Electronic Journal of Differential Equations, Vol. 2010(2010), No. 23, pp. 1–10. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

OSCILLATION OF SOLUTIONS FOR ODD-ORDER NEUTRAL FUNCTIONAL DIFFERENTIAL EQUATIONS

TUNCAY CANDAN

 $\mbox{Abstract.}$ In this article, we establish oscillation criteria for all solutions to the neutral differential equations

$$[x(t) \pm ax(t \pm h) \pm bx(t \pm g)]^{(n)} = p \int_{c}^{d} x(t-\xi)d\xi + q \int_{c}^{d} x(t+\xi)d\xi,$$

where n is odd, h, g, a and b are nonnegative constants. We consider 10 of the 16 possible combinations of \pm signs, and give some examples to illustrate our results.

1. INTRODUCTION

In this article, we study the oscillatory behavior of solutions to to n-order mixed neutral functional differential equations with distributed deviating arguments

$$[x(t) \pm ax(t \pm h) \pm bx(t \pm g)]^{(n)} = p \int_{c}^{d} x(t-\xi)d\xi + q \int_{c}^{d} x(t+\xi)d\xi, \qquad (1.1)$$

where n is odd, h, g, a and b are nonnegative constants, p and q are positive constants, and 0 < c < d. We consider 10 of the 16 possible combinations of \pm signs. The equations

$$\frac{d^2}{dt^2}(x(t)\pm x[t-\tau]\pm x[t+\sigma]) + qx[t-\alpha] + px[t+\beta] = 0$$

are encountered in the study of vibrating masses attached to an elastic bar [8], and were studied by Grace and Lalli [4]. Later Grace extended their results to *n*-order equations with *n* odd in [5], and with *n* even in [6]. Moreover, Grace [7] remarked that the results for the *n*-order equations

$$\frac{d^n}{dt^n}(x(t) + cx[t-h] + Cx[t+H]) + qx[t-g] + Qx[t+G] = 0$$

²⁰⁰⁰ Mathematics Subject Classification. 34K11, 34K40.

Key words and phrases. Neutral differential equations; oscillation of solutions; distributed deviating arguments.

^{©2010} Texas State University - San Marcos.

C 2010 Texas State Oniversity - San Marcos.

Submitted December 9, 2009. Published February 4, 2010.

are extendable to the equations

$$\left(x(t) + \sum_{i=1}^{n_1} c_i x(t-h_i) + \sum_{j=1}^{n_2} C_j x(t+H_j)\right)^{(n)} \\ \pm \left(\sum_{k=1}^{n_3} q_k x(t-g_k) + \sum_{m=1}^{n_4} Q_m x(t+G_m)\right) = 0.$$

In recent years, Candan [2], and Candan and Dahiya [3] obtained some results for distributed delays, which motivate us to study (1.1). For books related to this topic, we refer the reader to [1, 8, 10].

A function x is said to be a solution of (1.1) if $x(t) \pm ax(t \pm h) \pm bx(t \pm g)$ is n times continuous differentiable and x(t) satisfies (1.1) for $t \ge t_0$.

A nontrivial solution of (1.1), for all large t, is called oscillatory if it has no largest zero. Otherwise, a solution is called non-oscillatory.

The purpose of this paper is to provide sufficient conditions, only on the coefficients and on limits of the integrals, to guarantee that (1.1) is oscillatory.

2. Main Results

The following lemmas will be used in our proofs.

Lemma 2.1 ([11]). Suppose that a and h are positive constants and $a^{1/n}(\frac{h}{n})e > 1$. Then

(i) the inequality

$$x^{(n)}(t) - ax(t+h) \ge 0$$

has no eventually positive solutions when n is odd;

(ii) the inequality

$$x^{(n)}(t) + ax(t-h) \le 0$$

has no eventually positive solutions when n is odd.

Lemma 2.2 ([9]). Let x(t) be a function such that it and each of its derivative up to order (n-1) inclusive are absolutely continuous and of constant sign in an interval (t_0, ∞) . If $x^{(n)}(t)$ is of constant sign and not identically zero on any interval of the form $[t_1, \infty)$ for some $t_1 \ge t_0$, then there exist a $t_x \ge t_0$ and an integer m, $0 \le m \le n$ with n+m even for $x^{(n)}(t) \ge 0$, or n+m odd for $x^{(n)}(t) \le 0$, and such that for every $t \ge t_x$,

$$m > 0$$
 implies $x^{(k)}(t) > 0$, $k = 0, 1, \dots, m - 1$

and

$$m \le n-1$$
 implies $(-1)^{m+k} x^{(k)}(t) > 0, \quad k = m, m+1, \dots, n-1.$

Theorem 2.3. Suppose that b > 0, either

$$\left(\frac{p(d-c)}{b}\right)^{1/n} \left(\frac{g+c}{n}\right) e > 1, \tag{2.1}$$

or

$$\left(\frac{(p+q)(d-c)}{b}\right)^{1/n} \left(\frac{g-d}{n}\right) e > 1, \quad g > d, \tag{2.2}$$

and

$$\left(\frac{q(d-c)}{1+a}\right)^{1/n} \left(\frac{c}{n}\right) e > 1.$$
 (2.3)

Then

$$[x(t) + ax(t-h) - bx(t+g)]^{(n)} = p \int_{c}^{d} x(t-\xi)d\xi + q \int_{c}^{d} x(t+\xi)d\xi, \qquad (2.4)$$

is oscillatory.

Proof. Let x(t) be a non-oscillatory solution of (2.4). We may assume that x(t) is eventually positive; that is, there exists a $t_0 \ge 0$ such that x(t) > 0 for $t \ge t_0$. If x(t) is an eventually negative solution, the proof follows the same arguments. Let

$$z(t) = x(t) + ax(t-h) - bx(t+g), \quad t \ge t_0 + h.$$

From (2.4), we have

$$z^{(n)}(t) = p \int_{c}^{d} x(t-\xi)d\xi + q \int_{c}^{d} x(t+\xi)d\xi$$
(2.5)

for $t \ge t_1 \ge t_0 + h$, which implies that $z^{(n)}(t) > 0$. Then $z^{(i)}(t)$, i = 0, 1, ..., n are of constant sign on $[t_1, \infty)$. We have two possible cases to consider: z(t) < 0 for $t \ge t_1$, and z(t) > 0 for $t \ge t_1$.

Case 1: z(t) < 0 for $t \ge t_1$. Let v(t) = -z(t). Then from (2.5), we obtain

$$v^{(n)}(t) + p \int_{c}^{d} x(t-\xi)d\xi + q \int_{c}^{d} x(t+\xi)d\xi = 0.$$
 (2.6)

On the other hand, since

$$0 < v(t) = -z(t) = -x(t) - ax(t-h) + bx(t+g) \le bx(t+g) \quad \text{for } t \ge t_1,$$

there is a $t_2 \ge t_1$ such that

$$x(t) \ge \frac{v(t-g)}{b} \quad \text{for } t \ge t_2.$$
(2.7)

In view of (2.7) it follows from (2.6) that

$$v^{(n)}(t) + \frac{p}{b} \int_{c}^{d} v(t - g - \xi) d\xi + \frac{q}{b} \int_{c}^{d} v(t - g + \xi) d\xi \le 0 \quad \text{for } t \ge t_{3} > t_{2}.$$
 (2.8)

It is clear that from either (2.6) or (2.8), $v^{(n)}(t) < 0$ for $t \ge t_3$. Therefore, by Lemma 2.2 $v^{(n-1)}(t) > 0$ for $t \ge t_3$. Now, we want to show that v'(t) < 0 for $t \ge t_3$. Suppose on the contrary v'(t) > 0 for $t \ge t_3$, then there exists a constant k > 0 and $t_4 \ge t_3$ such that

$$v(t-g-\xi) \ge k, \qquad v(t-g+\xi) \ge k$$

for $t \ge t_4$ and $\xi \in [c, d]$. Thus,

$$v^{(n)}(t) \le -\frac{k(p+q)(d-c)}{b} \quad \text{for } t \ge t_4$$

and

$$v^{(n-1)}(t) \le v^{(n-1)}(t_4) - \frac{k(p+q)(d-c)(t-t_4)}{b} \to -\infty \text{ as } t \to \infty$$

which is a contradiction. Thus, v'(t) < 0 and therefore $(-1)^i v^{(i)}(t) > 0$ for $t \ge t_4$ and $i = 0, 1, \ldots, n$. Then from (2.8), we have

$$v^{(n)}(t) + \frac{p(d-c)}{b}v(t - (g+c)) \le 0,$$
(2.9)

and

4

$$v^{(n)}(t) + \frac{(p+q)(d-c)}{b}v(t-(g-d)) \le 0, \quad t \ge t_4.$$
(2.10)

Thus, from Lemma 2.1 (ii) and condition (2.1), (2.9) has no eventually positive solutions or from Lemma 2.1 (ii) and condition (2.2), (2.10) has no eventually positive solutions, which is a contradiction.

Case 2: z(t) > 0 for $t \ge t_1$. Let

$$w(t) = z(t) + az(t-h) - bz(t+g), \quad t \ge t_1 + h.$$

Thus, one can show that

$$w^{(n)}(t) = p \int_{c}^{d} z(t-\xi)d\xi + q \int_{c}^{d} z(t+\xi)d\xi, \qquad (2.11)$$

then

$$[w(t) + aw(t-h) - bw(t+g)]^{(n)} = p \int_{c}^{d} w(t-\xi)d\xi + q \int_{c}^{d} w(t+\xi)d\xi. \quad (2.12)$$

Since n is odd, by Lemma 2.2 z'(t) > 0 for $t \ge t_2^* \ge t_1 + h$. From equation (2.11), $w^{(n)}(t) > 0$ and $w^{(n+1)}(t) > 0$ for $t \ge t_3^* \ge t_2^*$. Therefore, $w^{(i)}(t) > 0$ for $i = 0, 1 \dots, n+1$ and $t \ge t_3^*$. Using this results and (2.12) we obtain

$$(1+a)w^{(n)}(t) \ge p \int_{c}^{d} w(t-\xi)d\xi + q \int_{c}^{d} w(t+\xi)d\xi \ge q \int_{c}^{d} w(t+\xi)d\xi$$

and then

$$w^{(n)}(t) \ge \frac{q(d-c)}{1+a}w(t+c), \quad t \ge t_3^*.$$

This last equation does not have a positive solution by Lemma 2.1 (i) and condition (2.3). Therefore, it is a contradiction, and the proof is complete. \Box

Example 2.4. Consider the neutral differential equation

$$[x(t) + x(t - \pi) - x(t + \frac{9\pi}{2})]''' = \frac{1}{2} \int_{\pi/2}^{3\pi} x(t - \xi) d\xi + \frac{1}{2} \int_{\pi/2}^{3\pi} x(t + \xi) d\xi,$$

so that n = 3, a = b = 1, $c = \frac{\pi}{2}$, $d = 3\pi$, $p = q = \frac{1}{2}$, $h = \pi$, $g = \frac{9\pi}{2}$. One can verify that the conditions of Theorem 2.3 are satisfied. We shall note that $x(t) = \cos t$ is a solution of this problem.

Theorem 2.5. Suppose c > h, c > g, a > 0,

$$\left(\frac{p(d-c)}{a}\right)^{1/n} \left(\frac{c-h}{n}\right) e > 1, \qquad (2.13)$$

$$\left(\frac{q(d-c)}{1+b}\right)^{1/n} \left(\frac{c-g}{n}\right) e > 1.$$
(2.14)

Then

$$[x(t) - ax(t-h) + bx(t+g)]^{(n)} = p \int_{c}^{d} x(t-\xi)d\xi + q \int_{c}^{d} x(t+\xi)d\xi, \quad (2.15)$$

is oscillatory.

Proof. Let x(t) be a non-oscillatory solution of (2.15). Without loss of generality we may assume that x(t) is eventually positive; that is, there exists a $t_0 \ge 0$ such that x(t) > 0 for $t \ge t_0$. If x(t) is eventually negative solution, the proof follows the same arguments. Let

$$z(t) = x(t) - ax(t-h) + bx(t+g), \quad t \ge t_0 + h.$$

As in the proof of the Theorem 2.3 the function $z^{(i)}(t)$ are of constant sign for $t \ge t_1 \ge t_0 + h$ and i = 0, 1, ..., n, hence we have two possible cases to consider for z(t): z(t) < 0 for $t \ge t_1$, and z(t) > 0 for $t \ge t_1$.

Case 1: z(t) < 0 for $t \ge t_1$. Let v(t) = -z(t). Then we obtain

$$v^{(n)}(t) + p \int_{c}^{d} x(t-\xi)d\xi + q \int_{c}^{d} x(t+\xi)d\xi = 0.$$
 (2.16)

On the other hand, since

$$0 < v(t) = -z(t) = -x(t) + ax(t-h) - bx(t+g) \le ax(t-h) \quad \text{for } t \ge t_1,$$

there is a $t_2 \ge t_1$ such that

$$x(t) \ge \frac{v(t+h)}{a} \quad \text{for } t \ge t_2.$$

$$(2.17)$$

In view of (2.17) it follows from (2.16) that

$$v^{(n)}(t) + \frac{p}{a} \int_{c}^{d} v(t+h-\xi)d\xi + \frac{q}{a} \int_{c}^{d} v(t+h+\xi)d\xi \le 0 \quad \text{for } t \ge t_{3} \ge t_{2}.$$
(2.18)

As in the proof of the Theorem 2.3 (case 1) we show that $(-1)^i v^{(i)}(t) > 0$ for $t \ge t_4 \ge t_3$ and i = 0, 1, ..., n, and using this in (2.18) we see that

$$v^{(n)}(t) + \frac{p(d-c)}{a}v(t-(c-h)) \le 0 \quad \text{for } t \ge t_4.$$
(2.19)

Thus, from Lemma 2.1 (ii) and condition (2.13), (2.19) has no eventually positive solutions, which is a contradiction.

Case 2: z(t) > 0 for $t \ge t_1$. Let

$$w(t) = z(t) - az(t-h) + bz(t+g).$$

Then one sees that

$$w^{(n)}(t) = p \int_{c}^{d} z(t-\xi)d\xi + q \int_{c}^{d} z(t+\xi)d\xi,$$
$$[w(t) - aw(t-h) + bw(t+g)]^{(n)} = p \int_{c}^{d} w(t-\xi)d\xi + q \int_{c}^{d} w(t+\xi)d\xi$$

As in the proof of the Theorem 2.3 (case 2), we have $w^{(i)}(t) > 0$ for $t \ge t_2^* \ge t_1$ and $i = 0, 1, \ldots, n+1$. Then, we obtain

$$(1+b)w^{(n)}(t+g) \ge p \int_{c}^{d} w(t-\xi)d\xi + q \int_{c}^{d} w(t+\xi)d\xi \ge q \int_{c}^{d} w(t+\xi)d\xi.$$

Since w'(t) > 0 for $t \ge t_2^*$,

$$w^{(n)}(t) \ge \frac{q(d-c)}{1+b}w(t+(c-g)).$$

The above equation does not have a positive solution by Lemma 2.1 (i) and condition (2.14). Thus, the proof is complete. \Box

Example 2.6. Consider the neutral differential equation

$$[x(t) - x(t - \pi) + 2x(t + \pi)]^{(5)} = \int_{2\pi}^{4\pi} x(t - \xi)d\xi + \frac{1}{2}\int_{2\pi}^{4\pi} x(t + \xi)d\xi,$$

so that n = 5, a = 1, b = 2, $c = 2\pi$, $d = 4\pi$, p = 1, $q = \frac{1}{2}$, $g = h = \pi$. One can check that the conditions of Theorem 2.5 are satisfied. By direct substitution it is easy to see that $x(t) = t \cos t$ is a solution of this problem.

Example 2.7. Consider the neutral differential equation

$$[x(t) - x(t - \pi) + 2x(t + \pi)]^{(9)} = \frac{3}{4} \int_{6\pi}^{8\pi} x(t - \xi) d\xi + \frac{3}{4} \int_{6\pi}^{8\pi} x(t + \xi) d\xi.$$

We see that n = 9, a = 1, b = 2, $c = 6\pi$, $d = 8\pi$, $p = q = \frac{3}{4}$, $g = h = \pi$. One can verify that the conditions of Theorem 2.5 are satisfied. It is easy to show that $x(t) = t \sin t$ is a solution of this problem.

Since the proofs of the following two theorems are similar to that of Theorems 2.3 and 2.5, they are omitted.

Theorem 2.8. Suppose that c > g, b > 0, (2.3) holds, and

$$\left(\frac{p(d-c)}{b}\right)^{1/n} \left(\frac{c-g}{n}\right) e > 1.$$

Then

$$[x(t) + ax(t-h) - bx(t-g)]^{(n)} = p \int_{c}^{d} x(t-\xi)d\xi + q \int_{c}^{d} x(t+\xi)d\xi,$$

is oscillatory.

Theorem 2.9. Suppose that c > h, b > 0, (2.1) or (2.2) hold, and

$$\Big(\frac{q(d-c)}{1+a}\Big)^{1/n}\Big(\frac{c-h}{n}\Big)e>1\,.$$

Then

$$[x(t) + ax(t+h) - bx(t+g)]^{(n)} = p \int_{c}^{d} x(t-\xi)d\xi + q \int_{c}^{d} x(t+\xi)d\xi,$$

is oscillatory.

Theorem 2.10. Suppose c > g, and

$$\left(\frac{q(d-c)}{1+a+b}\right)^{1/n} \left(\frac{c-g}{n}\right) e > 1.$$

$$(2.20)$$

Then

$$[x(t) + ax(t-h) + bx(t+g)]^{(n)} = p \int_{c}^{d} x(t-\xi)d\xi + q \int_{c}^{d} x(t+\xi)d\xi, \quad (2.21)$$

is oscillatory.

Proof. Suppose there exist a nonoscillatory solution x(t) of (2.21). Without loss of generality we may say that x(t) > 0 for $t \ge t_0$. Let

$$z(t) = x(t) + ax(t-h) + bx(t+g), \quad t \ge t_0 + h.$$

Clearly z(t) > 0 for $t \ge t_0 + h$. Thus, using (2.21), we get

$$z^{(n)}(t) = p \int_{c}^{d} x(t-\xi)d\xi + q \int_{c}^{d} x(t+\xi)d\xi$$

for $t \ge t_1$ for some $t_1 \ge t_0 + h$. Therefore, we conclude that $z^{(i)}(t)$, i = 0, 1, ..., n are of constant sign, by Lemma 2.2 z(t) > 0 and z'(t) > 0 on $[t_1, \infty)$. Let

$$w(t) = z(t) + az(t-h) + bz(t+g),$$

then we show that

$$w^{(n)}(t) = p \int_{c}^{d} z(t-\xi)d\xi + q \int_{c}^{d} z(t+\xi)d\xi$$
 (2.22)

and then

$$[w(t) + aw(t-h) + bw(t+g)]^{(n)} = p \int_{c}^{d} w(t-\xi)d\xi + q \int_{c}^{d} w(t+\xi)d\xi. \quad (2.23)$$

Since z(t) > 0 and z'(t) > 0 are eventually increasing, from (2.22) we see that $w^{(n)}(t) > 0$ and $w^{(n+1)}(t) > 0$ for $t \ge t_2 \ge t_1$. As a result of this $w^{(i)}(t) > 0$ for $i = 0, 1, \ldots, n+1$ and $t \ge t_2$. Thus from (2.23), we have

$$(1+a+b)w^{(n)}(t+g) \ge q \int_{c}^{d} w(t+\xi)d\xi,$$

and then using the eventually increasing nature of w(t), we obtain

$$w^{(n)}(t+g) \ge \frac{q(d-c)}{1+a+b}w(t+c)$$

or

$$w^{(n)}(t) \ge \frac{q(d-c)}{1+a+b}w(t+(c-g)), \quad t \ge t_3 \ge t_2.$$
(2.24)

In view of Lemma 2.1(i) and (2.20), the inequality (2.24) has no eventually positive solutions, which leads to a contradiction. Thus, the proof is complete. \Box

Example 2.11. Consider the neutral differential equation

$$[x(t) + x(t-\pi) + x(t+\frac{3\pi}{2})]''' = \frac{1}{4} \int_{5\pi/2}^{7\pi/2} x(t-\xi)d\xi + \frac{1}{4} \int_{5\pi/2}^{7\pi/2} x(t+\xi)d\xi,$$

so that n = 3, a = b = 1, $c = \frac{5\pi}{2}$, $d = \frac{7\pi}{2}$, $p = q = \frac{1}{4}$, $h = \pi$, $g = \frac{3\pi}{2}$. One can see that the conditions of Theorem 2.10 are satisfied. In fact $x(t) = \sin t + \cos t$ is an oscillatory solution of this problem.

The proofs of the following two theorems are similar to that of Theorem 2.10 and therefore omitted.

Theorem 2.12. Suppose that c > g > h, and (2.20) holds. Then the equation

$$[x(t) + ax(t+h) + bx(t+g)]^{(n)} = p \int_{c}^{d} x(t-\xi)d\xi + q \int_{c}^{d} x(t+\xi)d\xi,$$

is oscillatory.

 $\mathrm{EJDE}\text{-}2010/23$

Theorem 2.13. Suppose that

$$\left(\frac{q(d-c)}{1+a+b}\right)^{1/n} \left(\frac{c}{n}\right)e > 1.$$

Then

$$[x(t) + ax(t-h) + bx(t-g)]^{(n)} = p \int_{c}^{d} x(t-\xi)d\xi + q \int_{c}^{d} x(t+\xi)d\xi,$$

is oscillatory.

Theorem 2.14. Suppose a > 0, c > h,

$$\left(\frac{p(d-c)}{a+b}\right)^{1/n} \left(\frac{c-h}{n}\right) e > 1,$$
(2.25)

$$(q(d-c))^{1/n} (\frac{c}{n}) e > 1.$$
 (2.26)

Then

$$[x(t) - ax(t-h) - bx(t+g)]^{(n)} = p \int_{c}^{d} x(t-\xi)d\xi + q \int_{c}^{d} x(t+\xi)d\xi, \quad (2.27)$$

is oscillatory.

Proof. Suppose that x(t) is a non-oscillatory solution of (2.27). We may assume that x(t) is eventually positive, say x(t) > 0 for $t \ge t_0$. Let

$$z(t) = x(t) - ax(t-h) - bx(t+g), \quad t \ge t_0 + h.$$
(2.28)

From (2.27), we have

$$z^{(n)}(t) = p \int_{c}^{d} x(t-\xi)d\xi + q \int_{c}^{d} x(t+\xi)d\xi$$
 (2.29)

for $t \ge t_1$ for some $t_1 \ge t_0 + h$, implies that $z^{(i)}(t)$, i = 0, 1, ..., n are of constant sign on $[t_1, \infty)$. We have two cases: z(t) > 0 for $t \ge t_1$, and z(t) < 0 for $t \ge t_1$.

Case 1: z(t) > 0 for $t \ge t_1$. From (2.28),

$$x(t) \ge z(t). \tag{2.30}$$

In view of (2.29) and (2.30), we have

$$z^{(n)}(t) \ge q \int_c^d z(t+\xi)d\xi \quad \text{for } t \ge t_1.$$

As in the proof of Theorem 2.3, z'(t) is eventually positive. Thus

$$z^{(n)}(t) \ge q(d-c)z(t+c),$$

which contradicts to Lemma 2.1 (i) and condition (2.26).

Case 2: z(t) < 0 for $t \ge t_1$. Let

$$0 < v(t) = -z(t) = -x(t) + ax(t-h) + bx(t+g),$$

then

$$v^{(n)}(t) + p \int_{c}^{d} x(t-\xi)d\xi + q \int_{c}^{d} x(t+\xi)d\xi = 0.$$

 Set

$$w(t) = -v(t) + av(t - h) + bv(t + g).$$

Then

$$w^{(n)}(t) + p \int_{c}^{d} v(t-\xi)d\xi + q \int_{c}^{d} v(t+\xi)d\xi = 0$$
(2.31)

and since the function satisfies (2.27), we obtain

$$[-w(t) + aw(t-h) + bw(t+g)]^{(n)} + p \int_{c}^{d} w(t-\xi)d\xi + q \int_{c}^{d} w(t+\xi)d\xi = 0.$$

If w(t) < 0 for $t \ge t_1$, we can handle as in case 1. Now suppose w(t) > 0 for $t \ge t_1$. On the other hand, v'(t) < 0 for $t \ge t_2 \ge t_1$, otherwise from (2.31) we see that $w^{(n)}(t) < 0$ and $w^{(n+1)}(t) < 0$ for $t \ge t_2$ which is a contradiction. As a result of this,

$$(-1)^{i}w^{(i)}(t) > 0$$
 for $i = 0, 1, \dots, n+1$ and $t \ge t_2$,

and then

$$(a+b)w^{(n)}(t-h) + p \int_{c}^{d} w(t-\xi)d\xi \le 0,$$

$$w^{(n)}(t) + \frac{p(d-c)}{a+b}w(t-(c-h)) \le 0,$$

which leads to a contradiction by condition (2.25) and Lemma 2.1 (ii). This completes the proof. $\hfill \Box$

Example 2.15. Consider the equation

$$[x(t) - \frac{3}{2}x(t - \frac{3\pi}{2}) - \frac{4}{3}x(t + 2\pi)]'' = \frac{7}{12}\int_{2\pi}^{7\pi/2} x(t - \xi)d\xi + \frac{11}{12}\int_{2\pi}^{7\pi/2} x(t + \xi)d\xi.$$

We see that n = 3, $a = \frac{3}{2}$, $b = \frac{4}{3}$, $c = 2\pi$, $d = \frac{7\pi}{2}$, $p = \frac{7}{12}$, $q = \frac{11}{12}$, $h = \frac{3\pi}{2}$, $g = 2\pi$. Clearly the conditions of Theorem 2.14 are satisfied. In fact, $x(t) = \sin t$ is a solution of this problem.

The proofs of the following two theorems are similar to that of Theorem 2.14, hence the proofs are omitted.

Theorem 2.16. Suppose a > 0, h > g, and (2.25) and (2.26) hold. Then

$$[x(t) - ax(t-h) - bx(t-g)]^{(n)} = p \int_{c}^{d} x(t-\xi)d\xi + q \int_{c}^{d} x(t+\xi)d\xi,$$

is oscillatory.

Theorem 2.17. Suppose b > 0, h > g, $\lambda = \mu = -1$, $\alpha = \beta = 1$. In addition, if (2.26) and

$$\Big(\frac{p(d-c)}{a+b}\Big)^{1/n}\Big(\frac{c+g}{n}\Big)e > 1,$$

Then

$$[x(t) - ax(t+h) - bx(t+g)]^{(n)} = p \int_{c}^{d} x(t-\xi)d\xi + q \int_{c}^{d} x(t+\xi)d\xi,$$

is oscillatory.

References

- D. D. Bainov and D. P. Mishev; Oscillation Theory for Neutral Differential Equations with Delay, Adam Hilger, Bristol, 1991.
- [2] T. Candan; Oscillation behavior of solutions for even order neutral functional differential equations, Appl. Math. Mech. Engl., 27 (10) (2006), 1311-1320.
- [3] T. Candan and R. S. Dahiya; On the oscillation of certain mixed neutral equations, Appl. Math. Lett., 21 (3) (2008), 222-226.
- [4] S. R Grace and B. S. Lalli; Oscillation theorems for second order neutral functional differential equations, Appl. Math. Comput., 51 (1992), 119-133.
- S. R Grace; Oscillation criteria for nth-order neutral functional differential equations, J. Math. Anal. Appl., 184 (1994), 44-55.
- [6] S. R Grace; On the oscillations of mixed neutral equations, J. Math. Anal. Appl., 194 (1995), 377-388.
- [7] S. R Grace; Oscillation of mixed neutral functional differential equations, Appl. Math. Comput., 68 (1) (1995), 1-13.
- [8] J. Hale; Theory of Functional Differential Equations, Springer-Verlag, New York, 1977.
- [9] I. T. Kiguradze; On the oscillation of solutions of the equation $d^m u/dt^m + a(t)|u|^m signu = 0$, Mat. Sb., **65** (1964), 172-187.
- [10] G. S. Ladde, V. Lakshmikantham and B. G. Zhang; Oscillation Theory of Differential Equations with Deviating Arguments, Marcel Dekker, Inc., New York, 1987.
- [11] G. Ladas and I. P. Stavroulakis; On delay differential inequalities of higher order, Cannad. Math. Bull., 25 (1982), 348-354.

Tuncay Candan

DEPARTMENT OF MATHEMATICS, FACULTY OF ART AND SCIENCE, NIĞDE UNIVERSITY, NIĞDE, 51200, TURKEY

E-mail address: tcandan@nigde.edu.tr