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MONOTONE POSITIVE SOLUTIONS FOR p-LAPLACIAN
EQUATIONS WITH SIGN CHANGING COEFFICIENTS AND
MULTI-POINT BOUNDARY CONDITIONS

JIANYE XIA, YUJI LIU

ABSTRACT. We prove the existence of three monotone positive solutions for
the second-order multi-point boundary value problem, with sign changing co-

efficients,
[p(t)e(z’ (1)) +f(t z(t),2’(t)) =0, te(0,1),
Za /(&) + Z a;x’' (&),
i=l+1
k m
(1) + B2’ (1) = Zbix(&) — Z bz (&) Zczx i)
=1 i=k+1

To obtain these results, we use a fixed point theorem for cones in Banach
spaces. Also we present an example that illustrates the main results.

1. INTRODUCTION

As is well known, a differential equation defined on the interval ¢ < ¢t < b having
the form

()2 ()] + (a(t) + Ar(t))a(t) = 0,
arz(a) + asz’(a) = azz(b) + asz’(b) = 0,

is called a Sturm-Liouville boundary-value problem or Sturm-Liouville system. Here
p(t) > 0, q(t), the weighting function r(t), the constants a1, as, as, as are given, and
the eigenvalue A is an unspecified parameter.

Sturm-Liouville boundary-value problems for nonlinear second-order p-Laplacian
differential equations have been studied extensively; see for example [T, 2, 3], [ [5] [6],
7,8, [9, [10], [T, 15 [16]. The study of existence of positive solutions for such problems
is complicated since there is no Green’s function for the p-Laplacian (p # 2).
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Some authors have extend Sturm-Liouville boundary conditions to nonlinear
cases. For example, He, Ge and Peng [7], by means of the Leggett-Williams fixed-
point theorem, established criteria for the existence of at least three positive solu-
tions to the one-dimensional p-Laplacian boundary-value problem

(0(y) +9t)f(t,y) =0, te(0,1),
y(0) — Bo(y'(0)) =0, (1.1)
y(1) + Bi(y'(1)) =0,
where ¢(v) = |v|[P~2v with v > 1, under the assumptions zBg(x) > 0, zB;(z) > 0
and that there exist constants M; > 0 such that
|Bi(z)| < M;|z|, zeR. (1.2)

In [9, 10, 11 [7], the authors extended to a more general case. They established
some existence results of at least one positive solution of Sturm-Liouville boundary
value problems of higher order differential equations. Liu [I2] studied the boundary-
value problem

[ @0)) = f(t,2(t), 2/ (1), ..., D), 0<t<1,
@P0)=0 fori=0,1,...,n—3,
2("2(0) — By(2""1(0)) =0,

By ("2 (1)) + 2"~V (1) = 0.

which is a general case of (|1.1)). Liu [12] established existence of at least one positive
solution of (1.3) without assumption (1.2).

The Sturm-Liouville boundary conditions have been extended to multi-point
cases. For example, Ma [I5] [16] studied the problem

[p(t)a’ (1)) — a(t)a(t) + f(t,2(t) =0, te(0,1),
ax(0) = Bp(0)2'(0) = ) aiz(é:),
i=1

(1.3)

vx(1) +dp(1)2’(1) = Z bix (&),

where 0 < & < - < &n <1, o, 8,7, >0, a;,b; > 0 with p =68+ ay + ad >
0. By using Green’s functions (which is complicate for studying ) and Guo-
Krasnoselskii fixed point theorem [4] [6], the existence and multiplicity of positive
solutions for were given. There is no paper discussing the existence of multiple
positive solutions of by using Leggett-Williams fixed point theorem. Liu in [I0}
1] also studied some Sturm-Liouville type multi-point boundary value problems.

In recent papers [8,[17], the authors studied the four-point boundary-value prob-
lem

(p(a") + f(t,x(t),2'(t)) =0, te(0,1),
ax(0) — Bz’ (€)
v (1) 4 02’ (n)

where ¢(z) = |z|P7 22, p > 1, ¢~ 1(x) = |z|97 22 with 1/p+1/g=1,a >0, 3 >0,
v>0,02>0,0<¢&<n<1, fiscontinuous and nonnegative. When £ — 0 and

=0, (1.5)
= 07
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n—1, converges to a Sturm-Liouville boundary-value problem. So can
be seen as a generalized Sturm-Liouville boundary-value problem.

Xu [I8] proved the existence of at least one or two positive solutions of the
differential equation

(6" ()] + a(t)f(x(t)) =0, t€(0,1),

m

II(O) = Z aix/(fi)a

(1.6)
k s m
z(1) = Zbﬂ?(&‘) - Z biw (&) — Z cia’ (&),
i=1 i=k+1 i=s+1
where 0 < & < -+ < & < 1, a;,b;,¢; > 0, a and f are continuous functions,

o(x) = |x|P~2x with p > 1.
Motivated by above mentioned papers, we investigate the boundary-value prob-

lem
[p(H)p(2' (1)) + f(t,x(t),2 () =0, t€(0,1),
l m
2(0) == ai (&) + Y (&),
i=1 i=l+1 (1.7)
k m m
2(1) +B2'(1) =Y biw(&) — Y biw(&) = cir'(&),
i=1 i=k+1 i=1
where
e 0<& <<, <, 20,1 <k l<manda; >0,b; >0,c; >0 for all

t=1,...,m;

e f is defined on [0,1] x R x R, continuous, nonnegative with f(¢,0,0) Z 0
on each subinterval of [0, 1];

e p is defined on [0, 1], continuous and positive;

e ¢ is called p-Laplacian, ¢(z) = |z[P=2x with p > 1, its inverse function is
denoted by ¢~ (z) with ¢=1(z) = |2|? %z with 1/p+1/q = 1.

Sufficient conditions for the existence of at least three monotone positive solu-
tions of are established by using a fixed point theorem for cones in Banach
spaces.

We remark that the fixed point theorem used here is different form the one in
[18]. Our results improve the the results in [I8] since: Three positive solutions are
obtained, while one or two positive solutions were obtained in [I§]; the nonlinearity
in depends on t, z, 2’, while the nonlinearity in [I8] depends only on ¢, z. The
main result for this article is presented in Section 2, and an example is given in
Section 3.

2. MAIN RESULTS

In this section, we first present some background definitions and state an impor-
tant fixed point theorem. Then the main results are given and proved.

Definition 2.1. Let X be a semi-ordered real Banach space. The nonempty convex
closed subset P of X is called a conein X if t+y € P and ax € P for all z,y € P
and ¢ > 0, and x € X and —x € X imply z = 0.
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Definition 2.2. Let X be a semi-ordered real Banach space and P a cone in X. A
map 9 : P — [0,400) is a nonnegative continuous concave (or convex) functional
map provided v is nonnegative, continuous and satisfies

Ytx+ (1 —t)y) > (or <) t(x) + (1 —t)w(y) for all x,y € P,t € [0,1].

Definition 2.3. Let X be a semi-ordered real Banach space. An operator T; X —
X is completely continuous if it is continuous and maps bounded sets into pre-
compact sets.

Let a1, a9, as3,aq4 > 0 be positive constants, ¥ be a nonnegative continuous func-
tional on the cone P. Define the sets as follows:

P(f1;a4) ={x € P: f1(x) < ag},
P(f1,a15a2,a4) = {z € P:oaq(z) > ag, fi(z) < as},
P(61, B2, a15a9,a3,a1) = {z € P: aq(x) > ag, fa(x) < as, Bi(z) < aq}

and a closed set
R(B1,v5a1,a4) = {x € P:ep(x) > ay, fi(z) < as}.

Theorem 2.4 ([3]). Let P be a cone in a real Banach space X with the norm || -||.
Suppose that

(1) T : P — P is completely continuous;

(2) B1 and B2 be nonnegative continuous convex functionals on P, oy be a
nonnegative continuous concave functional on P, and v be a monnegative
continuous functional on P satisfying ¥ (Ax) < \p(x) for all x € P and
A €[0,1], and a1(z) < (x) and there exists a constant M > 0 such that
lall < MBy(z) for all = € P;

(3) there exist positive numbers a1 < ag,as and a4 such that
(E1) T(P(B1;a4)) € P(B1;a4);

(E2) aa(Tz) > ag for all x € P(B1,01;a2,a4) with Bo(Tx) > ag;

(E3) {z € P(B1, B2, 1;0a2,a3,a4) : a1(x) > as} # 0 and a1 (Tx) > b for all
x € P(ﬁh B, a1; ag,as, CL4),‘

(E4) 0 € R(f1,v;a1,a4) and Y(Tx) < ay for all x € R(By,v;a1,a4) with
w(x) = a1y

Then T has at least three fired points x1,zo,x3 € P(B1;a4) such that
61(1'2) §a4> Z:17233a

ay(zy) > az, Y(xg) > a1, ai(x2) <az, Y(zz)<ag.

Choose X = C0,1]. We call z < y for x,y € X if x(t) < y(t) for all ¢t € [0,1],
for x € X, define its norm by

]| = maX{tren[gg] (B, max o' (¢ )}

It is easy to see that X is a semi-ordered real Banach space. Let
pP= {y € X :y(t) >0 forall t € [0,1], ¥'(t) < 0 is decreasing on [0, 1],
y(t) > (1 —t)y(0) for all ¢ € [0,1],

(1) + Bp(1) }jbx@ 7 biw(&) =D bl (&),
i=1

i=k+1
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Zaz @+ Y air' (&)}

i=l+1

Then P is a nonempty cone in X. For o € (0,1/2). Define functionals from P to
R by

Bi(y) = max |y'(t)], ¢(z) = max [y(t)],

te[0,1] te[0,1]
= 5 = t 5 6 P.
Ba(y) snax ly®)],  aiy) i lw®l, vy

Let us list some conditions to be used in this article.

(A1) p:[0,1] — (0,+00) is continuous;
(A2) a; >0,b; >0,¢; >0 for all i =1,...,m satisfying

o, (PO _la,p(o b — b <1,
i=zl-|;1 “\p(& ) z_: "p(&) Z zzk—:i-l

3 0o () 2 S () oz 3

i=l+1 =k+1
(A2) a; >0,b; >0 foralli=1,...,m satisfying

- »(0) :
Z ai(p(&)) <1, ;bi <1,

i=l+1

m l k m
() 2 e ) vz X

(A3) B>0;
(A4) f:]0,1] x [0,+00) x R — [0, 4+00) is continuous with f(¢,0,0) # 0 on each
sub-interval of [0, 1];
(A5) 6:[0,1] — [0, +00) is a continuous function and 6(¢) # 0 on each subinter-
val of [0, 1].
It is easy to see that (A2) holds if (A2’) holds.
Lemma 2.5. Suppose that p: [0,1] — (0,+00) with p € C*0,1], z € X, z(t) > 0
for allt €10,1] and [p(t)p(z'(t))) <0 on [0,1]. Then x is concave and

z(t) > min{t, 1 — t} trél[aml(] z(t), tel0,1]. (2.1)

)

Proof. Suppose x(tg) = maxc(oq) 2(t). If tg < 1, for t € (o, 1), since z'(to) < 0,
we have p(tg)d(z'(to)) < 0. Then p(t)¢(z’(t)) <0 for all ¢ € (to, 1]. It follows that
2'(t) <0 for all t € [0,1]. Thus z(to) > x(t) > x(1) > 0. Let

t

ftg (b ! (p(ls))ds

SV

ftg (b ! (p(ls))ds

Then 7 € C([to, 1],[0,1]) and is increasing on [tg, 1] since
a9 ()

e T
dt j;fo ¢71(p(1s))ds

7(t) =

>0,
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T(top) =0 and 7(1) = 1. Thus

de _dvdr _de 9 (5n)
dt — drdt d7f¢ (pé)s

which implies

p(t)o(a'(t)) = ¢(f7f—) ¢(ft1 ¢—11( (15))‘13) |

Hence

¢I(dj ¢_1(ﬁ) 7_(?( ¢ (

m)f¢,()ddﬂ L )as) [p(t)s( 1) <0
to p(s)

p(s)

for all t € [tg,1]. Note that ¢'(x) > 0. It follows that g%” < 0. Together with
2”(r) < 0(r € [0,1]). Then 2’ is decreasing on [0,1]. We get that there exist
to <n<t<&<1such that

a(to) —x(l) z@) —x(1) (£ = Dfz(to) — ()] + (to — t)[x(1) — 2(D)]

to— 1 t—1 (t—1)(to— 1)
(= D)t — ') + (to — (1L — )t2’(€)
(t—Dto—1)
_ (=Dt =T + (-1 - ') _
= (t—Dto—1)

It follows that for t € (tg, 1),

w(t) = o) + (- )OI oy (10 L0 ) > (- ).

to—1 1—t)  1—1t,
If tg > 0, for ¢t € (0,tp), similarly to above discussion, we have
z(t) > tx(to), t € (0,%0).
Then one gets that () > min{t,1 — t} max,c[o 4 () for all £ € [0,1]. The proof

is complete. ([

Consider the boundary-value problem

[p(H)o(2' (1)) +6(t) =0, te€(0,1),

l m
*Zaﬂ'(fi)Jr Z a;x' (&),

ot (2.2)

(1) + B2'(1 be& > bix(&) - > (&)

i=k+1 i=s+1

Lemma 2.6. Suppose that (A1)-(Ab5) hold. If x is a solution of (2.2)), then x is
concave, decreasing and positive on (0,1).

Proof. Suppose z satisfies (2.2). It follows from the assumptions that pz’ is de-
creasing on [0,1]. Lemma implies that =’ is decreasing on [0,1]. Then z is
concave on [0, 1].
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First, we prove that ’'(0) < 0. One sees from (A2) and the deceasing property
of p(t)p(2'(t)) that

/ _ s —1 1 —1 . .’L‘/ . S a‘i -1 . .’L‘/ .
P(1) ==Y a;i¢ (p(&)w (p(&)o( (&)))Jrizzl;l z(p(&))qﬁ (p(&:) (2 (&)

<_ Zm-l(péi))¢-1<p(§z>¢>(x’(&))>

; élw1<p(;,)>¢1(p<gl+1>¢<z’<sz+1>>>
- (él 06 (1) - gam—l(p(;)))¢-1<p<a+1>¢<x'<el+l>>>
+ gam—l (@) [0 (p(&4+1)8 (2" (6141))) — &~ (p(&) D (" (&)))]
< (ﬁ; 06 (1) - iai¢-l(p(;)))oﬁ-l(p(mm(m’(ml)))
< (élaml(p(;)) - Z 6™ (=)0 (O 0)

It follows that

L 1
(1 : i:zH;l al<lf((§z))) + ;alﬁ((g))>x/(0) <0.

It follows that z'(0) < 0. Then 2/(¢) < 0 for all ¢ € [0, 1].
Second, we prove that z(1) > 0. It follows from the boundary conditions in (2.2)

that

1)+ B2'(1 Zb 2(&)— Y bw(&) - Y (&)

i=k+1 i=s+1
i=1 i=k-+1
k s
EZbix(fk)— Z biz(Ek+1)
i=k+1
(Zb— Zb) Zb (&) — 2(Ek+1)]
i=k+1 i=k+1
> (Zb - Z b)SC k)
i=k+1

(om0 )

i=k+1
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Then
(1—§:b+-§:b) )+ Ba'(1) > 0.
i=k+1
We get 2(1) > 0 since /(1 ) <0and 8 >0. Then z(t) > (1) > 0 for all ¢t € [0,1).
The proof is complete. O
Lemma 2.7. Suppose that (A1),(A2), (A3)—(A5) hold. Let

1
p=29 -1
<z Ly i (2)>
If y is a solution of (2.2)), then

v =80~ [ o7 (Lt - s [oan)as, o,

76 o)
s
b= g’(b (09~ 3 / Ofu)du)
+zzz+1w (e - (1&)/0 O(u)du)
and
Be:lzf_lbiiz?ikﬂ [ 807 (gymeo 5 [ otan)

—’ﬁébi]/1¢l 4}7 ‘/‘9 )du ) ds

+ j{: j/ ! @49)]’)]£ 0(u )du)d

Rl p@ p(s

Z zd) (p(fz 0 fz / 9 du ds

i=1
Proof. Since y is solution of (2.2),

(0 =07 (o500l )~ —5 [ o).

Mﬂ=yu%ilwrwagmmaym»—;®[iwmm)w

The boundary conditions in (2.2)) imply
1

y(0)==> ai¢~ (éO o(y'( &/me M

i=1

+”Z+1az¢ 1( P(0)6(y/(0)) - (1&) / Ouu)
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and
1)+ 67 (5 )= [ otwa
= ;b (w1) - /5 67 (SO0 (0) ~ = / ou)du) s )
- _f;b (v~ [ o7 (50000 0) - = [ otuyiu)as)
- fj o™ (s 00t/0) - s [ o).
It follows that
W) = e [0 (%pm)qu’(o» - s [ o)

k 1 1
—Zbi/ ¢—1 —p /9 du ds

£3 b / ]% <y'<o>>(1)/oo<>du)d

i=k+1

‘Zci¢_1(p<§z> o a/ P s

i=1
Lemma [2.6] implies that 3'(0) < 0. One finds that
!

&
y0) = =3 a6 (o5 p(06(5/(0) — — [ b))

=1

m

+ Y o (00 0) -~ /05"’9<u>du)

i=l+1

|
_”ZHW ( OO - |

If 4'(0) # 0, one gets

m . 1 1 L &
1= 3w (7O - sy /(@) e @)

9(u)du) .

i=l+1
- G(c)=c— zm: a.¢—1( 1 (0)p(c) — 1 /& G(u)du)
- =111 ' p(gi)p (&) Jo '
Then oo m R . . &9 )
c 7ilz+1 0 (p(§i>p(0) - ¢(C)p(fi)/0 @ u)
Note that

1
o (b(Zl"mawb (g)) o
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It is easy to see that i 9 is decreasing on (—00,0) and on (0, +o00). First, since

lim; g+ G(c)/c = +00 and

im GO g i aiqﬁ*l(pl‘ (0)) >0,

c—+4oco  C o1 (fl)p
we get that G(c) > 0 for all ¢ > 0. Second, we have lim,_o- G(¢)/c = —o0 and
JLo(u)du
G\ -~ - 0 1 i
( ( Mi)(zu )) _ Z ;! ( p(0) + p( )M )/ 9(u)du)
—¢” ( 1p(0) ) =l fo 0
=1—ia¢—( LORY Ji 0w _1 7))
i:t-«—ll p(&) fﬁudup i)
1 - -1 p(0)\ _
>1-¢ (140 Y ag (p(&)) — 0.

i=l+1
Gy’
It follows from (2.3)) that W < 0. We get

02002 -0 (BIE)

The proof is complete. O
Define the nonlinear operator T : X — X by

(Ta)(t) = B, — /t 1 ¢—1($p(0)¢@4m> - ﬁ /O * flusa(w). () du) ds,

for ¢t € [0, 1], where

Ar= =D ((&) A,) &/ P, (), 2 ()

+lzl;1al¢ ( ) Az)—m/o f(u,gc(u),gg’(u))du)7
1

B‘T = k m
1- Zi:l b; + Zi:k+1 bi

< [~ o (ﬁpm)qﬁmr) _ L / 1 f(u,x(u),:c'(u))du)

k 1
_Zbi/i ¢_1($ / flu,z(u du)ds
+ Z / l(p(% (Am)p(s)/0 Fu, z(u), 2’ (u ))du)d

i=k+1
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m &i
=S (0040 — s [ pua). /() du) s

i=1

Lemma 2.8. Suppose that (A1),(A2%), (A3), (A4) hold. Then
(i) the following equalities hold:

p(®)o((Ty) (1)) + f(t,y(t),y'(t)) =0, te€(0,1),
l m
(Ty) (0) = =3 ai(Ty)' (&) + 3 ailTy)' (&),

i=l+1
k m m
(Ty)(1) + B(Ty) (1) =D b:i(Ty)(&) — > bi(Ty)(&) = > e(Ty) (&)
i=1 i=k+1 i=1

(ii) Ty € P for each y € P;

(iii) = is a positive solution of if and only if x is a solution of the operator
equation y =Ty in P;

(iv) T : P — P is completely continuous.

Proof. The proofs of (i), (ii) and (iii) are simple. To prove (iv), it suffices to prove
that T is continuous on P and T is relative compact. We divide the proof into two
steps:

Step 1. For each bounded subset D C P, and each xzg € D, since f(t,u,v) is
continuous, we can prove that 7' is continuous at y(t).

Step 2. For each bounded subset D C P, prove that T is relative compact on
D. Tt is similar to that of the proof of Lemmas in [I3] and are omitted. O

Lemma 2.9. Suppose that (Al), (A2’), (A3), (A4) hold. Then there exists a
constant M > 0 such that

< ! .
tren[gu,)i](Tx)(t) < Mtrél[gf] |(Tx)'(t)| for each x € P

Proof. For x € P, Lemma [2.6] implies that (Tz)(t) > 0 and (Tz)'(t) < 0 for all
t €[0,1]. Lemma [2.§ implies

k m m
(T2)(1) + B(Tx) (1) =Y bi(Tx)(&) — D> bi(Tz)(&) =D ci(Tx) (&)
i=1 i=k+1 i=1

Then there exist numbers 7; € [§;, 1] such that

(T)(1) = S0 bi(Tx) (1) + o7y bi(T)(1)
1- 25:1 bi+ 0 gy bi
_ BTy (1) = ¥, ei(Tx) (&)
1- Zf:l bi+ g bi
. S bil(T2)(&) — (T2) ()] = S0y bil(T2) (&) — (T)(1)]
1- Zf:l bi+ gy bi
_ —B(Tx)(1) - S, ai(T2) (&)
1- 25:1 bi + > 1 bi

(T2)(1) =
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S il = D(Tw) () = Sor ey bilé — ) (Tw)' (i)

+ k
1- Zi:l b + sz:kJrl bi

It follows that
[(T2)(t)]
=|(Tz)(t) — (Tz)(1) + (Tz)(1)]|
<|(Tz)()|+ (1 = )[(Tz)'(€)| where € € [t, 1]

Bp(L) + S bi(1— &)+ S0 bl = &) + X7 e
<(1+ s BUWE= T ) e |(T2)' ()]
Then
e |(T) (1)
S (1—|— ( )J’_Z’L 1 (1_61)—’_22 k+1 ( §Z)+Zz ICl)treIl[gﬁ]\(Tl‘)/(f”

1- Zz:l bi + 3 ity bi

It follows that there exists a constant M > 0 such that for all x € P,
max (Tx)(t) < MB1((Tx)) .

t€[0,1]
U
Denote
_ 1 B
M_¢(Z:nt+1az¢ (p((g)))> 1,
M71+ﬂp(1)+2f:1 (1= &)+ D0 bi(1 gl)Jer 102
= 1_21117 + > b
Ly = B¢~ ( )+Zb/ (1+(u)3)d s + Zk;rlb /Olqb_l(%g)ds
@ k 1 .
# > (k) o+ (1= 200 [0 (gl s
k L .
Lzzﬁ(b—l(p(ll))‘i‘;bi . (b—l(pis))ds—&— _;_Hbl i (b_l(pis))ds
- k 1 s
#3eo™ (pig)as+ (1= X0 [ o7 Gplas

Theorem 2.10. Choose k € (0,1). Suppose that (A1), (A2’), (A3), (A4) hold. Let
e1, €2, c be positive numbers and

@ = min fo( L= Yis s Ziinb)y up1<1+>¢;c> L

€2 (1 - Z?:l b + Z;‘Zkﬂ bi) )
Lo ’

w=o(
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B ¢(€1 (1- Zf:l bi+ 2t bZ))
Ly ’
If Mc > ea > 9+ >e1 >0 and
(A6) f(t,u,v) <Q for allt €0,1],u € [0, Mc],v € [—¢,c];
(A7) f(t,u,v) > W for allt € [0,k],u € [e2,ea/k],v € [—¢,¢|;
(A8) f(t,u,v) < E for allt € [0,1],u € [0,e1],v € [—¢,¢];
then (1.7) has at least three solutions x1,x2,x3 such that

331(0) <eq, xg(k) > ea, l‘3(0) > eq, .T?g(k‘) < es.

Proof. To apply Theorem [2.4] we check that all its conditions are satisfied. By the
definitions, it is easy to see that «; is a nonnegative continuous concave functional
on the cone P, 31,32 are three nonnegative continuous convex functionals on the
cone P, 1) a nonnegative continuous functional on the cone P. Lemma [2.§ implies
that x = x(t) is a positive solution of if and only if x is a solution of the
operator equation y = Ty and T is completely continuous.

For z € P, one sees that ¥(Ax) < A¢Y(z) for all z € P and A € [0,1], and
a1 (z) < 9(x) for all x € P. There exists a constant M > 0 such that ||z|| < MG (z)
for all x € P. Then (1) and (2) of Theorem hold.

Corresponding to Theorem [2.4, we have a4 = ¢, a3 = %, a2 = ez, a; = e1. Now,
we check that of Theor holds. One sees that 0 < a; < as, ag > 0,
a4 > 0. The rest is divided into four steps.

Step 1. Prove that T'(P1(61;a4)) C Pi(B1;a4); For © € Pi(f1;a4), we have
B1(z) < a4 = c. Then

0 <z(t) < max x(t) < Mc forte[0,1],
te[0,1]

—c<2'(t)<c foralltel0,1].

So (A6) implies that f(¢,z(t),2’(t)) < Q for t € [0,1]. Then Lemma [2.7 implies

0> A, > _¢—1(fol f(u,m(u),m'(u))du> . _¢_1( 0 )

up(0) 1p(0)
Since 9 1
C Z maX{;O, LCL, Qbi (m)a7 d)i (m)a}’
we obtain
o) <min {6(5). 22O )} = q

Then max;¢jo,1)(Ty)(t) = (T'y)(0) implies

(T)(0)
=B [ 67 (000 o [ .o/ as
I bil+ S b

<[ =07 (o000 - = [ ) ) )
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_ 1
_i—zkglbi/o ¢ 1(E
_ici(b_l( 1

i=1

_ (1 — Zzi;bl) /01 41 (ﬁp@)ﬂ

Az) —
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/fux duds

+ Z b; / *1(Lp(0)¢)(14$)_ﬁ 0
/ flu,z(u du ds]

—Z¢>
1
_ —1
0¢ /fum
_ 1
11— b+2k+1
[5¢

fu, x(u), 2’ (u ))du)d

du ds

/fux
/fux duds
/fux

1
p(s

) m/o f(U,x(u),x’(u))du ds

)/sf(u,x(u) ())du)ds}

1 Z—1b +Z k+1b (1) (1)
3 Q
+Zb/ " zk: /0 MP(S
Q k 0
+Z ¢ (,up(fz ( Z; )/ up(s +7d5}
¢ Q)
1-38 b+ 30 k+1
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On the other hand, similarly to above discussion, since (T'y)'(t) is decreasing and
(Ty)' (0) <0, from Lemma [2.7| we have

(T2 (1) = ¢—1(}%p(o / ot ) () )
tren[émi] [(Ta) ()] = —¢~* (}%1)?( / flu, z(u ))du)

§¢_1( ))

It follows that ||Tz| = max{maxfe[o 1 |(Tz)(t)], maxyepo,q) [(Tz)(¢)|} < c. Then
T(P(081;a4)) C P(081;a4). This completes the proof of (E1) in Theorem [2
Step 2. Prove that oy (Tz) > ag for all x € P(0, aq; ag,a4) with BQ(T:v) > as;
For y € P(B1,a1;a2,a4) = P(B1, a1;e2,¢) with B2(Ty) > a3 = ¢, we have
€2

a1(y) —tg[léri]y( ) >e2, Bily) = Jnax, ly' ()] < ¢, Hl[éx](Ty)( ) > 7

Then

a(Ty) = min (Ty)(1) > ko (Ty) > 2= e = as.

This completes the proof of (E2) in Theorem

Step 3. Prove that {z € P(B1,02,01;a2,a3,a4) : ai(z) > as} # 0 and
a1 (Tz) > b for all x € P(B,02,a1;a2,a3,a4); It is easy to check that {x €
P(B1, B2, 015 a2,a3,a4) : a1(x) > as} # 0. For y € P(B1, P2, 15 a2,a3,a4), one
has that

a1(y) = tg[lg%y(t) >eq, [a(y) = tren[gi]y(t) <4 A= Jnasc [y ly' ()] < c.
Then
e <yt) < F LM WD <e
Thus (A7) implies
flty(t),y' @) =W, t €0,k
Since

Ty) = min (T > T
a1 (Ty) tg[%g@]( y)(t)_ktgl[gﬁ]( y)(t),

we obtain a;(Ty) > kmaxe(o,11(Ty)(t). Then
1(Ty) = k max (Ty)(t) = k(Ty)(0).

)

From A, < 0, we obtain

1
ar(Tyy) > k[l _ Zle b+ S b
1 1! /
x (=007 (gp @) = oy | S (), /() d)
—1L _Lsuxux’uus
—lzlb/l (rayr @) = o5 [ fatu), o' (w)du)a

+ Z / 1(i (0)p(Az) — 1/08 f(u,x(u),a:’(u))du)ds

i=k+1 p(s
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g 1
_;ciqﬁ 1(7 /fua: du ds)
/Olqgl ——/fu:v duds
_ k
C1-XL b+z L b

x [~ o7 /fux
—Z / p(ls /fux duds

=k+1 L i
> w(ﬁ&)p(owmm)—@ / flua(u).a <>>du)ds
K m 1 1
(- +i_§k;1bi)/o 67 (S0l
p(ls)/ flu,z(u) x(u))du)ds}

<[ 007 (Spp00an) - o / F (s o), ()

k 1

_ 1
_;bi/&¢1p(s /fum duds
>/ arl(ﬁp(owmm)—— / o) () ) s

i=k+1

—g:lciqﬁ_l( / flu,z(u du ds
(1~ ébi) / s (%p(owma

_ ]% /08 f(u,a:(u),f(u))d“)ds}
1

21 Z Lhi k+1
x (B~ +Z /(b (—ds—i—Zb/i (s g

=k+1
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L k Ws
+;0¢¢ ! ( ;h)/ p(s))ds}
¢_1(W)
-0 b JrZ:nk—H

<[so +zb/¢ s 3 [y

1=k+1
s
T - b)/ o (- ds} = e,.
; Z; 0 (P(S))
This completes the proof of (E3) in Theorem
Step 4. Prove that 0 ¢ R((51,%;a1,a4) and that ¥(Tz) < ap for all z in
R(B1,v;a1,a4) with 1(x) = ay; It is easy to see that 0 & R(B1,v;a1,a4). For
y € R(B1,;a1,a4) with ¥(z) = aq, one has that

Y(y) = tlen[%y(t) =a1, [y = e ly'(t)] < aa.

Hence
0<y(t)<a, tel0,1; —c<y'(t)<c tel0,1].
Then (A8) implies f(¢,y(t),v'(t)) < E, t € [0,1]. So
Y(Ty) = max (Ty)(t) = (T'y)(0)
tel0,1]
- 1
1- Ef:l bi+ > iy bi

<[ =07 (p0etdn - 5 | ). () )
k 1 s
_ Zbi / ¢! (ﬁp(O)(b(Am) - 1%/0 (s x(w), o' (w))du ) ds
_ Z / l(p% H(Ay) — %s) /08 f(u,x(u),x'(u))du)ds

1=k+1

1
—;W (@p( )&( u))du)ds
- (1 - éb1> /01 ¢! (%P(OW(AH - I% /08 f(u,x(u),m’(u))du)ds}
1 _ E E
- L= b+ > iy bi {5(;5 l(m * p(1)

b ' |/ E Es m & |/ E Es
+Zb/§ ¢ (Mp(s) +m)ds+ > bi/o ) <up(s) Jr@)ds

i=k+1

m ) k 1 s
+Z - <up (&) p?ézﬂd”(l_zbi)/o ¢_1(Mi) +2%>ds}
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_ ¢~ (E) 1+u 1+,us i
1—Zf1b‘+z7‘ik+1b[ﬂ¢ ( +Z /

L F e

1=k-+1

coxn) [ (e <a.

This completes the proof of (E4) in Theorem
Then Theorem implies that T has at least three fixed points x1, x2 and 3
such that

B(xz1) < e, alwe) >ea, [(x3) >e1, alxz)<es.

Hence ([1.7]) has three decreasing positive solutions x1,xs and x3 as needed in the
statement of the theorem; therefore, the proof is complete. O

3. EXAMPLES

Now, we present an example that illustrates our main results, and that can not
be solved by results in [3], 9] 10} [15] [16].

Example 3.1. Consider the boundary-value problem

2 (t) + f(t,z(t),2'(#)) =0, te(0,1),

fm>=—§fuw®+1w%um, (3.1)
P(1) 4+ 20'(1) = Jo(1/4) — Ja(1/2) — 2a'(1/4) — 7a'(1/2)

where f(t,u,v) = fo(u) + % and

LU € 1[0,4],

& 8 cfhl
564000— =5

564000 [1004 4004}

564000 u € [4004, 2000004],

5640002000004 u > 2000004.

Corresponding to (L.7), one sees that ¢~ '(z) = z, & = 1/4,& = 1/2, a1 =
1/4,a0 = 1/2, by = 1/4,bo = 1/4, ¢ = 1/2,c0 = 1/4. Tt is easy to see that
(A1)-(A4) hold. Choose constants k = 3, e; = 2,e2 = 100 and ¢ = 20000. One
obtains

1 PO b€+ T (- 6) + S e 51

1- Z¢=1 bi 4+ it gy bi 4

1
)

M:
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st (G e [ o (e

4 & _1(1+pus i1+ pg
+i:zk;1bz ) ¢ <up(8)>d8+;cl¢ <up(§i))d8

k 1 .
+ (1—2@)/0 ¢_1(1;;(Z) )ds
k 1
=567 ) + 28 / (s

p(s)
+Z§k;1b/ o1 p(is ds-i—ch(ﬁ
2 1 s

+(1—;bi)/0 67 (i)

c(l - Zle bi + 30k bi) )7 pp(L)g(c) %

Ly T+p
€2 (1 - Zf:l bi + Z?ikJrl bi)
( Ly );
€1 (1 - Zf:l bi + Z;ikﬂ bi)
( Ll )
It is easy to see that If Mc > ey > % >e; >0 and

E=¢

flt,u,v) <Q forallte[0,1],u € [0, Mc],v € [—20000, 20000];
Flt,u,0) > W for all £ € [0,1/2],u € [100,200],v € [—20000, 20000];
flt,u,v) < E forallte[0,1],u € [0,2],v € [—20000, 20000];

Then (A6), (A7) and (AS8) hold. Theorem implies that (3.1)) has at least three
positive solutions such that

1171(0) < 2, J’Jg(k) > 100, $3(0) > 2, Ig(k) < 100.
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