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OSCILLATION OF SOLUTIONS FOR ODD-ORDER NEUTRAL
FUNCTIONAL DIFFERENTIAL EQUATIONS

TUNCAY CANDAN

Abstract. In this article, we establish oscillation criteria for all solutions to

the neutral differential equations

[x(t)± ax(t± h)± bx(t± g)](n) = p

Z d

c
x(t− ξ)dξ + q

Z d

c
x(t + ξ)dξ,

where n is odd, h, g, a and b are nonnegative constants. We consider 10 of the

16 possible combinations of ± signs, and give some examples to illustrate our

results.

1. Introduction

In this article, we study the oscillatory behavior of solutions to to n-order mixed
neutral functional differential equations with distributed deviating arguments

[x(t)± ax(t± h)± bx(t± g)](n) = p

∫ d

c

x(t− ξ)dξ + q

∫ d

c

x(t + ξ)dξ, (1.1)

where n is odd, h, g, a and b are nonnegative constants, p and q are positive
constants, and 0 < c < d. We consider 10 of the 16 possible combinations of ±
signs. The equations

d2

dt2
(x(t)± x[t− τ ]± x[t + σ]) + qx[t− α] + px[t + β] = 0

are encountered in the study of vibrating masses attached to an elastic bar [8], and
were studied by Grace and Lalli [4]. Later Grace extended their results to n-order
equations with n odd in [5], and with n even in [6]. Moreover, Grace [7] remarked
that the results for the n-order equations

dn

dtn
(x(t) + cx[t− h] + Cx[t + H]) + qx[t− g] + Qx[t + G] = 0

2000 Mathematics Subject Classification. 34K11, 34K40.
Key words and phrases. Neutral differential equations; oscillation of solutions;

distributed deviating arguments.
c©2010 Texas State University - San Marcos.

Submitted December 9, 2009. Published February 4, 2010.

1



2 T. CANDAN EJDE-2010/23

are extendable to the equations(
x(t) +

n1∑
i=1

cix(t− hi) +
n2∑

j=1

Cjx(t + Hj)
)(n)

±
( n3∑

k=1

qkx(t− gk) +
n4∑

m=1

Qmx(t + Gm)
)

= 0.

In recent years, Candan [2], and Candan and Dahiya [3] obtained some results
for distributed delays, which motivate us to study (1.1). For books related to this
topic, we refer the reader to [1, 8, 10].

A function x is said to be a solution of (1.1) if x(t)± ax(t± h)± bx(t± g) is n
times continuous differentiable and x(t) satisfies (1.1) for t ≥ t0.

A nontrivial solution of (1.1), for all large t, is called oscillatory if it has no
largest zero. Otherwise, a solution is called non-oscillatory.

The purpose of this paper is to provide sufficient conditions, only on the coeffi-
cients and on limits of the integrals, to guarantee that (1.1) is oscillatory.

2. Main Results

The following lemmas will be used in our proofs.

Lemma 2.1 ([11]). Suppose that a and h are positive constants and a1/n
(

h
n

)
e > 1.

Then
(i) the inequality

x(n)(t)− ax(t + h) ≥ 0
has no eventually positive solutions when n is odd;

(ii) the inequality
x(n)(t) + ax(t− h) ≤ 0

has no eventually positive solutions when n is odd.

Lemma 2.2 ([9]). Let x(t) be a function such that it and each of its derivative up to
order (n−1) inclusive are absolutely continuous and of constant sign in an interval
(t0,∞). If x(n)(t) is of constant sign and not identically zero on any interval of
the form [t1,∞) for some t1 ≥ t0, then there exist a tx ≥ t0 and an integer m,
0 ≤ m ≤ n with n+m even for x(n)(t) ≥ 0, or n+m odd for x(n)(t) ≤ 0, and such
that for every t ≥ tx,

m > 0 implies x(k)(t) > 0, k = 0, 1, . . . ,m− 1

and

m ≤ n− 1 implies (−1)m+kx(k)(t) > 0, k = m,m + 1, . . . , n− 1.

Theorem 2.3. Suppose that b > 0, either(p(d− c)
b

)1/n(g + c

n

)
e > 1, (2.1)

or ( (p + q)(d− c)
b

)1/n(g − d

n

)
e > 1, g > d, (2.2)

and (q(d− c)
1 + a

)1/n( c

n

)
e > 1. (2.3)
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Then

[x(t) + ax(t− h)− bx(t + g)](n) = p

∫ d

c

x(t− ξ)dξ + q

∫ d

c

x(t + ξ)dξ, (2.4)

is oscillatory.

Proof. Let x(t) be a non-oscillatory solution of (2.4). We may assume that x(t) is
eventually positive; that is, there exists a t0 ≥ 0 such that x(t) > 0 for t ≥ t0. If
x(t) is an eventually negative solution, the proof follows the same arguments. Let

z(t) = x(t) + ax(t− h)− bx(t + g), t ≥ t0 + h.

From (2.4), we have

z(n)(t) = p

∫ d

c

x(t− ξ)dξ + q

∫ d

c

x(t + ξ)dξ (2.5)

for t ≥ t1 ≥ t0 + h, which implies that z(n)(t) > 0. Then z(i)(t), i = 0, 1, . . . , n are
of constant sign on [t1,∞). We have two possible cases to consider: z(t) < 0 for
t ≥ t1, and z(t) > 0 for t ≥ t1.

Case 1: z(t) < 0 for t ≥ t1. Let v(t) = −z(t). Then from (2.5), we obtain

v(n)(t) + p

∫ d

c

x(t− ξ)dξ + q

∫ d

c

x(t + ξ)dξ = 0. (2.6)

On the other hand, since

0 < v(t) = −z(t) = −x(t)− ax(t− h) + bx(t + g) ≤ bx(t + g) for t ≥ t1,

there is a t2 ≥ t1 such that

x(t) ≥ v(t− g)
b

for t ≥ t2. (2.7)

In view of (2.7) it follows from (2.6) that

v(n)(t) +
p

b

∫ d

c

v(t− g − ξ)dξ +
q

b

∫ d

c

v(t− g + ξ)dξ ≤ 0 for t ≥ t3 > t2. (2.8)

It is clear that from either (2.6) or (2.8), v(n)(t) < 0 for t ≥ t3. Therefore, by
Lemma 2.2 v(n−1)(t) > 0 for t ≥ t3. Now, we want to show that v′(t) < 0 for
t ≥ t3. Suppose on the contrary v′(t) > 0 for t ≥ t3, then there exists a constant
k > 0 and t4 ≥ t3 such that

v(t− g − ξ) ≥ k, v(t− g + ξ) ≥ k

for t ≥ t4 and ξ ∈ [c, d]. Thus,

v(n)(t) ≤ −k(p + q)(d− c)
b

for t ≥ t4

and

v(n−1)(t) ≤ v(n−1)(t4)−
k(p + q)(d− c)(t− t4)

b
→ −∞ as t→∞,

which is a contradiction. Thus, v′(t) < 0 and therefore (−1)iv(i)(t) > 0 for t ≥ t4
and i = 0, 1, . . . , n. Then from (2.8), we have

v(n)(t) +
p(d− c)

b
v(t− (g + c)) ≤ 0, (2.9)
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and

v(n)(t) +
(p + q)(d− c)

b
v(t− (g − d)) ≤ 0, t ≥ t4. (2.10)

Thus, from Lemma 2.1 (ii) and condition (2.1), (2.9) has no eventually positive
solutions or from Lemma 2.1 (ii) and condition (2.2), (2.10) has no eventually
positive solutions, which is a contradiction.

Case 2: z(t) > 0 for t ≥ t1. Let

w(t) = z(t) + az(t− h)− bz(t + g), t ≥ t1 + h.

Thus, one can show that

w(n)(t) = p

∫ d

c

z(t− ξ)dξ + q

∫ d

c

z(t + ξ)dξ, (2.11)

then

[w(t) + aw(t− h)− bw(t + g)](n) = p

∫ d

c

w(t− ξ)dξ + q

∫ d

c

w(t + ξ)dξ. (2.12)

Since n is odd, by Lemma 2.2 z′(t) > 0 for t ≥ t∗2 ≥ t1 + h. From equation
(2.11), w(n)(t) > 0 and w(n+1)(t) > 0 for t ≥ t∗3 ≥ t∗2. Therefore, w(i)(t) > 0 for
i = 0, 1 . . . , n + 1 and t ≥ t∗3. Using this results and (2.12) we obtain

(1 + a)w(n)(t) ≥ p

∫ d

c

w(t− ξ)dξ + q

∫ d

c

w(t + ξ)dξ ≥ q

∫ d

c

w(t + ξ)dξ

and then

w(n)(t) ≥ q(d− c)
1 + a

w(t + c), t ≥ t∗3.

This last equation does not have a positive solution by Lemma 2.1 (i) and condition
(2.3). Therefore, it is a contradiction, and the proof is complete. �

Example 2.4. Consider the neutral differential equation

[x(t) + x(t− π)− x(t +
9π

2
)]′′′ =

1
2

∫ 3π

π/2

x(t− ξ)dξ +
1
2

∫ 3π

π/2

x(t + ξ)dξ,

so that n = 3, a = b = 1, c = π
2 , d = 3π, p = q = 1

2 , h = π, g = 9π
2 . One can verify

that the conditions of Theorem 2.3 are satisfied. We shall note that x(t) = cos t is
a solution of this problem.

Theorem 2.5. Suppose c > h, c > g, a > 0,(p(d− c)
a

)1/n(c− h

n

)
e > 1, (2.13)(q(d− c)

1 + b

)1/n(c− g

n

)
e > 1. (2.14)

Then

[x(t)− ax(t− h) + bx(t + g)](n) = p

∫ d

c

x(t− ξ)dξ + q

∫ d

c

x(t + ξ)dξ, (2.15)

is oscillatory.
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Proof. Let x(t) be a non-oscillatory solution of (2.15). Without loss of generality
we may assume that x(t) is eventually positive; that is, there exists a t0 ≥ 0 such
that x(t) > 0 for t ≥ t0. If x(t) is eventually negative solution, the proof follows
the same arguments. Let

z(t) = x(t)− ax(t− h) + bx(t + g), t ≥ t0 + h.

As in the proof of the Theorem 2.3 the function z(i)(t) are of constant sign for
t ≥ t1 ≥ t0 + h and i = 0, 1, . . . , n, hence we have two possible cases to consider for
z(t): z(t) < 0 for t ≥ t1, and z(t) > 0 for t ≥ t1.

Case 1: z(t) < 0 for t ≥ t1. Let v(t) = −z(t). Then we obtain

v(n)(t) + p

∫ d

c

x(t− ξ)dξ + q

∫ d

c

x(t + ξ)dξ = 0. (2.16)

On the other hand, since

0 < v(t) = −z(t) = −x(t) + ax(t− h)− bx(t + g) ≤ ax(t− h) for t ≥ t1,

there is a t2 ≥ t1 such that

x(t) ≥ v(t + h)
a

for t ≥ t2. (2.17)

In view of (2.17) it follows from (2.16) that

v(n)(t) +
p

a

∫ d

c

v(t + h− ξ)dξ +
q

a

∫ d

c

v(t + h + ξ)dξ ≤ 0 for t ≥ t3 ≥ t2. (2.18)

As in the proof of the Theorem 2.3 (case 1) we show that (−1)iv(i)(t) > 0 for
t ≥ t4 ≥ t3 and i = 0, 1, . . . , n, and using this in (2.18) we see that

v(n)(t) +
p(d− c)

a
v(t− (c− h)) ≤ 0 for t ≥ t4. (2.19)

Thus, from Lemma 2.1 (ii) and condition (2.13), (2.19) has no eventually positive
solutions, which is a contradiction.

Case 2: z(t) > 0 for t ≥ t1. Let

w(t) = z(t)− az(t− h) + bz(t + g) .

Then one sees that

w(n)(t) = p

∫ d

c

z(t− ξ)dξ + q

∫ d

c

z(t + ξ)dξ,

[w(t)− aw(t− h) + bw(t + g)](n) = p

∫ d

c

w(t− ξ)dξ + q

∫ d

c

w(t + ξ)dξ.

As in the proof of the Theorem 2.3 (case 2), we have w(i)(t) > 0 for t ≥ t∗2 ≥ t1
and i = 0, 1, . . . , n + 1. Then, we obtain

(1 + b)w(n)(t + g) ≥ p

∫ d

c

w(t− ξ)dξ + q

∫ d

c

w(t + ξ)dξ ≥ q

∫ d

c

w(t + ξ)dξ.

Since w′(t) > 0 for t ≥ t∗2,

w(n)(t) ≥ q(d− c)
1 + b

w(t + (c− g)).

The above equation does not have a positive solution by Lemma 2.1 (i) and condi-
tion (2.14). Thus, the proof is complete. �



6 T. CANDAN EJDE-2010/23

Example 2.6. Consider the neutral differential equation

[x(t)− x(t− π) + 2x(t + π)](5) =
∫ 4π

2π

x(t− ξ)dξ +
1
2

∫ 4π

2π

x(t + ξ)dξ,

so that n = 5, a = 1, b = 2, c = 2π, d = 4π, p = 1, q = 1
2 , g = h = π. One can

check that the conditions of Theorem 2.5 are satisfied. By direct substitution it is
easy to see that x(t) = t cos t is a solution of this problem.

Example 2.7. Consider the neutral differential equation

[x(t)− x(t− π) + 2x(t + π)](9) =
3
4

∫ 8π

6π

x(t− ξ)dξ +
3
4

∫ 8π

6π

x(t + ξ)dξ.

We see that n = 9, a = 1, b = 2, c = 6π, d = 8π, p = q = 3
4 , g = h = π. One

can verify that the conditions of Theorem 2.5 are satisfied. It is easy to show that
x(t) = t sin t is a solution of this problem.

Since the proofs of the following two theorems are similar to that of Theorems
2.3 and 2.5, they are omitted.

Theorem 2.8. Suppose that c > g, b > 0, (2.3) holds, and(p(d− c)
b

)1/n(c− g

n

)
e > 1 .

Then

[x(t) + ax(t− h)− bx(t− g)](n) = p

∫ d

c

x(t− ξ)dξ + q

∫ d

c

x(t + ξ)dξ,

is oscillatory.

Theorem 2.9. Suppose that c > h, b > 0, (2.1) or (2.2) hold, and(q(d− c)
1 + a

)1/n(c− h

n

)
e > 1 .

Then

[x(t) + ax(t + h)− bx(t + g)](n) = p

∫ d

c

x(t− ξ)dξ + q

∫ d

c

x(t + ξ)dξ,

is oscillatory.

Theorem 2.10. Suppose c > g, and( q(d− c)
1 + a + b

)1/n(c− g

n

)
e > 1. (2.20)

Then

[x(t) + ax(t− h) + bx(t + g)](n) = p

∫ d

c

x(t− ξ)dξ + q

∫ d

c

x(t + ξ)dξ, (2.21)

is oscillatory.

Proof. Suppose there exist a nonoscillatory solution x(t) of (2.21). Without loss of
generality we may say that x(t) > 0 for t ≥ t0. Let

z(t) = x(t) + ax(t− h) + bx(t + g), t ≥ t0 + h.
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Clearly z(t) > 0 for t ≥ t0 + h. Thus, using (2.21), we get

z(n)(t) = p

∫ d

c

x(t− ξ)dξ + q

∫ d

c

x(t + ξ)dξ

for t ≥ t1 for some t1 ≥ t0 + h. Therefore, we conclude that z(i)(t), i = 0, 1, . . . , n
are of constant sign, by Lemma 2.2 z(t) > 0 and z′(t) > 0 on [t1,∞). Let

w(t) = z(t) + az(t− h) + bz(t + g),

then we show that

w(n)(t) = p

∫ d

c

z(t− ξ)dξ + q

∫ d

c

z(t + ξ)dξ (2.22)

and then

[w(t) + aw(t− h) + bw(t + g)](n) = p

∫ d

c

w(t− ξ)dξ + q

∫ d

c

w(t + ξ)dξ. (2.23)

Since z(t) > 0 and z′(t) > 0 are eventually increasing, from (2.22) we see that
w(n)(t) > 0 and w(n+1)(t) > 0 for t ≥ t2 ≥ t1. As a result of this w(i)(t) > 0 for
i = 0, 1, . . . , n + 1 and t ≥ t2. Thus from (2.23), we have

(1 + a + b)w(n)(t + g) ≥ q

∫ d

c

w(t + ξ)dξ,

and then using the eventually increasing nature of w(t), we obtain

w(n)(t + g) ≥ q(d− c)
1 + a + b

w(t + c)

or

w(n)(t) ≥ q(d− c)
1 + a + b

w(t + (c− g), t ≥ t3 ≥ t2. (2.24)

In view of Lemma 2.1(i) and (2.20), the inequality (2.24) has no eventually positive
solutions, which leads to a contradiction. Thus, the proof is complete. �

Example 2.11. Consider the neutral differential equation

[x(t) + x(t− π) + x(t +
3π

2
)]′′′ =

1
4

∫ 7π/2

5π/2

x(t− ξ)dξ +
1
4

∫ 7π/2

5π/2

x(t + ξ)dξ,

so that n = 3, a = b = 1, c = 5π
2 , d = 7π

2 , p = q = 1
4 , h = π, g = 3π

2 . One can see
that the conditions of Theorem 2.10 are satisfied. In fact x(t) = sin t + cos t is an
oscillatory solution of this problem.

The proofs of the following two theorems are similar to that of Theorem 2.10
and therefore omitted.

Theorem 2.12. Suppose that c > g > h, and (2.20) holds. Then the equation

[x(t) + ax(t + h) + bx(t + g)](n) = p

∫ d

c

x(t− ξ)dξ + q

∫ d

c

x(t + ξ)dξ,

is oscillatory.
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Theorem 2.13. Suppose that( q(d− c)
1 + a + b

)1/n( c

n

)
e > 1.

Then

[x(t) + ax(t− h) + bx(t− g)](n) = p

∫ d

c

x(t− ξ)dξ + q

∫ d

c

x(t + ξ)dξ,

is oscillatory.

Theorem 2.14. Suppose a > 0, c > h,(p(d− c)
a + b

)1/n(c− h

n

)
e > 1, (2.25)(

q(d− c)
)1/n( c

n

)
e > 1. (2.26)

Then

[x(t)− ax(t− h)− bx(t + g)](n) = p

∫ d

c

x(t− ξ)dξ + q

∫ d

c

x(t + ξ)dξ, (2.27)

is oscillatory.

Proof. Suppose that x(t) is a non-oscillatory solution of (2.27). We may assume
that x(t) is eventually positive, say x(t) > 0 for t ≥ t0. Let

z(t) = x(t)− ax(t− h)− bx(t + g), t ≥ t0 + h. (2.28)

From (2.27), we have

z(n)(t) = p

∫ d

c

x(t− ξ)dξ + q

∫ d

c

x(t + ξ)dξ (2.29)

for t ≥ t1 for some t1 ≥ t0 + h, implies that z(i)(t), i = 0, 1, . . . , n are of constant
sign on [t1,∞). We have two cases: z(t) > 0 for t ≥ t1, and z(t) < 0 for t ≥ t1.

Case 1: z(t) > 0 for t ≥ t1. From (2.28),

x(t) ≥ z(t). (2.30)

In view of (2.29) and (2.30), we have

z(n)(t) ≥ q

∫ d

c

z(t + ξ)dξ for t ≥ t1.

As in the proof of Theorem 2.3, z′(t) is eventually positive. Thus

z(n)(t) ≥ q(d− c)z(t + c),

which contradicts to Lemma 2.1 (i) and condition (2.26).
Case 2: z(t) < 0 for t ≥ t1. Let

0 < v(t) = −z(t) = −x(t) + ax(t− h) + bx(t + g),

then

v(n)(t) + p

∫ d

c

x(t− ξ)dξ + q

∫ d

c

x(t + ξ)dξ = 0.

Set
w(t) = −v(t) + av(t− h) + bv(t + g) .
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Then

w(n)(t) + p

∫ d

c

v(t− ξ)dξ + q

∫ d

c

v(t + ξ)dξ = 0 (2.31)

and since the function satisfies (2.27), we obtain

[−w(t) + aw(t− h) + bw(t + g)](n) + p

∫ d

c

w(t− ξ)dξ + q

∫ d

c

w(t + ξ)dξ = 0.

If w(t) < 0 for t ≥ t1, we can handle as in case 1. Now suppose w(t) > 0 for t ≥ t1.
On the other hand, v′(t) < 0 for t ≥ t2 ≥ t1, otherwise from (2.31) we see that
w(n)(t) < 0 and w(n+1)(t) < 0 for t ≥ t2 which is a contradiction. As a result of
this,

(−1)iw(i)(t) > 0 for i = 0, 1, . . . , n + 1 and t ≥ t2,

and then

(a + b)w(n)(t− h) + p

∫ d

c

w(t− ξ)dξ ≤ 0,

w(n)(t) +
p(d− c)
a + b

w(t− (c− h)) ≤ 0,

which leads to a contradiction by condition (2.25) and Lemma 2.1 (ii). This com-
pletes the proof. �

Example 2.15. Consider the equation

[x(t)− 3
2
x(t− 3π

2
)− 4

3
x(t + 2π)]′′′ =

7
12

∫ 7π/2

2π

x(t− ξ)dξ +
11
12

∫ 7π/2

2π

x(t + ξ)dξ.

We see that n = 3, a = 3
2 , b = 4

3 , c = 2π, d = 7π
2 , p = 7

12 , q = 11
12 , h = 3π

2 ,
g = 2π. Clearly the conditions of Theorem 2.14 are satisfied. In fact, x(t) = sin t
is a solution of this problem.

The proofs of the following two theorems are similar to that of Theorem 2.14,
hence the proofs are omitted.

Theorem 2.16. Suppose a > 0, h > g, and (2.25) and (2.26) hold. Then

[x(t)− ax(t− h)− bx(t− g)](n) = p

∫ d

c

x(t− ξ)dξ + q

∫ d

c

x(t + ξ)dξ,

is oscillatory.

Theorem 2.17. Suppose b > 0, h > g, λ = µ = −1, α = β = 1. In addition, if
(2.26) and (p(d− c)

a + b

)1/n(c + g

n

)
e > 1,

Then

[x(t)− ax(t + h)− bx(t + g)](n) = p

∫ d

c

x(t− ξ)dξ + q

∫ d

c

x(t + ξ)dξ,

is oscillatory.
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