,+

q′,loc(Σ1);
(C3) for a.e. (y, t) ∈ Σ1 and every s, r ∈ R the inequality

(c(y, t, s)− c(y, t, r))(s− r) ≥ ρ3(y, t)|s− r|q

is satisfied, where ρ3 ∈ L+
∞,loc(Σ1) is some function.
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On this set, introduce an equivalence relation such that two functions c and c̃
of the given set are equivalent if c(y, t, s) = c̃(y, t, s) for all s ∈ R and for a.e.
(x, t) ∈ Σ1. We denote by C the obtained quotient-set. Define the convergence
notation of the sequences of the elements of the set C such that the sequence
{ck}∞k=1 is convergent to c in C if

lim
k→∞

ess sup(y,t)∈Σ′ sup
s∈R

|ck(y, t, s)− c(y, t, s)|/(1 + |s|q−1) = 0 (2.2)

for every bounded subset Σ′ ⊂ Σ1.

Remark 2.2. It is easy to show that c(x, t, s) = c̄(x, t)|s|q−2s is an element of
C, when c̄ ∈ L+

∞,loc(Σ1). Also note that for ck(x, t, s) = c̄k(x, t)|s|q−2s, where
k ∈ N, c̄k ∈ L+

∞,loc(Q), the sequence {ck}∞k=1 is convergent to c in C if and only if
c̄k → c̄ in L∞,loc(Σ1).

Remark 2.3. Conditions (A1’) and (C1’) are not essential. Indeed, let any of them
or both do not hold. Then it is sufficient to suppose that for every i ∈ {1, . . . , n}
the function t → ai(·, t, 0, 0) belongs to the space L2,loc(S;H1

loc(Ω)) and in equa-
tions (1.1) and (1.3) make the substitution ai(x, t, u,∇u) for ãi(x, t, u,∇u) :=
ai(x, t, u,∇u) − ai(x, t, 0, 0)(i ∈ {0, 1, . . . , n}), f1(x, t) for f̃1(x, t) := f1(x, t) −
a0(x, t, 0, 0) +

∑n
i=1

∂
∂xi

ai(x, t, 0, 0), c(y, t, u) for c̃(y, t, u) := c(y, t, u) − c(y, t, 0),
f2(y, t) for f̃2(y, t) := f2(y, t) − c(y, t, 0) −

∑n
i=1 ai(y, t, 0, 0)νi. It is obvious that

the functions (ã0, . . . , ãn), c̃, (f̃1, f̃2) satisfy all above mentioned conditions for
(a0, . . . , an), c, (f1, f2) respectively.

Definition 2.4. Let (b1, b2) ∈ B, (a0, a1, . . . , an) ∈ A, c ∈ C, (f1, f2) ∈ Floc. We
say that the function u ∈ Uloc is generalized solution of the problem (1.1)–(1.3) if∫∫

Q

{ n∑
i=1

ai(x, t, u,∇u)ψxi
ϕ+ a0(x, t, u,∇u)ψϕ− b1(x)uψϕ′

}
dx dt

+
∫∫

Σ1

{c(y, t, γu)γψϕ− b2(y)γuγψϕ′} dΓy dt

=
∫∫

Q

f1ψϕdx dt+
∫∫

Σ1

f2γψϕdΓy dt

(2.3)

for every ψ ∈ Vc, ϕ ∈ C1
0 (−∞, 0).

Hereinafter denote by C1
0 (I), where I is an interval of the number axis, the linear

space of finite continuous-differentiable functions on I.
For every (b1, b2) ∈ B, ρ1, ρ2 in L+

∞,loc(Q), ρ3 ∈ L+
∞,loc(Σ1), d1, d2 ∈ L0,+

∞,loc(Q)
put

Ψ(b1, b2, ρ1, ρ2, ρ3, d1, d2;R)

:= R−2p/(p−2)

∫∫
QR

ρ
−p/(p−2)
1 ρ

−2/(p−2)
2 d

2p/(p−2)
1 dx dt

+R−p/(p−2)

∫∫
QR

ρ
−2/(p−2)
2 b

p/(p−2)
1 dx dt

+R−p/(p−2)

∫∫
QR

ρ
−2/(p−2)
2 d

p/(p−2)
2 dx dt

+R−q/(q−2)

∫∫
P

1,R

ρ
−2/(q−2)
3 b

q/(q−2)
2 dΓy dt, R > 0.

(2.4)



EJDE-2010/178 DYNAMICAL PROBLEMS 7

Denote by BAC the subset of the Cartesian product B×A×C whose any element
((b1, b2), (a0, a1, . . . , an), c) such that (a0, a1, . . . , an) satisfies conditions (A3), (A4),
and c satisfies condition (C3) with ρ1, ρ2, ρ3, d1, d2 satisfying

Ψ(b1, b2, ρ1, ρ2, ρ3, d1, d2;R) → 0 as R→ +∞. (2.5)

Theorem 2.5. Let ((b1, b2), (a0, a1, . . . , an), c) ∈ BAC, (f1, f2) ∈ Floc. Then the
problem (1.1)–(1.3) has a unique generalized solution. Moreover, for every R0, R,
0 < R0 < R, this solution satisfies the estimation

sup
t∈[−R0,0]

[∫
ΩR0

b1(x)|u(x, t)|2 dx+
∫

Γ1,R0

b2(y)|γu(y, t)|2dΓy

]
+

∫∫
QR0

[
ρ1|∇u|2 + ρ2|u|p

]
dx dt+

∫∫
Σ1,R0

ρ3|γu|qdΓydt

≤ C
(
R/(R−R0)

)σ[
Ψ(b1, b2, ρ1, ρ2, ρ3, d1, d2;R)

+
∫∫

QR

ρ
−1/(p−1)
2 |f1(x, t)|p

′
dx dt+

∫∫
Σ1,R

ρ
−1/(q−1)
3 |f2(y, t)|q

′
dΓy dt

]
,

(2.6)

where σ := max
{
p/(p− 2), q/(q − 2)

}
+ 2p/(p− 2), C > 0 is a constant depending

only on p, q.
In addition, for any sequences {(ak

0 , a
k
1 , . . . , a

k
n)}, {ck} and {(fk

1 , f
k
2 )} such that

((b1, b2), (ak
0 , a

k
1 , . . . , a

k
n), ck) ∈ BAC and (ak

0 , a
k
1 , . . . , a

k
n) → (a0, a1, . . . , an) in A,

ck → c in C, (fk
1 , f

k
2 ) → (f1, f2) in Floc as k → ∞ we have uk → u in Uloc as

k →∞, where for every k ∈ N uk is a generalized solution of the problem differing
from the problem ( 1.1)–( 1.3) only by having functions ak

0 , a
k
1 , . . . , a

k
n, c

k, fk
1 , f

k
2

instead of a0, a1, . . . , an, c, f1, f2 respectively.

Remark 2.6. If the functions b1, b2, ρ1, ρ2, ρ3, d1, d2 are constant (positive), then
condition (2.5) is equivalent to the condition

meas ΩR ·R−2/(p−2) + meas Γ1,R ·R−2/(q−2) → 0 as R→ +∞. (2.7)

3. Auxiliary statements

Now we state some technical results needed later.

Lemma 3.1. Let R > 0, τ1 < τ2 be any numbers, (b1, b2) ∈ B. Suppose that
a function v ∈ ((τ1, τ2) → Vloc) ∩ L2(τ1, τ2;H1

loc(Ω)) ∩ Lp,loc

(
Ω× (τ1, τ2)

)
, γv ∈

Lq,loc

(
Γ1 × (τ1, τ2)

)
, and g0 ∈ Lp′,loc

(
Ω× (τ1, τ2)

)
, gi ∈ L2,loc

(
Ω× (τ1, τ2)

)
, (i =

1, n), h ∈ Lq′,loc

(
Γ1 × (τ1, τ2)

)
satisfy∫ τ2

τ1

∫
ΩR

{ n∑
i=1

giψxi
ϕ+ g0ψϕ− b1vψϕ

′
}
dx dt

+
∫ τ2

τ1

∫
Γ1,R

{hγψϕ− b2γvγψϕ
′} dΓydt = 0

(3.1)

for ϕ ∈ C1
0 (τ1, τ2), ψ ∈ Vc, suppψ ⊂ ΩR. Then b

1/2
1 v ∈ C([τ1, τ2];L2(ΩR∗)),

b
1/2
2 γv ∈ C([τ1, τ2];L2(Γ1,R∗)), for every R∗ ∈ (0, R). In addition, for every func-

tions θ ∈ C1([τ1, τ2]), w ∈ C1(Ω), suppw ⊂ ΩR, w ≥ 0 and arbitrary numbers
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t1, t2 such that τ1 ≤ t1 < t2 ≤ τ2, the equality holds

θ(t)
(∫

ΩR

b1(x)|v(x, t)|2w(x)dx+
∫

Γ1,R

b2(y)|γv(y, t)|2w(y)dΓy

)∣∣∣t=t2

t=t1

−
∫ t2

t1

(∫
ΩR

b1(x)|v(x, t)|2w(x) dx+
∫

Γ1,R

b2(y)|γv(y, t)|2w(y)dΓy

)
θ′(t) dt

+ 2
∫ t2

t1

(∫
ΩR

{ n∑
i=1

gi(vw)xi + g0vw
}
dx+

∫
Γ1,R

hγvw dΓy

)
θ dt = 0.

(3.2)

Proof. We assume without loss of generality that τ1 = 0, τ2 = T , where T > 0 is
any number. We will use some ideas with proof of [22, Proposition 1.2, p. 106].
First of all construct the extension of the functions v̂, ĝi(i = 0, n) for functions
v, gi(i = 0, n) respectively onto the cylinder Ω×(−T, 2T ) by putting for a.e. x ∈ Ω,

v̂(x, t) :=


v(x,−t), −T < t < 0,
v(x, t), 0 ≤ t ≤ T,

v(x, 2T − t), T < t < 2T,
ĝi(x, t) :=


−gi(x,−t), −T < t < 0,
gi(x, t), 0 ≤ t ≤ T,

−gi(x, 2T − t), T < t < 2T.

Construct also the extension ĥ of the function h onto the surface Γ1 × (−T, 2T ):

ĥ(y, t) :=


−h(y,−t), −T < t < 0,
h(y, t), 0 ≤ t ≤ T,

−h(y, 2T − t), T < t < 2T

for a.e. y ∈ Γ1. It is to verify that

∫ 2T

−T

∫
ΩR

{ n∑
i=1

ĝiψxi
ϕ+ ĝ0ψϕ− b1v̂ψϕ

′
}
dx dt

+
∫ 2T

−T

∫
Γ1,R

{ĥγψϕ− b2γv̂γψϕ
′} dΓydt = 0

(3.3)

is fulfilled for every ϕ ∈ C1
0 (−T, 2T ), ψ ∈ Vc, suppψ ⊂ ΩR.

Indeed, it is easy to ascertain that (3.3) holds for every ψ ∈ Vloc and ϕ ∈
C1

0 (−T, 2T ), provided suppϕ ⊂ (−T, 0) ∪ (0, T ) ∪ (T, 2T ) (it is enough to make
the corresponding substitution of the variable t in to identity (2.3)). It remains
to consider the case when suppϕ ∩ {0, T} 6= ∅. For the simplicity we will assume
without loss of generality that suppϕ ⊂ (−T, T ). Then for every m ∈ N choose the
function χm ∈ C1(R) such that |χm(t)| ≤ 1, |χ′m(t)| ≤ 2m and χm(−t) = χm(t)
when t ∈ R, χm(t) = 1 as t ∈ (−∞,−2/m) ∪ (2/m,+∞) and χm(t) = 0, when
t ∈ (−1/m, 1/m).

It is obvious that for every t ∈ R\{0} we have χm(t) → 1 as m → +∞. The
above mentioned yields that (3.3) is fulfilled provided ψ ∈ Vloc and with ϕ instead
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of χmϕ, where m ∈ N. After the simple transformations we obtain∫ 2T

−T

∫
ΩR

{ n∑
i=1

ĝiψxiϕ+ ĝ0ψϕ− b1v̂ψϕ
′
}
χm dx dt

+
∫ 2T

−T

∫
Γ1,R

{
ĥγψϕ− b2γv̂γψϕ

′
}
χmdΓy dt

−
∫ 2/m

−2/m

∫
Ω

b1v̂ψϕχ
′
m dx dt−

∫ −2/m

2/m

∫
Γ1,R

b2γv̂γψϕχ
′
mdΓy dt = 0,

(3.4)

where m ∈ N, ϕ ∈ C1
0 (−T, 2T ), suppϕ ⊂ (−T, T ), ψ ∈ Vc, suppψ ⊂ ΩR.

Change the third and fourth terms of the left side part of (3.4). We obtain∫ 2/m

−2/m

∫
ΩR

b1v̂ψϕχ
′
m dx dt

=
∫ 2/m

1/m

∫
ΩR

b1(x)v̂(x, t)ψ(x)ϕ(t)χ′m(t) dx dt

+
∫ −1/m

−2/m

∫
ΩR

b1(x)v̂(x, t)ψ(x)ϕ(t)χ′m(t) dx dt

=
∫ 2/m

1/m

∫
ΩR

b1(x)v(x, t)ψ(x)ϕ(t)χ′m(t) dx dt

+
∫ 2/m

1/m

∫
ΩR

b1(x)v(x, t)ψ(x)ϕ(−t)χ′m(−t) dx dt

=
∫ 2/m

1/m

∫
ΩR

b1(x)v(x, t)ψ(x)(ϕ(t)− ϕ(−t))χ′m(t) dx dt

= 2
∫ 2/m

1/m

∫
ΩR

tϕ′(ξ(t))χ′m(t)b1(x)v(x, t)ψ(x) dx dt,

(3.5)

where ξ(t) is some number between −t and t. Here we made the replacement of t
by −t in one of terms, used the definition of v̂ and the Lagrange Theorem of finite
decrements: ϕ(t) − ϕ(−t) = ϕ′(ξ(t))t, t > 0. Note that |tχ′m(t)| ≤ (2/m)2m = 4
for every t ∈ [1/m, 2/m] and

measn+1{(x, t)|x ∈ suppψ, t ∈ (1/m, 2/m)} → 0 asm→ +∞. (3.6)

It is obvious that

|tϕ′(ξ(t))χ′m(t)b1(x)v(x, t)ψ(x)| ≤ K|b1(x)v(x, t)ψ(x)|, (x, t) ∈ Ω× (−T, 2T ),
(3.7)

where K > 0 is some constant not depending on m. Since the right side of the
inequality (3.7) belongs to L1(suppψ × (−T, 2T )), thus the left side belongs to
L1(suppψ × (−T, 2T )).

From (3.5) by (3.6) and (3.7) we deduce∫ 2/m

−2/m

∫
ΩR

b1v̂ψϕχ
′
m dx dt→ 0 as m→∞. (3.8)
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Arguing the same way, we derive∫ 2/m

−2/m

∫
Γ1,R

b2γv̂γψϕχ
′
m dΓy dt→ 0 as m→∞. (3.9)

Passing to the limit in (3.4) as m → +∞, taking into account (3.8), (3.9) and the
Lebesgue Theorem of boundary transition under the integral sign. It is obvious
that as a result we obtain (3.3), which is required.

Let {ωρ|ρ > 0} be the mollifier kernels, that is ωρ ∈ C∞(R), ωρ is an even
function, suppωρ ⊂ [−ρ, ρ],

∫
R ωρ(s) ds = 1 for every ρ > 0. Choose a number

k0 ∈ N such that 1/k0 < T/2, and for every k ≥ k0 put

v̂k(x, τ) := (v̂ ∗ ω1/k)(x, τ) ≡
∫

R
v̂(x, t)ω1/k(t− τ) dt, (x, τ) ∈ Ω× (−T/2, 3T/2),

ĝi,k(x, τ) := (ĝi ∗ ω1/k)(x, τ) ≡
∫

R
ĝi(x, t)ω1/k(t− τ) dt, (x, τ) ∈ Ω× (−T/2, 3T/2),

i ∈ {0, . . . , n},

ĥ(y, τ) := (ĥ ∗ ω1/k)(y, τ) ≡
∫

R
ĥ(y, t)ω1/k(t− τ) dt, (y, τ) ∈ Γ1 × (−T/2, 3T/2).

It is easy to ascertain the fact

(γv̂ ∗ ω1/k)(y, τ) = γv̂k(y, τ), (y, τ) ∈ Γ1 × (−T/2, 3T/2).

From well-known facts of homogenization theory we conclude

v̂k −→
k→∞

v̂ in Lp,loc

(
Ω× (−T/2, 3T/2)

)
∩ L2(−T/2, 3T/2;H1

loc(Ω)),

γv̂k −→
k→∞

γv̂ in Lq,loc

(
Γ1 × (−T/2, 3T/2)

)
,

ĝi,k −→
k→∞

ĝi in L2,loc

(
Ω× (−T/2, 3T/2)

)
(i = 1, n),

ĝ0,k −→
k→∞

ĝ0 in Lp′,loc

(
Ω× (−T/2, 3T/2)

)
,

ĥk −→
k→∞

ĥ in Lq′,loc

(
Γ1 × (−T/2, 3T/2)

)
. (3.10)

In (3.3) set ϕ(t) = ω1/k(t− τ), t ∈ (−T, 2T ), where τ ∈ [−T/2, T ], k ≥ k0 are some
numbers. After simple transformations we obtain∫

ΩR

{
b1(x)

d

dτ
v̂k(x, τ)ψ(x) +

n∑
i=1

ĝi,k(x, τ)ψxi(x) + ĝ0,k(x, τ)ψ(x)
}
dx

+
∫

Γ1,R

{
b2(y)

d

dτ
γv̂k(y, τ)γψ(y) + ĥk(y, τ)γψ(y)

}
dΓy = 0

(3.11)

for every τ ∈ [−T/2, T ], ψ ∈ Vc, suppψ ⊂ ΩR.
Let k, l be arbitrary natural numbers bigger than k0. Subtracting from (3.11)

the same equality with k = l and putting v̂kl := v̂k− v̂l, ĝi,kl := ĝi,k− ĝi,l (i = 0, n),
ĥkl := ĥk − ĥl, we deduce∫

ΩR

{
b1(x)

d

dτ
v̂kl(x, τ)ψ(x) +

n∑
i=1

ĝi,kl(x, τ)ψxi(x) + ĝ0,kl(x, τ)ψ(x)
}
dx

+
∫

Γ1,R

{
b2(y)

d

dτ
γv̂kl(y, τ)γψ(y) + ĥkl(y, τ)γψ(y)

}
dΓy = 0

(3.12)
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for every ψ ∈ Vc, suppψ ⊂ ΩR, τ ∈ [−T/2, T ], k, l ≥ k0.
Let w ∈ C1(Ω) be any function such that suppw ⊂ ΩR, w ≥ 0, and let θ ∈

C1(R) be an arbitrary function. In (3.12) let for every τ ∈ [−T/2, T ] ψ(x) =
v̂kl(x, τ)w(x)θ(τ), x ∈ Ω. Integrate the obtained equality over τ between t1 and t2
(−T/2 ≤ t1 < t2 ≤ T ), keeping in mind that for every τ ∈ [−T/2, T ]

d

dτ
v̂kl(x, τ) · v̂kl(x, τ) · θ(τ) =

1
2
d

dτ

(
|v̂kl(x, τ)|2θ(τ)

)
− 1

2
|v̂kl(x, τ)|2

d

dτ
θ(τ),

d

dτ
γv̂kl(x, τ) · γv̂kl(x, τ) · θ(τ) =

1
2
d

dτ

(
|γv̂kl(x, τ)|2θ(τ)

)
− 1

2
|γv̂kl(x, τ)|2

d

dτ
θ(τ).

As a result,

1
2

∫
ΩR

(
b1(x)|v̂kl(x, τ)|2w(x)θ(τ)

)∣∣∣τ=t2

τ=t1
dx

+
1
2

∫
Γ1,R

(
b2(y)|γv̂kl(y, τ)|2w(y)θ(τ)

)∣∣∣τ=t2

τ=t1
dΓy

− 1
2

∫ t2

t1

( ∫
ΩR

b1(x)|v̂kl(x, τ)|2w(x)dx+
∫

Γ1,R

b2(y)|γv̂kl(y, τ)|2w(y)dΓy

)
θ′ dτ

+
∫ t2

t1

( ∫
ΩR

{ n∑
i=1

ĝi,kl(x, τ)(v̂kl(x, τ)w(x))xi + ĝ0,kl(x, τ)v̂kl(x, τ)w(x)
}
dx

+
∫

Γ1,R

ĥkl(y, τ)γv̂kl(y, τ)w(y) dΓy

)
θ(τ) dτ = 0. (3.13)

Now, we impose additional conditions on the function θ:

0 ≤ θ(τ) ≤ 1 when τ ∈ R, θ(τ) = 0 when τ ≤ −T/2,
θ(τ) = 1 when τ ≥ 0, |θ′(τ)| ≤ 4/T when τ ∈ [−T/2, 0].

Then from (3.13), having chosen t1 = −T/2 and t2 be any number from the interval
[0, T ], we derive

max
τ∈[0,T ]

( ∫
ΩR

b1(x)|v̂kl(x, τ)|2w(x)dx+
∫

Γ1,R

b2(y)|γv̂kl(y, τ)|2w(y)dΓy

)
≤ 4
T

∫ 0

−T/2

( ∫
ΩR

b1(x)|v̂kl(x, τ)|2w(x)dx+
∫

Γ1,R

b2(y)|γv̂kl(y, τ)|2w(y)dΓy

)
dτ

+ 2
∫ T

−T/2

( ∫
ΩR

{ n∑
i=1

|ĝi,kl(x, τ)||(v̂kl(x, τ)w(x))xi |

+ |ĝ0,kl(x, τ)||v̂kl(x, τ)|w(x)
}
dx+

∫
Γ1,R

|ĥkl(y, τ)||γv̂kl(y, τ)|w(y)dΓy

)
dτ.

From above inequality by (3.10) this implies that as k, l→ +∞,

(wb1)1/2v̂k,l → 0 in C([0, T ];L2(ΩR)),

(wb2)1/2γv̂k,l → 0 in C([0, T ];L2(Γ1,R)).
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This means that the sequences {(wb1)1/2v̂k}∞k=1, {(wb2)1/2γv̂k}∞k=1 are fundamental
in the spaces C([0, T ];L2(ΩR)), C([0, T ];L2(Γ1,R)) respectively and

(wb1)1/2v̂k −→
k→+∞

(wb1)1/2v̂ in C([0, T ];L2(ΩR)),

(wb2)1/2γv̂k −→
k→+∞

(wb2)1/2γv̂ in C([0, T ];L2(Γ1,R)).
(3.14)

Thus we conclude that

b
1/2
1 v ∈ C([0, T ];L2(ΩR∗)), b

1/2
2 γv ∈ C([0, T ];L2(Γ1,R∗))

for every R∗ ∈ (0, R).
Now for every τ ∈ [0, T ], in (3.11), put ψ(x) = v̂k(x, τ)w(x)θ(τ), x ∈ Ω, where

w ∈ C1(Ω), suppw ⊂ ΩR, w ≥ 0, θ ∈ C1([0, T ]), and integrate over τ between t1
and t2. The transformations similar to those we made above to obtain (3.13) yield

1
2

∫
ΩR

(
b1(x)|v̂k(x, τ)|2w(x)θ(τ)

)∣∣∣τ=t2

τ=t1
dx

+
1
2

∫
Γ1,R

(
b2(y)|γv̂k(y, τ)|2w(y)θ(τ)

)∣∣∣τ=t2

τ=t1
dΓy

− 1
2

∫ t2

t1

( ∫
ΩR

b1(x)|v̂k(x, τ)|2w(x)dx+
∫

Γ1,R

b2(y)|γv̂k(y, τ)|2w(y)dΓy

)
θ′ dτ

+
∫ t2

t1

( ∫
ΩR

{ n∑
i=1

ĝi,k(x, τ)(v̂k(x, τ)w(x))xi + ĝ0,k(x, τ)v̂k(x, τ)w(x)
}
dx

+
∫

Γ1,R

ĥk(y, τ)γv̂k(y, τ)w(y) dΓy

)
θ(τ) dτ = 0.

Passing to the limit as k → +∞, by (3.10), (3.14) we obtain (3.2). �

Lemma 3.2. Let (b1, b2) ∈ B, (a0, a1, . . . , an) ∈ A, c ∈ C. Suppose that, for every
k ∈ {1, 2}, uk ∈ Uloc, (f1,k, f2,k) ∈ Floc, f̄i,k ∈ L2,loc(Q) (i = 1, n) and∫∫

Q

{ n∑
i=1

ai(x, t, uk,∇uk)ψxi
ϕ+ a0(x, t, uk,∇uk)ψϕ− b1(x)ukψϕ

′
}
dx dt

+
∫∫

Σ1

{c(y, t, γuk)γψϕ− b2(y)γukγψϕ
′} dΓydt

=
∫∫

Q

{ n∑
i=1

f̄i,kψxi
ϕ+ f1,kψϕ

}
dx dt+

∫∫
Σ1

f2,kγψϕdΓydt

(3.15)

holds for every ψ ∈ Vc, suppψ ⊂ ΩR, ϕ ∈ C1
0 (−∞, 0), suppϕ ⊂ SR, where R ≥ 1

is some number. Then for arbitrary R0 ∈ (0, R) we have

max
t∈[−R0,0]

∫
ΩR0

b1(x)|u1(x, t)− u2(x, t)|2dx

+ max
t∈[−R0,0]

∫
Γ1,R0

b2(y)|γu1(y, t)− γu2(y, t)|2dΓy

+
∫∫

QR0

{
ρ1|∇u1 −∇u2|2 + ρ2|u1 − u2|p

}
dx dt+

∫∫
Σ1,R0

ρ3|γu1 − γu2|qdΓydt

≤ C
(
R/(R−R0)

)σ
[
Ψ(b1, b2, ρ1, ρ2, ρ3, d1, d2;R)
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+
∫∫

QR

{(
ρ−1
1 + nρ1d

−2
1

)( n∑
i=1

|f̄i,1 − f̄i,2|2
)

+ ρ
−1/(p−1)
2 |f1,1 − f1,2|p

′
}
dx dt

+
∫∫

Σ1,R

ρ
−1/(q−1)
3 |f2,1 − f2,2|q

′
dΓydt

]
, (3.16)

where C, σ,Ψ are the same as in Theorem 2.5.

Proof. Introduce two “cutting” functions (see [2]):

ζ(x) =

{
(R2 − |x|2)/R, |x| < R,

0, |x| ≥ R,
χ(t) =

{
t+R, −R ≤ t ≤ 0,
0, t < −R.

For given ψ ∈ Vc, ϕ ∈ C1
0 (−∞, 0) such that suppψ ⊂ ΩR, suppϕ ⊂ SR, consider

(3.15) when k = 1 and the same equality when k = 2. Subtract these equalities.
Put

u12(x, t) := u1(x, t)− u2(x, t), f1,12(x, t) := f1,1(x, t)− f1,2(x, t),

ai,12(x, t) := ai(x, t, u1(x, t),∇u1(x, t))− ai(x, t, u1(x, t),∇u1(x, t)),

f̄i,12(x, t) := f̄i,1(x, t)− f̄i,2(x, t), (i = 1, n),

(x, t) ∈ Q, i = 0, n,

γu12(y, t) := γu1(y, t)− γu2(y, t), f2,12(y, t) = f2,1(y, t)− f2,2(y, t),

c12(y, t) := c(y, t, γu1(y, t))− c(y, t, γu2(y, t)), (y, t) ∈ Σ1.

Apply Lemma 3.1 to the obtained equality with g0 := a0,12−f1,12, gi = ai,12− f̄i,12

(i = 1, n), h = c12 − f2,12, w = ζs, θ = χr, where r = max
{
p/(p − 2), q/(q − 2)

}
,

s = 2p/(p− 2), t1 = −R, t2 = τ ∈ (−R, 0]. After simple transformation we obtain

ηr(τ)
( ∫

ΩR

b1(x)|u12(x, τ)|2ζs(x)dx+
∫

Γ1,R

b2(y)|γu12(y, τ)|2ζs(y)dΓy

)
+ 2

∫∫
Qτ

R

{ n∑
i=1

ai,12(u12)xi + a0,12u12

}
ζsηr dx dt+ 2

∫∫
Στ

1,R

b12γu12ζ
sηr dΓy dt

= r

∫∫
Qτ

R

b1|u12|2ζsηr−1 dx dt+ r

∫∫
Στ

1,R

b2|γu12|2ζsηr−1dΓy dt

− 2s
∫∫

Qτ
R

( n∑
i=1

ai,12ζxi

)
u12ζ

s−1ηr dx dt+ 2
∫∫

Qτ
R

n∑
i=1

f̄i,12(u12)xiζ
sηr dx dt

+ 2s
∫∫

Qτ
R

( n∑
i=1

f̄i,12ζxi

)
u12ζ

s−1ηr dx dt+ 2
∫∫

Qτ
R

f1,12u12ζ
sχr dx dt

+ 2
∫∫

Στ
1,R

f2,12γu12ζ
sχrdΓy dt, (3.17)

where Qτ
R := ΩR × (−R, τ),Στ

1,R := Γ1,R × (−R, τ) when τ ∈ (−R, 0].
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Making the appropriate estimation of the integrals of equality (3.17). From
conditions (A4) and (B3) we have respectively

∫∫
Qτ

R

{ n∑
i=1

ai,12(u12)xi
+ a0,12u12

}
ζsηr dx dt

≥
∫∫

Qτ
R

{
ρ1|∇u12|2 + ρ2|u12|p

}
ζsηr dx dt,

(3.18)

∫∫
Qτ

R

b12γu12ζ
sηrdΓydt ≥

∫∫
Pτ

R

ρ3|γu12|qζsηrdΓydt. (3.19)

Hereinafter we will use the Young inequality: For every a ≥ 0, b ≥ 0, ε > 0, ν > 1,
we have

ab ≤ εaν +M(ν, ε)bν
′
, (3.20)

where 1/ν + 1/ν′ = 1, M(ν, ε) > 0 is the constant depending only on ν and ε.
Choose ν = p/2 a = ρ

1/ν
2 |u12|2ζs/νηr/ν , b = ρ

−1/ν
2 b1ζ

s/ν′
ηr/ν′−1, ε = ε1 > 0

(ν′ = p/(p− 2)). By (3.20) we deduce∫∫
Qτ

R

b1|u12|2ζsηr−1 dx dt

≤ ε1

∫∫
Qτ

R

ρ2|u12|pζsηr dx dt

+M(p/2, ε1)
∫∫

Qτ
R

ρ
−2/(p−2)
2 b

p/(p−2)
1 ζsηr−p/(p−2) dx dt,

(3.21)

where ε1 > 0 is an arbitrary number. In the same way we obtain the inequality∫∫
Pτ

1,R

b2|γu12|2ζsηr−1dΓydt

≤ ε2

∫∫
Pτ

1,R

ρ3|γu12|qζsηrdΓydt

+M(q/2, ε2)
∫∫

Pτ
1,R

ρ
−2/(q−2)
3 b

q/(q−2)
2 ζsηr−q/(q−2) dΓydt,

(3.22)

where ε2 > 0 is any number. On the basis of condition (A3), taking into account
that |ζxi | ≤ 2 (i = 1, n), we have

∣∣∣ ∫∫
Qτ

R

( n∑
i=1

ai,12ζxi

)
u12ζ

s−1ηr dx dt
∣∣∣

≤ 2
∫∫

Qτ
R

( n∑
i=1

|ai,12|
)
|u12|ζs−1ηr dx dt

≤ 2
∫∫

Qτ
R

d1|∇u12‖u12|ζs−1ηr dx dt+ 2
∫∫

Qr
R

d2|u12|2ζs−1ηr dx dt.

(3.23)
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Choose ν = 2, a = ρ
1/2
1 |∇u12|ζs/2ηr/2, b = ρ

−1/2
1 d1|u12|ζs/2−1ηr/2, ε = ε3 > 0.

From Young’s inequality (3.20), we derive∫∫
Qτ

R

d1|∇u12||u12|ζs−1ηr dx dt

≤ ε3

∫∫
Qτ

R

ρ1|∇u12|2ζsηr dx dt+M(2, ε3)
∫∫

Qτ
R

ρ−1
1 d2

1|u12|2ζs−2ηr dx dt,

(3.24)

where ε3 > 0 is an arbitrary number.
To estimate the integral in the second term of the right side of (3.24) use

again the Young’s inequality (3.20), taking ν = p/2, a = ρ
1/ν
2 |u12|2ζs/νηr/ν ,

b = ρ−1
1 ρ

−1/ν
2 d2

1ζ
s/ν′−2ηr/ν′

, ε = ε4 > 0(ν′ = p/(p − 2)). As a result we con-
clude∫∫

Qτ
R

ρ−1
1 d2

1|u12|2ζs−2ηr dx dt

≤ ε4

∫∫
Qτ

R

ρ2|u12|pζsηr dx dt

+M(p/2, ε4)
∫∫

Qτ
R

ρ
−p/(p−2)
1 ρ

−2/(p−2)
2 d

2p/(p−2)
1 ζs−2p/(p−2)ηr dx dt,

(3.25)

where ε4 > 0 is an arbitrary number. In the same way, we obtain∫∫
Qτ

R

d2|u12|2ζs−1ηr dx dt

≤ ε5

∫∫
Qτ

R

ρ2|u12|pζsηr dx dt

+M(p/2, ε5)
∫∫

Qτ
R

ρ
−2/(p−2)
2 d

p/(p−2)
2 ζs−p/(p−2)ηr dx dt,

(3.26)

where ε5 > 0 is an arbitrary number. Using the Cauchy inequality we have∣∣∣ ∫∫
Qτ

R

n∑
i=1

f̄i,12(u12)xiζ
sηr dx dt

∣∣∣
≤ ε6

∫∫
Qτ

R

ρ1|∇u12|2ζsηr dx dt+
1

4ε6

∫∫
Qτ

R

ρ−1
1

( n∑
i=1

|f̄i,12|2
)
ζsηr dx dt,

(3.27)

and∣∣∣ ∫∫
Qτ

R

( n∑
i=1

f̄i,12ζxi

)
u12ζ

s−1ηr dx dt
∣∣∣

≤ 2
∫∫

Qτ
R

( n∑
i=1

|f̄i,12|
)
|u12|ζs−1ηr dx dt

≤
∫∫

Qτ
R

ρ−1
1 d2

1|u12|2ζs−2ηr dx dt+ n

∫∫
Qτ

R

ρ1d
−2
1

( n∑
i=1

|f̄i,12|2
)
ζsηr dx dt.

(3.28)
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Also on the basis of Young’s inequality, we obtain∣∣∣ ∫∫
Qτ

R

f1,12u12ζ
sηr dx dt

∣∣∣ ≤ ∫∫
Qτ

R

|f1,12||u12|ζsηr dx dt

≤ ε7

∫∫
Qτ

R

ρ2|u12|pζsηr dx dt+M(p, ε7)
∫∫

Qτ
R

ρ
−1/(p−1)
2 |f1,12|p

′
ζsηr dx dt,

(3.29)

and∣∣∣ ∫∫
Pτ

1,R

f2,12γu12ζ
sηrdΓydt

∣∣∣
≤ ε8

∫∫
Pτ

1,R

ρ3|γu12|qζsηrdΓydt+M(p, ε7)
∫∫

Pτ
1,R

ρ
−1/(q−1)
3 |f2,12|q

′
ζsηrdΓydt,

(3.30)
where ε7 > 0, ε8 > 0 are arbitrary numbers. Then from (3.17), using (3.18), (3.19),
(3.21)–(3.30) and taking ε1, . . . , ε8 be small enough, we deduce the estimate

ηr(τ)
( ∫

ΩR

b1(x)|u12(x, τ)|2ζs(x)dx+
∫

Γ1,R

b2(y)|γu12(y, τ)|2ζs(y)dΓy

)
+

∫∫
Qτ

R

{
ρ1|∇u12|2 + ρ2|u|p

}
ζsηr dx dt+

∫∫
Pτ

1,R

ρ3|γu12|qζsηrdΓydt

≤ C1

( ∫∫
Qτ

R

ρ
−2/(p−2)
2 b

p/(p−2)
1 ζsηr−p/(p−2) dx dt

+
∫∫

Pτ
1,R

ρ
−2/(q−2)
3 b

q/(q−2)
2 ζsηr−q/(q−2)dΓydt

+
∫∫

Qτ
R

ρ
−p/(p−2)
1 ρ

−2/(p−2)
2 d

2p/(p−2)
1 ζs−2p/(p−2)ηr dx dt

+
∫∫

Qτ
R

ρ
−2/(p−2)
2 d

p/(p−2)
2 ζs−p/(p−2)ηr dx dt

)
+ C2

( ∫∫
Qτ

R

ρ
−1/(p−1)
2 |f1,12|p

′
ζsηr dx dt

+
∫∫

Qτ
R

(
ρ−1
1 + nρ1d

−2
1

)( n∑
i=1

|f̄i,12|2
)
ζsηr dx dt

+
∫∫

Pτ
1,R

ρ
−1/(q−1)
2 |f2,12|q

′
ζsηr dΓydt

)
,

(3.31)

where C1 > 0, C2 > 0 are constants depending only on p, q. Let R0 ∈ (0, R) be any
number. Since 0 ≤ ζ(x) ≤ R for every x ∈ Rn, ζ(x) ≥ R −R0 when |x| ≤ R0, and
0 ≤ η(t) ≤ R for all t ∈ R, η(t) ≥ R−R0 when t ≥ −R0, from (3.31) we obtain

max
τ∈[−R0,0]

( ∫
ΩR0

b1(x)|u12(x, τ)|2dx+
∫

Γ1,R0

b2(y)|γu12(y, τ)|2dΓy

)
+

∫∫
QR0

{
ρ1|∇u12|2 + ρ2|u12|p

}
dx dt+

∫∫
P

1,R0

ρ3|γu12|qdΓydt

≤ (R/(R−R0))s+r
[
C3

(
R−p/(p−2)

∫∫
QR

ρ
−2/(p−2)
2 b

p/(p−2)
1 dx dt
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+R−2p/(p−2)

∫∫
QR

ρ
−p/(p−2)
1 ρ

−2/(p−2)
2 d

2p/(p−2)
1 dx dt

+R−p/(p−2)

∫∫
QR

ρ
−2/(p−2)
2 d

p/(p−2)
2 dx dt

+R−q/(q−2)

∫∫
P

1,R

ρ
−2/(q−2)
3 b

q/(q−2)
2 dΓy dt

)
+ C4

( ∫∫
QR

(
ρ−1
1 + nρ1d

−2
1

)( n∑
i=1

|f̄i,12|2
)
dx dt

+
∫∫

QR

ρ
−1/(p−1)
2 |f1,12|p

′
dx dt+

∫∫
P

1,R

ρ
−1/(q−1)
3 |f2,12|q

′
dΓy dt

)]
,

where C3 > 0, C4 > 0 are constants depending only on p, q. This yields (3.16). �

Remark 3.3. If in addition to the condition of Lemma 3.1 we assume that supp v ⊂
ΩR × (τ1, τ2), then the assertion of Lemma 3.1 is also true when R∗ = R and w = 1.

Corollary 3.4. Let (b1, b2) ∈ B, (a0, a1, . . . , an) ∈ A, c ∈ C, (f1, f2) ∈ Floc. Sup-
pose that for some R > 0 there exist constants αj > 0, βj > 0(j = 1, 2), α3 ≥
0, β3 ≥ 0, µ1 > 0, µ2 ≥ 0 such that for a.e. (x, t) ∈ QR and every (s, ξ) ∈ R1+n we
have

n∑
i=1

|ai(x, t, s, ξ)| ≤ α1|ξ|+ α2|s|+ α3, (3.32)

n∑
j=1

ai(x, t, s, ξ)ξi + a0(x, t, s, ξ)s ≥ β1|ξ|2 + β2|s|p − β3, (3.33)

c(x, t, s)s ≥ µ1|s|q − µ2, (3.34)

Then for any generalized solution u of (1.1)–(1.3) and for every R∗ ∈ (0, R) the
estimate

‖u‖L2(SR∗ ;H1(ΩR∗ )) + ‖u‖Lp(QR∗ ) + ‖γu‖Lq(Σ1,R∗ ) ≤ C5(R,R∗) (3.35)

takes place, where C5(R,R∗) > 0 is the constant depending only on R,R∗, f1|QR
,

f2|Σ1,R
, αk, βk(k = 1, 2, 3), µj(j = 1, 2).

The statement of this Corollary can be obtained similarly as it made for (3.16).

4. Proof of main results

Proof of Theorem 2.5. Step 1. For every k ∈ N take the subdomain Ωk of the
domain Ω such that ∂Ωk ∈ C1, Ωk ⊂ Ωk,Ωk ⊂ Ωk+1. Put Qk = Ωk × Sk,Γk

0 :=
∂Ωk \ Γ1, Γk

1 = ∂Ωk \ Γk
0 , Σk

0 := Γk
0 × Sk, Σk

1 := Γk
1 × Sk.

For every k ∈ N, let Vk be the Banach space obtained by closure of the space
{v ∈ C1(Ωk) : dist{supp v,Γk

0} > 0} by the norm ‖v‖Vk := ‖v‖H1(Ωk) +‖v‖Lp(Ωk) +
‖v‖Lq(Γk

1 ). Note that for every k ∈ N the extensions by zero on Ω of functions
from Vk generate the subspace of the space Vc ⊂ Vloc. Thus we can consider the
operator γk : Vk → Lq(Γk

1) as the contraction of the operator γ : Vloc → Lq,loc(Γ1).
So further we will write γ instead of γk. Define

Uk := {w ∈ (Sk → Vk) : w ∈ L2(Sk;H1(Ωk)) ∩ Lp(Qk),
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b
1/2
1 w ∈ C(Sk;L2(Ωk)), γw ∈ Lq(Σk

1), b1/2
2 γw ∈ C(Sk;L2(Γk

1))}

be the Banach space with the norm

‖w‖Uk := ‖w‖L2(Sk;H1(Ωk)) + ‖w‖Lp(Qk) + max
t∈Sk

‖b1/2
1 (·)w(·, t)‖L2(Ωk)

+ ‖γw‖Lq(Σk
1 ) + max

t∈Sk
‖b1/2

2 (·)γw(·, t)‖L2(Γk
1 ).

Consider the family of mixed problems

∂

∂t
(b1(x)uk)−

n∑
i=1

d

dxi
ai(x, t, uk,∇uk) + a0(x, t, uk,∇uk) = f1(x, t),

(x, t) ∈ Qk,

(4.1)

uk(y, t) = 0, (y, t) ∈ Σk
0 , (4.2)

and

∂

∂t
(b2(y)uk)−

n∑
i=1

ai(y, t, uk,∇uk)νi(y) + c(y, t, uk) = f2(y, t), (y, t) ∈ Σk
1 , (4.3)

b
1/2
1 uk|t=−k = 0, x ∈ Ωk, b

1/2
2 uk|t=−k = 0, y ∈ Γk

1 . (4.4)

Definition 4.1. A function uk ∈ Uk is called a generalized solution of the problem
(4.1)-(4.4) (for arbitrary k ∈ N) if it satisfies the initial data (4.4) and the integral
equality∫∫

Qk

{ n∑
i=1

ai(x, t, uk,∇uk)ψxiϕ+ a0(x, t, uk,∇uk)ψϕ− b1(x)ukψϕ′
}
dx dt

+
∫∫

Σk
1

{
c(y, t, γuk)γψϕ− b2(y)γukγψϕ′

}
dΓy dt

=
∫∫

Qk

fk
1 ψϕdx dt+

∫∫
Σk

1

fk
2 γψϕdΓy dt

(4.5)

for every ψ ∈ Vk, ϕ ∈ C1([−k, 0]), ϕ(0) = 0.

The existence and uniqueness of the generalized solution of (4.1) – (4.4) (for
every k ∈ N) can be easily proved using research technique from [22].

Step 2. For every k ∈ N extend uk by zero to Q and keep the notation uk to
this extension. It easy to verify that uk ∈ Uloc for all k ∈ N. Consider the sequence
{uk}∞k=1 and show that it contains the subsequence converging to the generalized
solution of problem (1.1) – (1.3) in some sense.

First we show that for every R0 > 0 the sequences {uk|QR0
}∞k=1, {γuk|Σ1,R0

}∞k=1,

{b1/2
1 uk|QR0

}∞k=1, and {b1/2
2 γuk|Σ1,R0

}∞k=1 are respectively fundamental in spaces
L2(SR0 ;H

1(ΩR0)) ∩ Lp(QR0), Lq(Σ1,R0), C(SR0 ;L2(ΩR0)) and C(SR0 ;L2(Γ1,R0)).
For this purpose use Lemma 3.2, choosing R > 2R0 be any number, u1 = uk,
u2 = ul for arbitrary k, l > R. From its assertion and inequality

R/(R−R0) = 1 +R0/(R−R0) ≤ 2 when R ≥ 2R0 (4.6)
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we obtain

max
t∈SR0

‖b1/2
1 (·)(uk(·, t)− ul(·, t))‖2L2(ΩR0 )

+ max
t∈SR0

‖b1/2
2 (·)(γuk(·, t)− γul(·, t))‖2L2(Γ1,R0 )

+ ‖uk − ul‖2L2(SR0 ;H1(ΩR0 )) + ‖uk − ul‖p
Lp(QR0 ) + ‖γuk − γul‖q

Lq(Σ1,R0 )

≤ C6(R0)Ψ(b1, b2, ρ1, ρ2, ρ3, d1, d2;R),

(4.7)

where C6(R0) > 0 is a constant depending on R0, but not depending on R.
From (2.5) and 4.6 we conclude that the right side of (4.7) tends to zero as

R → +∞. Thus for arbitrarily small value ε > 0 there exists k∗ ∈ N such that for
every k, l ≥ k∗ the left side of (4.7) is less then ε. It yields the fundamentality of
the sequences {uk|QR0

} in L2(SR0 ;H
1(ΩR0))∩Lp(QR0), {γuk|Σ1,R0

} in Lq(Σ1,R0),

{b1/2
1 uk|QR0

} in C(SR0 ;L2(ΩR0)), {b
1/2
2 γuk|Σ1,R0

} in C(SR0 ;L2(Γ1,R0)). Since R0

is an arbitrary number, the above stated yields the existence of functions u ∈
(S → Vloc) ∩ L2,loc(S;H1

loc(Ω)) ∩ Lp,loc(Q), γu ∈ Lq,loc(Σ1), û ∈ C(S;L2,loc(Ω)),
û ∈ C(S;L2,loc(Γ1)) such that

uk −→
k→∞

u in L2,loc(S;H1
loc(Ω)) ∩ Lp,loc(Q), (4.8)

γuk −→
k→∞

γu in Lq,loc(Σ1), (4.9)

b
1/2
1 uk −→

k→∞
û in C(S;L2,loc(Ω)), (4.10)

b
1/2
2 γuk −→

k→∞
û in C(S;L2,loc(Γ1)). (4.11)

It remains to show that
û = b

1/2
1 u, û = b

1/2
2 γu. (4.12)

Indeed, from (4.8)–(4.11) it follows that there exists a subsequence {ukj}∞j=1 such
that

ukj −→
j→∞

u, ∂ukj/∂xi −→
j→∞

∂u/∂xi a.e. in Q, (4.13)

γukj −→
j→∞

γu a.e. on Σ1, (4.14)

b
1/2
1 ukj −→

j→∞
û a.e. in Q, (4.15)

b
1/2
2 γukj −→

j→∞
û a.e. on Σ1. (4.16)

From this it easily follows (4.12). On the basis of (4.10)– (4.12) we conclude that
b
1/2
1 u ∈ C(S;L2,loc(Ω)), b1/2

2 γu ∈ C(S;L2,loc(Γ1)), and therefore u ∈ Uloc.
Now show that u is generalized solution of (1.1)–(1.3). First of all note that

under condition (A3) and (4.8), we have

ai(·, ·, uk(·, ·),∇uk(·, ·)) −→
k→∞

ai(·, ·, u(·, ·),∇u(·, ·)) in L2,loc(Q), i = 1, n. (4.17)

Now prove the existence of a subsequence {uki}∞i=1 of the sequence {uk} such that
for arbitrary fixed R > 0

a0(·, ·, uki(·, ·),∇uki(·, ·)) −→
i→∞

a0(·, ·, u(·, ·),∇u(·, ·)) weakly in Lp′(QR), (4.18)

c(·, ·, γuki(·, ·)) −→
i→∞

c(·, ·, γu(·, ·)) weakly in Lq′(Σ1,R). (4.19)
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Indeed, (4.8) and (4.9) yield the estimates

‖uk‖L2(SR;H1(ΩR))∩Lp(QR) ≤ C7(R), k ∈ N, (4.20)

‖γuk‖Lq(Σ1,R) ≤ C8(R), k ∈ N, (4.21)

where C7(R), C8(R) > 0 are constants probably depending on R, but not depending
on k.

By (A2) and (4.20) we have

‖a0(·, ·, uk(·, ·),∇uk(·, ·))‖Lp′ (QR) ≤ C9(R), k ∈ N, (4.22)

and on the basis of condition (B2) and (4.21), we have

‖c(·, ·, γuk(·, ·))‖Lq′ (Γ1,R) ≤ C10(R), k ∈ N, (4.23)

where C9(R), C10(R) > 0 are constants probably depending on R, but not depend-
ing on k. Using the [22, Proposition 3.4,p. 51], from A1, (4.13) and (4.22) we obtain
(4.18), and from (B1), (4.14) and (4.23) we obtain (4.19).

Let ψ ∈ Vc, ϕ ∈ C1
0 (−∞, 0) be arbitrary functions and l be a natural number

such that suppψ ⊂ Ωl, suppϕ ⊂ (−l, 0). Then for every k > l (k ∈ N) the equality
(4.5) is fulfilled. In fact the integrals in this equality are taken over Ql instead of
Qk and Σl

1 instead of Σk
1 . Put k = ki(i ∈ N) in (4.5) and pass to the limit as

i → ∞, taking into account (4.8),(4.9),(4.17)–(4.19). As a result we obtain (2.3);
i.e., exactly what is needed.

To obtain (2.6) let us use Lemma 3.2. Let u be the generalized solution of the
problem (1.1)–(1.3) with given (b1, b2) ∈ B, (a0, a1, . . . , an) ∈ A, c ∈ C, (f1, f2) ∈
Floc. Note that on the basis of conditions A′

1,C
′
1 the function u = 0 is the solution

of (1.1)–(1.3) with the same (b1, b2), (a0, a1, . . . , an), b, but with (f1, f2) = (0, 0).
Let R ≥ 0 be an arbitrary number, u1 = u, u2 = 0, f1,1 = f1, f2,1 = f2, f1,2 = 0,
f2,2 = 0, f i,1 = f i,2(i = 1, n). Then from Lemma 3.2 (see (3.16)) it is easy to get
(2.6).

Step 3. Now prove the continuous dependence on data-in of generalized solu-
tions of (1.1)–(1.3). Let {(ak

0 , a
k
1 , . . . , a

k
n)}, {ck} and {(fk

1 , f
k
2 )} be the sequences

such that ((b1, b2), (ak
0 , a

k
1 , . . . , a

k
n), ck) ∈ BAC and

(ak
0 , a

k
1 , . . . , a

k
n) −→

k→∞
(a0, a1, . . . , an) in A, ck −→

k→∞
c in C, (4.24)

(fk
1 , f

k
2 ) −→

k→∞
(f1, f2) in Floc. (4.25)

Take any number k ∈ N. Reformulate the integral identity, which define the func-
tion uk as a generalized solution corresponding problem (similar to (2.3)), in the
form∫∫

Q

{ n∑
i=1

ai(x, t, uk,∇uk)ψxiϕ+ a0(x, t, uk,∇uk)ψϕ− b1(x)ukψϕ′
}
dx dt

+
∫∫

Σ1

{c(y, t, γuk)γψϕ− b2(y)γukγψϕ′} dΓydt

=
∫∫

Q

{ n∑
i=1

(
ai(x, t, uk,∇uk)− ak

i (x, t, uk,∇uk)
)
ψxiϕ

+
(
a0(x, t, uk,∇uk)− ak

0(x, t, uk,∇uk) + fk
1

)
ψϕ

}
dx dt
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+
∫∫

Σ1

{c(y, t, γuk)− ck(y, t, γuk) + fk
2 }γψϕdΓydt (4.26)

for every ψ ∈ Vc, ϕ ∈ C1
0 (−∞, 0).

From (4.26) and (2.3) on the basis of Lemma 3.2, putting u1 = uk, u2 = u
and f̄i,1 = ai(·, ·, uk,∇uk) − ak

i (·, ·, uk,∇uk) (i = 1, n), f1,1 = a0(·, ·, uk,∇uk) −
ak
0(·, ·, uk,∇uk) + fk

1 ,, f2,1 = c(·, ·, γuk) − ck(·, ·, γuk) + fk
2 , f̄i,2 = 0 (i = 1, n),

f1,2 = f1, f2,2 = f2 and choosing R > 0, R0 ∈ (0, R) to be arbitrary, we obtain

max
t∈[−R0,0]

∫
ΩR0

b1(x)|uk(x, t)− u(x, t)|2 dx

+ max
t∈[−R0,0]

∫
Γ1,R0

b2(y)|γuk(y, t)− γu(y, t)|2 dΓy

+
∫∫

QR0

{
ρ1|∇uk −∇u|2 + ρ2|uk − u|p

}
dx dt+

∫∫
Σ1,R0

ρ3|γuk − γu|q dΓy dt

≤ C11(R/(R−R0))σ
[
Ψ(b1, b2, ρ1, ρ2, ρ3, d1, d2;R)

+
∫∫

QR

ρ
−1/(p−1)
2 |fk

1 − f1|p
′
dx dt+

∫∫
Σ1,R

(ρ3)−1/(q−1)|fk
2 − f2|q

′
dΓy dt

+
∫∫

QR

(
ρ−1
1 + nρ1d

−2
1

) n∑
i=1

|ai(x, t, uk,∇uk)− ak
i (x, t, uk,∇uk)|2 dx dt

+
∫∫

QR

ρ
−1/(p−1)
2 |a0(x, t, uk,∇uk)− ak

0(x, t, uk,∇uk)|p
′
dx dt

+
∫∫

Σ1,R

ρ
−1/(q−1)
3 |c(y, t, γuk)− ck(x, t, γuk)|q

′
dx dt

]
, (4.27)

where σ,Ψ are the same as in the statement of the Theorem 2.5, C11 > 0 is a
constant depending only on p, q.

Let ε > 0 be an arbitrary small number and R0 > 0 be any number. By virtue
of (2.5) we can take R ≥ 2R0 such that

Ψ(b1, b2, ρ1, ρ2, ρ3, d1, d2;R) < ε/(5C112σ) . (4.28)

Fix such R. On the basis of (4.25) there exists k1 ∈ N such that∫∫
QR

ρ
−1/(p−1)
2 |fk

1 − f1|p
′
dx dt+

∫∫
Σ1,R

ρ
−1/(q−1)
3 |fk

2 − f2|q
′
dΓy dt

< ε/(5C112σ)
(4.29)

for every k ≥ k1. Now we show the existence of constants k2 ≥ k1 (k2 ∈ N), C12 > 0
such that ∫∫

QR

(
|uk|2 + |uk|p + |∇uk|2

)
dx dt+

∫∫
Σ1,R

|γuk|q ≤ C12 (4.30)

for all k ≥ k2. To this effect we use Corollary 3.4. Let k be any natural number. Put
ρ̄j := ess inf(x,t)∈QR+1 ρj(x, t) > 0 (j = 1, 2), ρ̄3 := ess inf(y,t)∈Σ1,R+1 ρ3(y, t) > 0,
d̄1 := ess sup(x,t)∈QR+1

d1(x, t), d̄2 := esssup(x,t)∈QR+1
d2(x, t).
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From conditions (A1’), (A3), (A4), (C1’), (C3) and simple consideration for a.e.
(x, t) ∈ QR+1 it follows that

n∑
i=1

|ak
i (x, t, s, ξ)|

≤
n∑

i=1

|ai(x, t, s, ξ)|+
n∑

i=1

|ak
i (x, t, s, ξ)− ai(x, t, s, ξ)|

≤ d̄1|ξ|+ d̄2|s|

+
(

ess sup
(x,t)∈QR+1

sup
(s,ξ)∈R1+n

n∑
i=1

|ak
i (x, t, s, ξ)− ai(x, t, s, ξ)|

1 + |s|+ |ξ|

)
(1 + |s|+ |ξ|),

(4.31)

and
n∑

i=1

ak
i (x, t, s, ξ)ξi + ak

0(x, t, s, ξ)s

=
n∑

i=1

ai(x, t, s, ξ)ξi + a0(x, t, s, ξ)s

+
n∑

i=1

(
ak

i (x, t, s, ξ)− ai(x, t, s, ξ)
)
ξi +

(
ak
0(x, t, s, ξ)− a0(x, t, s, ξ)

)
s

≥ ρ1(x, t)|ξ|2 + ρ2(x, t)|s|p −
( n∑

i=1

∣∣ak
i (x, t, s, ξ)− ai(x, t, s, ξ)

∥∥ξ|
+

∣∣ak
0(x, t, s, ξ)− a0(x, t, s, ξ)

∥∥s|)
≥ ρ̄1|ξ|2 + ρ̄2|s|p

−
[(

ess sup
(x,t)∈QR+1

sup
(s,ξ)∈R1+n

n∑
i=1

|ak
i (x, t, s, ξ)− ai(x, t, s, ξ)|

(1 + |s|+ |ξ|)

)
(|ξ|+ |s‖ξ|+ |ξ|2)

+
(

ess sup
(x,t)∈QR+1

sup
(s,ξ)∈R1+n

|ak
0(x, t, s, ξ)− a0(x, t, s, ξ)|

(1 + |s|p−1 + |ξ|2/p′)

)
(|s|+ |s|p + |s‖ξ|2/p′)

]
,

and

ck(y, t, s)s = c(y, t, s)s− |ck(y, t, s)− c(y, t, s)‖s|

≥ ρ̄3|s|p −
(

ess sup
(x,t)∈Σ1,R+1

sup
s∈R

|ck(y, t, s)− c(y, t, s)|
1 + |s|p−1

)(
|s|+ |s|p

)
.

(4.32)

Now note that on the basis of Young’s inequalities we obtain

|ξ| ≤ |ξ|2/2 + 1/2, |s‖ξ| ≤ |ξ|2/2 + |s|p/p+ (p− 2)/(2p),

|s| ≤ |s|p/p+ 1/p′, |s‖ξ|2/p′ ≤ |ξ|2/p′ + |s|p/p.

From this, (4.31)-(4.32), and (4.24) it follows that there exists natural number
k2 ≥ k1 such that for each k ≥ k2 we obtain assumptions of Corollary 3.4 (in par-
ticular, (3.32)-(3.34)) with ak

0 , a
k
1 , . . . , a

k
n, c

k instead of a0, a1, . . . , an, c respectively).
Note that in the given case constants αj , βj , µl are independent of k. Taking into
consideration (4.25) from the statement of Corollary 3.4 (4.30) follows.
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We resume to estimate the terms in the right side of (4.27). After easy trans-
formations we obtain the inequalities∫∫

QR

(
ρ−1
1 + nρ1d

−2
1

) n∑
i=1

|ai(x, t, uk,∇uk)− ak
i (x, t, uk,∇uk)|2 dx dt

≤ 3 ess sup
(x,t)∈QR

(
ρ−1
1 (x, t) + nρ1(x, t)d−2

1 (x, t)
)

× ess sup
(x,t)∈QR

sup
(s,ξ)∈R1+n

( n∑
i=1

|ak
i (x, t, s, ξ)− ai(x, t, s, ξ)|/(1 + |s|+ |ξ|)

)2

×
∫∫

QR

(
1 + |uk|2 + |∇uk|2

)
dx dt,

(4.33)

∫∫
QR

ρ
−1/(p−1)
2 |a0(x, t, uk,∇uk)− ak

0(x, t, uk,∇uk)|p
′
dx dt

≤ C13(p) ess sup
(x,t)∈QR

ρ
−1/(p−1)
2 (x, t)

× ess sup
(x,t)∈QR

sup
(s,ξ)∈R1+n

[
|ak

0(x, t, s, ξ)− a0(x, t, s, ξ)|/(1 + |s|p−1 + |ξ|2/p′)
]p′

×
∫∫

QR

(
1 + |uk|p + |∇uk|2

)
dx dt,

∫∫
Σ1,R

ρ
−1/(q−1)
3 |c(y, t, γuk)− ck(x, t, γuk)|q

′
dx dt

≤ C14(p) ess sup
(y,t)∈Σ1,R

ρ
−1/(q−1)
3 (y, t)

(
ess sup

(y,t)∈Σ1,R

sup
s∈R

|ck(y, t, s)

− c(y, t, s)|/(1 + |s|q−1)
)q′

∫∫
Σ1,R

(
1 + |γuk|q

)
dΓy dt.

(4.34)

From (4.30) on the basis of (4.24) it follows that there exists natural number k3 ≥ k2

such that the right side of each inequalities (4.33)-(4.34) is less than ε/(52σC11) for
all k ≥ k3. From this and (4.6), (4.28), (4.29) it follows that the right side of the
inequality (4.27) with R and k3 being chosen above is less then ε for every k ≥ k3.
Therefore uk −→k→∞ u in Uloc. �
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