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OSCILLATION OF SOLUTIONS FOR ODD-ORDER NEUTRAL
FUNCTIONAL DIFFERENTIAL EQUATIONS

TUNCAY CANDAN

ABSTRACT. In this article, we establish oscillation criteria for all solutions to
the neutral differential equations

d d
[2(t) £ az(t + h) + ba(t + ¢)]™ = p/ ot — £)de + q/ ot + €)de,

where n is odd, h, g, a and b are nonnegative constants. We consider 10 of the
16 possible combinations of + signs, and give some examples to illustrate our
results.

1. INTRODUCTION

In this article, we study the oscillatory behavior of solutions to to n-order mixed
neutral functional differential equations with distributed deviating arguments

d d
[£(t) + ax(t £ h) £ bx(t £ g)]™ = p/ x(t — €)de + q/ x(t+&)de, (1.1
where n is odd, h, g, a and b are nonnegative constants, p and ¢ are positive
constants, and 0 < ¢ < d. We consider 10 of the 16 possible combinations of +
signs. The equations

d2

W(m(t) taft—7]tzft+o])+qrft —a]+px[t+ 6] =0

are encountered in the study of vibrating masses attached to an elastic bar [8], and
were studied by Grace and Lalli [4]. Later Grace extended their results to n-order
equations with n odd in [B], and with n even in [6]. Moreover, Grace [7] remarked
that the results for the n-order equations

d’n

dt—n(x(t) +cxlt — h] + Cx[t + H]) + qx[t — g] + Qz[t + G] =0
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are extendable to the equations

(l‘(t) + i civ(t —hi) + f: Cja(t+ Hy))™

j=1
+ (qum(t —gr) + Z Qmz(t+ Gm)) =0.
k=1 m=1

In recent years, Candan [2], and Candan and Dahiya [3] obtained some results
for distributed delays, which motivate us to study . For books related to this
topic, we refer the reader to [I} [8, [10].

A function x is said to be a solution of ifz(t)ax(tL£h)Lbx(t+g)isn
times continuous differentiable and x(¢) satisfies for t > to.

A nontrivial solution of 7 for all large t, is called oscillatory if it has no
largest zero. Otherwise, a solution is called non-oscillatory.

The purpose of this paper is to provide sufficient conditions, only on the coeffi-
cients and on limits of the integrals, to guarantee that is oscillatory.

2. MAIN RESULTS
The following lemmas will be used in our proofs.
Lemma 2.1 ([I1]). Suppose that a and h are positive constants and al/"(%)e > 1.
Then
(i) the inequality
™) —az(t+h) >0
has no eventually positive solutions when n is odd;
(ii) the inequality
2™ (t) 4+ ax(t —h) <0
has no eventually positive solutions when n is odd.
Lemma 2.2 ([9]). Let z(t) be a function such that it and each of its derivative up to
order (n—1) inclusive are absolutely continuous and of constant sign in an interval
(to,00). If ™ (t) is of constant sign and not identically zero on any interval of
the form [t1,00) for some t1 > to, then there exist a t, > tg and an integer m,
0 < m < n with n+m even for =™ (t) >0, orn+m odd for x(”)(t) <0, and such
that for every t > t,,
m >0 implies x(k)(t) >0, k=0,1,...,m—1
and

m<n—1 implies (—1)"*z®@) >0, k=m,m+1,...

Theorem 2.3. Suppose that b > 0, either

(-0 (£25)e o

((p+Q)b(d—C)>1/"<9;d)e>1) g>d, (2.2)

or

and

(%)W(%)e > 1. (2.3)
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Then

d d
[£(t) + az(t — h) — bx(t + ¢)]™) = p/ x(t —&)dE + q/ x(t + £)d¢, (2.4)
is oscillatory.

Proof. Let x(t) be a non-oscillatory solution of (2.4). We may assume that x(t) is
eventually positive; that is, there exists a o > 0 such that z(t) > 0 for ¢t > . If
z(t) is an eventually negative solution, the proof follows the same arguments. Let

2(t) = (t) + ax(t —h) = ba(t +g), t=>to+h
From (2.4)), we have

d d
(1) = p / £t — €)dE +g / £t +€)de (2.5)

for t > t; > to + h, which implies that 2™ (¢) > 0. Then z()(t), i =0,1,...,n are
of constant sign on [t1,00). We have two possible cases to consider: z(t) < 0 for
t>ty,and z(t) > 0 for t > t;.

Case 1: z(t) <0 for ¢t > t;. Let v(t) = —z(t). Then from (2.5), we obtain

d d
o™ () + p/ x(t — €)dE + q/ z(t + €)d¢ = 0. (2.6)
c c
On the other hand, since
0<v(t)=—2(t)=—z(t) —azx(t—h)+bx(t+g) <bz(t+g) fort>t,
there is a ty > t; such that

2(t) > v(tb_g) for t > t,. (2.7)
In view of (2.7)) it follows from ({2.6)) that
d d
o™ (1) +§/ o(t—g —g)d5+%/ V(t—g+EAESO fort >ty >ty (2.8)

It is clear that from either (2.6) or (2.8), v(")(t) < 0 for ¢t > t3. Therefore, by
Lemma v (t) > 0 for t > t3. Now, we want to show that v/(t) < 0 for
t > t3. Suppose on the contrary v’(¢) > 0 for ¢ > t3, then there exists a constant
k > 0 and t4 > t3 such that

v(it—g-8 =k  wlt-g+& =k
for t > t4 and £ € [¢,d]. Thus,

’U(n)(t) < _k(p + Q)(d _ C)

fort >t
< b >ty

and

’U("_l)(t> < v("_l)(t4) _ k(p + q)(db_ c)(t — ta)
which is a contradiction. Thus, v'(t) < 0 and therefore (—1)*v(®)(t) > 0 for t > t4
and i =0,1,...,n. Then from (2.8]), we have

,U(n) (t) + p(dl: C)

— —00 ast — o0,

v(t—(g9+¢)) <0, (2.9)
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and
d—
U(n)(t) + (p + q)b( C)
Thus, from Lemma (74) and condition (2.1, (2.9) has no eventually positive
solutions or from Lemma (ii) and condition (2.2)), (2.10) has no eventually
positive solutions, which is a contradiction.
Case 2: z(t) >0 for t > t1. Let

v(t—(g—d) <0, t>t,. (2.10)

w(t) =z(t) +az(t —h) = bz(t+g), t>t1+h.
Thus, one can show that
d d
W) =p [ at-edsrq [ e+, (211)
then
d d
() + aw(t ~ b) ~ bult+ )™ =p [t - ds+q [ wie+ e (212)
Since n is odd, by Lemma Z'(t) > 0 for t > t5 > t; + h. From equation

@.11), w™(t) > 0 and w™t(t) > 0 for t > t5 > t5. Therefore, w(t) > 0 for
i=0,1...,n+1and ¢t > ti. Using this results and (2.12) we obtain

d d d
(1+ a)w™ (1) Zp/ w(t—f)d&—l—q/ wit + €)de > q/ w(t + €)de

and then

d—c)

) (g > 4L t >t

w\™(t) > T a w(t+ ¢), >t

This last equation does not have a positive solution by Lemma (i) and condition
(2.3). Therefore, it is a contradiction, and the proof is complete. O

Example 2.4. Consider the neutral differential equation
97 " 1 3T 1 3
[zt)+z(t—m) —xlt+—=)]" == x(t —&)dE+ = x(t + &)dE,
2 2 /2 2 /2

sothat n=3,a=b=1,c=35,d=3m,p=q= %, h:7r,g:97”. One can verify
that the conditions of Theorem are satisfied. We shall note that z(t) = cost is
a solution of this problem.

Theorem 2.5. Suppose ¢ > h, ¢c> g, a >0,

(@)W(C;h)e> 1, (2.13)
() () o

Then

d d
[2(t) — az(t — h) + bz(t + ¢)]™) = p/ x(t — €)de + q/ z(t+€)de,  (2.15)

is oscillatory.
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Proof. Let z(t) be a non-oscillatory solution of (2.15). Without loss of generality
we may assume that xz(t) is eventually positive; that is, there exists a to > 0 such
that x(t) > 0 for ¢ > to. If x(t) is eventually negative solution, the proof follows
the same arguments. Let

z(t) =x(t) —ax(t —h) +bx(t+g), t>to+h.

As in the proof of the Theorem the function z(¥(t) are of constant sign for
t>t >tog+handi=0,1,...,n, hence we have two possible cases to consider for
z(t): z(t) <0 for t > t1, and 2(t) > 0 for t > ¢;.

Case 1: z(t) <0 for t > t;. Let v(t) = —z(t). Then we obtain

d d
0™ (¢) +p/ x(t — €)de + q/ z(t + €)d¢ = 0. (2.16)
On the other hand, since
0<v(t)=—2() = —z(t) +azx(t —h) —bz(t+g) <azx(t—h) fort>t,
there is a ty > t; such that

() > v(t+h)

a
In view of (2.17)) it follows from (2.16] that

d d
v(")(t)+§/ v(t+h—§)d§+%/c Dt +h 4 E)dE <0 fort >ty >ty (2.18)

C

for ¢t > to. (2.17)

As in the proof of the Theorem [2.3| (case 1) we show that (—1)*v(®(t) > 0 for
t >ty >tz3andi=0,1,...,n, and using this in (2.18)) we see that

o™ (1) + Lda_ )

Thus, from Lemma (i) and condition (2.13), (2.19) has no eventually positive
solutions, which is a contradiction.
Case 2: z(t) >0 for t > t;. Let

w(t) =2z(t) —az(t —h)+bz(t+g).

v(t—(c—h)) <0 fort>ty. (2.19)

Then one sees that

d d
uﬁkw:p/zﬁ—fo+q/z@+£ma

d d
[w(t) — aw(t — h) + bw(t + g)]™ = p/ w(t — &)dE + q/ w(t + €)dE.

As in the proof of the Theorem (case 2), we have w)(t) > 0 for t > t5 > t;
and i =0,1,...,n+ 1. Then, we obtain

d d d
u+wﬁwm@+g>zp/‘w@—§mg+q/‘w@+fﬂ£2q/'w@+£ma
Since w'(t) > 0 for t > 3,
q(d —c)
140

The above equation does not have a positive solution by Lemma (i) and condi-
tion (2.14). Thus, the proof is complete. |

w™ (t) > w(t+ (c— g)).
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Example 2.6. Consider the neutral differential equation
4 4
5 1
[2(t) — z(t — 7)) + 2x(t + 7)]®) = / x(t — &)d¢ + 5 / x(t + &)dg,
2 27

sothatn:57a:1,b:2,c:27r,d:47r,p:1,q=%7g:h:7r. One can
check that the conditions of Theorem are satisfied. By direct substitution it is
easy to see that z(t) = tcost is a solution of this problem.

Example 2.7. Consider the neutral differential equation

8 8w
[(t) —x(t —7) + 22(t + W)](g) = g /6 x(t —&)d¢ + Z /6 x(t + &)de.

™ s

Weseethatan,azl,sz,c:Gw,d:&T,p:q:%,g:h:ﬂ. One
can verify that the conditions of Theorem are satisfied. It is easy to show that
x(t) = tsint is a solution of this problem.

Since the proofs of the following two theorems are similar to that of Theorems

and they are omitted.
Theorem 2.8. Suppose that ¢ > g, b > 0, (2.3)) holds, and

(22 (0o

d d
[ (t) + az(t — h) — ba(t — g)]™ = p / 2t — €)dE + g / £t + €)de,
is oscillatory.

Theorem 2.9. Suppose that ¢ > h, b >0, (2.1) or (2.2)) hold, and

N n e —
(q(ld—l—a)) ( nh)e>1'

Then

Then

d d
[2(t) + ax(t + h) — ba(t + ¢)]™) = p/ x(t — &)dE + q/ x(t + §)dE,
is oscillatory.

Theorem 2.10. Suppose ¢ > g, and

() (e, 20

Then

d d
[x(t) + ax(t — h) + ba(t + g)](") = p/ x(t — &)dE + q/ x(t+&)dg,  (2.21)
is oscillatory.

Proof. Suppose there exist a nonoscillatory solution x(t) of (2.21]). Without loss of
generality we may say that x(t) > 0 for t > ty. Let

z(t) = x(t) + ax(t — h) + bx(t +g), t>to+h.
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Clearly z(t) > 0 for t > tg + h. Thus, using (2.21)), we get

d d
%mu>=p/’xu—swg+q/‘xu+§Mf

for t > t; for some t; > to 4 h. Therefore, we conclude that z((¢), i = 0,1,...,n
are of constant sign, by Lemma 2.2 z(t) > 0 and 2’(t) > 0 on [t;,00). Let

w(t) = z(t) + az(t — h) + bz(t + g),
then we show that
d d
w™(t) = p/ 2(t —€)dE + q/ 2(t + €)d¢ (2.22)
and then
d d
[w(t) + aw(t — h) + bw(t + g)]™ = p/ w(t —&)dE + q/ w(t+&)de.  (2.23)
Since z(t) > 0 and 2’(t) > 0 are eventually increasing, from (2.22)) we see that

w(”)(t) > 0 and w(”+1)(t) > 0 for t >ty > t;. As a result of this w(i)(t) > 0 for
1=0,1,...,n+ 1 and t > t5. Thus from (2.23), we have

d
u+a+wwmu+m2q/qwufma

and then using the eventually increasing nature of w(t), we obtain

d—c)
(> dd=0) o
W+ ) 2 LDyt o)
or
d—c)
Wy > 192D i e g) 2ty b 2.24

W) 2 B Dt e —g), 12020 (2.24)
In view of Lemma |2.1[¢) and (2.20)), the inequality (2.24) has no eventually positive
solutions, which leads to a contradiction. Thus, the proof is complete. O

Example 2.11. Consider the neutral differential equation

3 /2 /2
[2(t) + z(t — 7) + z(t + g)]”’ = 2/5 x(t—§)d§+i/5 z(t + £)d¢,

/2 /2
sothatn:?),a:b:l,c:%’“,d:%’r,p:q:ih: 79237”. One can see
that the conditions of Theorem are satisfied. In fact 2(t) = sint 4 cost is an

oscillatory solution of this problem.

The proofs of the following two theorems are similar to that of Theorem [2.10
and therefore omitted.

Theorem 2.12. Suppose that ¢ > g > h, and (2.20)) holds. Then the equation

d d
[x(t) + ax(t + h) + bz(tJrg)}(n) :p/ x(t — &)d¢ + q/ x(t + &)dE,

is oscillatory.
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Theorem 2.13. Suppose that

(i) et

Then

d d
[2(t) + az(t — b) + ba(t — g))™ = p / 2t — €)d€ +q / ot + €)de,
is oscillatory.

Theorem 2.14. Suppose a > 0, ¢ > h,

(D) (e o
(q(d - 0))1/n(%)e > 1. (2.26)

Then

d d
[2(t) — ax(t — h) — bx(t + )] = p/ z(t — &)dE + q/ z(t+£)d,  (2.27)
is oscillatory.

Proof. Suppose that z(t) is a non-oscillatory solution of (2.27). We may assume
that x(t) is eventually positive, say x(t) > 0 for t > tg. Let

2(t) =x(t) —ax(t —h) —bx(t+g), t>tg+h. (2.28)
From , we have
d d
2 (1) = p/ o(t — E)de + q/ w(t + €)de (2.29)

for t > t; for some t; > to + h, implies that z(¥)(t), i = 0,1,...,n are of constant
sign on [t1,00). We have two cases: z(t) > 0 for ¢ > t1, and z(t) < 0 for t > 1.
Case 1: z(t) > 0 for t > t;. From (2.28)),

x(t) > 2(t). (2.30)
In view of (2.29)) and (2.30)), we have

d
2 () > q/ z(t+&)dE fort >ty.

As in the proof of Theorem Z'(t) is eventually positive. Thus
2M(t) > g(d — )z(t + ),

which contradicts to Lemma [2.1] (i) and condition (2.26]).
Case 2: z(t) <0 for t > t1. Let

0<o(t)=—2(t) = —z(t) + ax(t — h) + bx(t + g),
then 4 .,
0™ (¢) +p/ x(t — €)de + q/ z(t + €)d¢ = 0.

Set
w(t) = —v(t) +av(t —h)+bv(t+g).
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Then
d d
w<">(t)+p/ v(t—f)derq/ v(t+€)dE =0 (2.31)

and since the function satisfies (2.27)), we obtain

d d
[—w(t) + aw(t — h) + bw(t + g)]™ +p/ w(t — €)dé + q/ w(t 4 €)de = 0.

If w(t) < 0 for t > ¢, we can handle as in case 1. Now suppose w(t) > 0 for ¢ > ¢;.
On the other hand, v'(t) < 0 for ¢ > t5 > t;, otherwise from (2.31)) we see that
w™ (t) < 0 and w1V () < 0 for t > t5 which is a contradiction. As a result of
this,

(—D)'w@(#) >0 fori=0,1,...,n+1 and t>t,,

and then
d
(a + b)yw™ (t — h) +p/ w(t —&)de <0,
(&
d—
w™ (t) + p(a - bc)w(t —(c—h)) <0,
which leads to a contradiction by condition (2.25) and Lemma (¢4). This com-
pletes the proof. O

Example 2.15. Consider the equation

3 3 4 7 /2 11 /2
— _ _ 2 " - - ]
o) = 5ot = 50— gatt+ 2] = 5 [ et 35 [ ate+ o
Weseethatnfi’»afgbfg,cfQWd* Top=5L,q9q=48 h=2,

12
g = 2m. Clearly the conditions of Theorem are satlsﬁed In fact, z(t) = sint
is a solution of this problem.

The proofs of the following two theorems are similar to that of Theorem
hence the proofs are omitted.

Theorem 2.16. Suppose a > 0, h > g, and (2.25)) and (2.26) hold. Then

d d
[2(t) — ax(t — h) —ba(t — g)™ = p/ x(t — §)d§ + q/ x(t + £)dg,
is oscillatory.

Theorem 2.17. Suppose b >0, h > g, A=pu = -1, a = g = 1. In addition, if

(2.26) and

(o) (e

Then

d d
[x(t) — ax(t + h) — bx(t +g)](n) = p/ x(t — &)dE + q/ x(t + &)dE,

is oscillatory.
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