Electronic Journal of Differential Equations, Vol. 2010(2010), No. 23, pp. 1-10. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

OSCILLATION OF SOLUTIONS FOR ODD-ORDER NEUTRAL FUNCTIONAL DIFFERENTIAL EQUATIONS

TUNCAY CANDAN

$$
\begin{aligned}
& \text { AbSTRACT. In this article, we establish oscillation criteria for all solutions to } \\
& \text { the neutral differential equations } \\
& \qquad[x(t) \pm a x(t \pm h) \pm b x(t \pm g)]^{(n)}=p \int_{c}^{d} x(t-\xi) d \xi+q \int_{c}^{d} x(t+\xi) d \xi
\end{aligned}
$$

where n is odd, h, g, a and b are nonnegative constants. We consider 10 of the 16 possible combinations of \pm signs, and give some examples to illustrate our results.

1. Introduction

In this article, we study the oscillatory behavior of solutions to to n-order mixed neutral functional differential equations with distributed deviating arguments

$$
\begin{equation*}
[x(t) \pm a x(t \pm h) \pm b x(t \pm g)]^{(n)}=p \int_{c}^{d} x(t-\xi) d \xi+q \int_{c}^{d} x(t+\xi) d \xi \tag{1.1}
\end{equation*}
$$

where n is odd, h, g, a and b are nonnegative constants, p and q are positive constants, and $0<c<d$. We consider 10 of the 16 possible combinations of \pm signs. The equations

$$
\frac{d^{2}}{d t^{2}}(x(t) \pm x[t-\tau] \pm x[t+\sigma])+q x[t-\alpha]+p x[t+\beta]=0
$$

are encountered in the study of vibrating masses attached to an elastic bar [8] and were studied by Grace and Lalli [4]. Later Grace extended their results to n-order equations with n odd in [5], and with n even in [6]. Moreover, Grace [7] remarked that the results for the n-order equations

$$
\frac{d^{n}}{d t^{n}}(x(t)+c x[t-h]+C x[t+H])+q x[t-g]+Q x[t+G]=0
$$

[^0]are extendable to the equations
\[

$$
\begin{aligned}
& \left(x(t)+\sum_{i=1}^{n_{1}} c_{i} x\left(t-h_{i}\right)+\sum_{j=1}^{n_{2}} C_{j} x\left(t+H_{j}\right)\right)^{(n)} \\
& \pm\left(\sum_{k=1}^{n_{3}} q_{k} x\left(t-g_{k}\right)+\sum_{m=1}^{n_{4}} Q_{m} x\left(t+G_{m}\right)\right)=0
\end{aligned}
$$
\]

In recent years, Candan [2], and Candan and Dahiya 3] obtained some results for distributed delays, which motivate us to study 1.1). For books related to this topic, we refer the reader to [1, 8, 10 .

A function x is said to be a solution of (1.1) if $x(t) \pm a x(t \pm h) \pm b x(t \pm g)$ is n times continuous differentiable and $x(t)$ satisfies (1.1) for $t \geq t_{0}$.

A nontrivial solution of (1.1), for all large t, is called oscillatory if it has no largest zero. Otherwise, a solution is called non-oscillatory.

The purpose of this paper is to provide sufficient conditions, only on the coefficients and on limits of the integrals, to guarantee that (1.1) is oscillatory.

2. Main Results

The following lemmas will be used in our proofs.
Lemma 2.1 ([11]). Suppose that a and h are positive constants and $a^{1 / n}\left(\frac{h}{n}\right) e>1$. Then
(i) the inequality

$$
x^{(n)}(t)-a x(t+h) \geq 0
$$

has no eventually positive solutions when n is odd;
(ii) the inequality

$$
x^{(n)}(t)+a x(t-h) \leq 0
$$

has no eventually positive solutions when n is odd.
Lemma 2.2 (9$]$). Let $x(t)$ be a function such that it and each of its derivative up to order $(n-1)$ inclusive are absolutely continuous and of constant sign in an interval $\left(t_{0}, \infty\right)$. If $x^{(n)}(t)$ is of constant sign and not identically zero on any interval of the form $\left[t_{1}, \infty\right)$ for some $t_{1} \geq t_{0}$, then there exist a $t_{x} \geq t_{0}$ and an integer m, $0 \leq m \leq n$ with $n+m$ even for $x^{(n)}(t) \geq 0$, or $n+m$ odd for $x^{(n)}(t) \leq 0$, and such that for every $t \geq t_{x}$,

$$
m>0 \quad \text { implies } \quad x^{(k)}(t)>0, \quad k=0,1, \ldots, m-1
$$

and

$$
m \leq n-1 \quad \text { implies } \quad(-1)^{m+k} x^{(k)}(t)>0, \quad k=m, m+1, \ldots, n-1
$$

Theorem 2.3. Suppose that $b>0$, either

$$
\begin{equation*}
\left(\frac{p(d-c)}{b}\right)^{1 / n}\left(\frac{g+c}{n}\right) e>1 \tag{2.1}
\end{equation*}
$$

or

$$
\begin{equation*}
\left(\frac{(p+q)(d-c)}{b}\right)^{1 / n}\left(\frac{g-d}{n}\right) e>1, \quad g>d \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\frac{q(d-c)}{1+a}\right)^{1 / n}\left(\frac{c}{n}\right) e>1 \tag{2.3}
\end{equation*}
$$

Then

$$
\begin{equation*}
[x(t)+a x(t-h)-b x(t+g)]^{(n)}=p \int_{c}^{d} x(t-\xi) d \xi+q \int_{c}^{d} x(t+\xi) d \xi \tag{2.4}
\end{equation*}
$$

is oscillatory.
Proof. Let $x(t)$ be a non-oscillatory solution of 2.4 . We may assume that $x(t)$ is eventually positive; that is, there exists a $t_{0} \geq 0$ such that $x(t)>0$ for $t \geq t_{0}$. If $x(t)$ is an eventually negative solution, the proof follows the same arguments. Let

$$
z(t)=x(t)+a x(t-h)-b x(t+g), \quad t \geq t_{0}+h
$$

From (2.4), we have

$$
\begin{equation*}
z^{(n)}(t)=p \int_{c}^{d} x(t-\xi) d \xi+q \int_{c}^{d} x(t+\xi) d \xi \tag{2.5}
\end{equation*}
$$

for $t \geq t_{1} \geq t_{0}+h$, which implies that $z^{(n)}(t)>0$. Then $z^{(i)}(t), i=0,1, \ldots, n$ are of constant sign on $\left[t_{1}, \infty\right)$. We have two possible cases to consider: $z(t)<0$ for $t \geq t_{1}$, and $z(t)>0$ for $t \geq t_{1}$.

Case 1: $z(t)<0$ for $t \geq t_{1}$. Let $v(t)=-z(t)$. Then from 2.5, we obtain

$$
\begin{equation*}
v^{(n)}(t)+p \int_{c}^{d} x(t-\xi) d \xi+q \int_{c}^{d} x(t+\xi) d \xi=0 \tag{2.6}
\end{equation*}
$$

On the other hand, since

$$
0<v(t)=-z(t)=-x(t)-a x(t-h)+b x(t+g) \leq b x(t+g) \quad \text { for } t \geq t_{1}
$$

there is a $t_{2} \geq t_{1}$ such that

$$
\begin{equation*}
x(t) \geq \frac{v(t-g)}{b} \quad \text { for } t \geq t_{2} \tag{2.7}
\end{equation*}
$$

In view of 2.7 it follows from (2.6) that

$$
\begin{equation*}
v^{(n)}(t)+\frac{p}{b} \int_{c}^{d} v(t-g-\xi) d \xi+\frac{q}{b} \int_{c}^{d} v(t-g+\xi) d \xi \leq 0 \quad \text { for } t \geq t_{3}>t_{2} \tag{2.8}
\end{equation*}
$$

It is clear that from either (2.6) or $2.8, v^{(n)}(t)<0$ for $t \geq t_{3}$. Therefore, by Lemma $2.2 v^{(n-1)}(t)>0$ for $t \geq t_{3}$. Now, we want to show that $v^{\prime}(t)<0$ for $t \geq t_{3}$. Suppose on the contrary $v^{\prime}(t)>0$ for $t \geq t_{3}$, then there exists a constant $k>0$ and $t_{4} \geq t_{3}$ such that

$$
v(t-g-\xi) \geq k, \quad v(t-g+\xi) \geq k
$$

for $t \geq t_{4}$ and $\xi \in[c, d]$. Thus,

$$
v^{(n)}(t) \leq-\frac{k(p+q)(d-c)}{b} \quad \text { for } t \geq t_{4}
$$

and

$$
v^{(n-1)}(t) \leq v^{(n-1)}\left(t_{4}\right)-\frac{k(p+q)(d-c)\left(t-t_{4}\right)}{b} \rightarrow-\infty \quad \text { as } t \rightarrow \infty
$$

which is a contradiction. Thus, $v^{\prime}(t)<0$ and therefore $(-1)^{i} v^{(i)}(t)>0$ for $t \geq t_{4}$ and $i=0,1, \ldots, n$. Then from 2.8 , we have

$$
\begin{equation*}
v^{(n)}(t)+\frac{p(d-c)}{b} v(t-(g+c)) \leq 0 \tag{2.9}
\end{equation*}
$$

and

$$
\begin{equation*}
v^{(n)}(t)+\frac{(p+q)(d-c)}{b} v(t-(g-d)) \leq 0, \quad t \geq t_{4} \tag{2.10}
\end{equation*}
$$

Thus, from Lemma 2.1 (ii) and condition 2.1), 2.9 has no eventually positive solutions or from Lemma 2.1 (ii) and condition $2.2,2.10$ has no eventually positive solutions, which is a contradiction.

Case 2: $z(t)>0$ for $t \geq t_{1}$. Let

$$
w(t)=z(t)+a z(t-h)-b z(t+g), \quad t \geq t_{1}+h
$$

Thus, one can show that

$$
\begin{equation*}
w^{(n)}(t)=p \int_{c}^{d} z(t-\xi) d \xi+q \int_{c}^{d} z(t+\xi) d \xi \tag{2.11}
\end{equation*}
$$

then

$$
\begin{equation*}
[w(t)+a w(t-h)-b w(t+g)]^{(n)}=p \int_{c}^{d} w(t-\xi) d \xi+q \int_{c}^{d} w(t+\xi) d \xi \tag{2.12}
\end{equation*}
$$

Since n is odd, by Lemma $2.2 z^{\prime}(t)>0$ for $t \geq t_{2}^{*} \geq t_{1}+h$. From equation (2.11), $w^{(n)}(t)>0$ and $w^{(n+1)}(t)>0$ for $t \geq t_{3}^{*} \geq t_{2}^{*}$. Therefore, $w^{(i)}(t)>0$ for $i=0,1 \ldots, n+1$ and $t \geq t_{3}^{*}$. Using this results and 2.12 we obtain

$$
(1+a) w^{(n)}(t) \geq p \int_{c}^{d} w(t-\xi) d \xi+q \int_{c}^{d} w(t+\xi) d \xi \geq q \int_{c}^{d} w(t+\xi) d \xi
$$

and then

$$
w^{(n)}(t) \geq \frac{q(d-c)}{1+a} w(t+c), \quad t \geq t_{3}^{*}
$$

This last equation does not have a positive solution by Lemma 2.1 (i) and condition (2.3). Therefore, it is a contradiction, and the proof is complete.

Example 2.4. Consider the neutral differential equation

$$
\left[x(t)+x(t-\pi)-x\left(t+\frac{9 \pi}{2}\right)\right]^{\prime \prime \prime}=\frac{1}{2} \int_{\pi / 2}^{3 \pi} x(t-\xi) d \xi+\frac{1}{2} \int_{\pi / 2}^{3 \pi} x(t+\xi) d \xi
$$

so that $n=3, a=b=1, c=\frac{\pi}{2}, d=3 \pi, p=q=\frac{1}{2}, h=\pi, g=\frac{9 \pi}{2}$. One can verify that the conditions of Theorem 2.3 are satisfied. We shall note that $x(t)=\cos t$ is a solution of this problem.

Theorem 2.5. Suppose $c>h, c>g, a>0$,

$$
\begin{align*}
& \left(\frac{p(d-c)}{a}\right)^{1 / n}\left(\frac{c-h}{n}\right) e>1, \tag{2.13}\\
& \left(\frac{q(d-c)}{1+b}\right)^{1 / n}\left(\frac{c-g}{n}\right) e>1 . \tag{2.14}
\end{align*}
$$

Then

$$
\begin{equation*}
[x(t)-a x(t-h)+b x(t+g)]^{(n)}=p \int_{c}^{d} x(t-\xi) d \xi+q \int_{c}^{d} x(t+\xi) d \xi \tag{2.15}
\end{equation*}
$$

is oscillatory.

Proof. Let $x(t)$ be a non-oscillatory solution of 2.15. Without loss of generality we may assume that $x(t)$ is eventually positive; that is, there exists a $t_{0} \geq 0$ such that $x(t)>0$ for $t \geq t_{0}$. If $x(t)$ is eventually negative solution, the proof follows the same arguments. Let

$$
z(t)=x(t)-a x(t-h)+b x(t+g), \quad t \geq t_{0}+h
$$

As in the proof of the Theorem 2.3 the function $z^{(i)}(t)$ are of constant sign for $t \geq t_{1} \geq t_{0}+h$ and $i=0,1, \ldots, n$, hence we have two possible cases to consider for $z(t): z(t)<0$ for $t \geq t_{1}$, and $z(t)>0$ for $t \geq t_{1}$.

Case 1: $z(t)<0$ for $t \geq t_{1}$. Let $v(t)=-z(t)$. Then we obtain

$$
\begin{equation*}
v^{(n)}(t)+p \int_{c}^{d} x(t-\xi) d \xi+q \int_{c}^{d} x(t+\xi) d \xi=0 \tag{2.16}
\end{equation*}
$$

On the other hand, since

$$
0<v(t)=-z(t)=-x(t)+a x(t-h)-b x(t+g) \leq a x(t-h) \quad \text { for } t \geq t_{1}
$$

there is a $t_{2} \geq t_{1}$ such that

$$
\begin{equation*}
x(t) \geq \frac{v(t+h)}{a} \quad \text { for } t \geq t_{2} \tag{2.17}
\end{equation*}
$$

In view of 2.17 it follows from 2.16 that

$$
\begin{equation*}
v^{(n)}(t)+\frac{p}{a} \int_{c}^{d} v(t+h-\xi) d \xi+\frac{q}{a} \int_{c}^{d} v(t+h+\xi) d \xi \leq 0 \quad \text { for } t \geq t_{3} \geq t_{2} \tag{2.18}
\end{equation*}
$$

As in the proof of the Theorem 2.3 (case 1) we show that $(-1)^{i} v^{(i)}(t)>0$ for $t \geq t_{4} \geq t_{3}$ and $i=0,1, \ldots, n$, and using this in 2.18 we see that

$$
\begin{equation*}
v^{(n)}(t)+\frac{p(d-c)}{a} v(t-(c-h)) \leq 0 \quad \text { for } t \geq t_{4} \tag{2.19}
\end{equation*}
$$

Thus, from Lemma 2.1 (ii) and condition (2.13), 2.19 has no eventually positive solutions, which is a contradiction.

Case 2: $z(t)>0$ for $t \geq t_{1}$. Let

$$
w(t)=z(t)-a z(t-h)+b z(t+g)
$$

Then one sees that

$$
\begin{gathered}
w^{(n)}(t)=p \int_{c}^{d} z(t-\xi) d \xi+q \int_{c}^{d} z(t+\xi) d \xi \\
{[w(t)-a w(t-h)+b w(t+g)]^{(n)}=p \int_{c}^{d} w(t-\xi) d \xi+q \int_{c}^{d} w(t+\xi) d \xi}
\end{gathered}
$$

As in the proof of the Theorem 2.3 (case 2), we have $w^{(i)}(t)>0$ for $t \geq t_{2}^{*} \geq t_{1}$ and $i=0,1, \ldots, n+1$. Then, we obtain

$$
(1+b) w^{(n)}(t+g) \geq p \int_{c}^{d} w(t-\xi) d \xi+q \int_{c}^{d} w(t+\xi) d \xi \geq q \int_{c}^{d} w(t+\xi) d \xi
$$

Since $w^{\prime}(t)>0$ for $t \geq t_{2}^{*}$,

$$
w^{(n)}(t) \geq \frac{q(d-c)}{1+b} w(t+(c-g))
$$

The above equation does not have a positive solution by Lemma 2.1 (i) and condition 2.14. Thus, the proof is complete.

Example 2.6. Consider the neutral differential equation

$$
[x(t)-x(t-\pi)+2 x(t+\pi)]^{(5)}=\int_{2 \pi}^{4 \pi} x(t-\xi) d \xi+\frac{1}{2} \int_{2 \pi}^{4 \pi} x(t+\xi) d \xi
$$

so that $n=5, a=1, b=2, c=2 \pi, d=4 \pi, p=1, q=\frac{1}{2}, g=h=\pi$. One can check that the conditions of Theorem 2.5 are satisfied. By direct substitution it is easy to see that $x(t)=t \cos t$ is a solution of this problem.

Example 2.7. Consider the neutral differential equation

$$
[x(t)-x(t-\pi)+2 x(t+\pi)]^{(9)}=\frac{3}{4} \int_{6 \pi}^{8 \pi} x(t-\xi) d \xi+\frac{3}{4} \int_{6 \pi}^{8 \pi} x(t+\xi) d \xi
$$

We see that $n=9, a=1, b=2, c=6 \pi, d=8 \pi, p=q=\frac{3}{4}, g=h=\pi$. One can verify that the conditions of Theorem 2.5 are satisfied. It is easy to show that $x(t)=t \sin t$ is a solution of this problem.

Since the proofs of the following two theorems are similar to that of Theorems 2.3 and 2.5, they are omitted.

Theorem 2.8. Suppose that $c>g, b>0$, 2.3) holds, and

$$
\left(\frac{p(d-c)}{b}\right)^{1 / n}\left(\frac{c-g}{n}\right) e>1 .
$$

Then

$$
[x(t)+a x(t-h)-b x(t-g)]^{(n)}=p \int_{c}^{d} x(t-\xi) d \xi+q \int_{c}^{d} x(t+\xi) d \xi
$$

is oscillatory.
Theorem 2.9. Suppose that $c>h, b>0$, 2.1) or 2.2 hold, and

$$
\left(\frac{q(d-c)}{1+a}\right)^{1 / n}\left(\frac{c-h}{n}\right) e>1
$$

Then

$$
[x(t)+a x(t+h)-b x(t+g)]^{(n)}=p \int_{c}^{d} x(t-\xi) d \xi+q \int_{c}^{d} x(t+\xi) d \xi
$$

is oscillatory.
Theorem 2.10. Suppose $c>g$, and

$$
\begin{equation*}
\left(\frac{q(d-c)}{1+a+b}\right)^{1 / n}\left(\frac{c-g}{n}\right) e>1 \tag{2.20}
\end{equation*}
$$

Then

$$
\begin{equation*}
[x(t)+a x(t-h)+b x(t+g)]^{(n)}=p \int_{c}^{d} x(t-\xi) d \xi+q \int_{c}^{d} x(t+\xi) d \xi \tag{2.21}
\end{equation*}
$$

is oscillatory.
Proof. Suppose there exist a nonoscillatory solution $x(t)$ of 2.21. Without loss of generality we may say that $x(t)>0$ for $t \geq t_{0}$. Let

$$
z(t)=x(t)+a x(t-h)+b x(t+g), \quad t \geq t_{0}+h .
$$

Clearly $z(t)>0$ for $t \geq t_{0}+h$. Thus, using (2.21), we get

$$
z^{(n)}(t)=p \int_{c}^{d} x(t-\xi) d \xi+q \int_{c}^{d} x(t+\xi) d \xi
$$

for $t \geq t_{1}$ for some $t_{1} \geq t_{0}+h$. Therefore, we conclude that $z^{(i)}(t), i=0,1, \ldots, n$ are of constant sign, by Lemma $2.2 z(t)>0$ and $z^{\prime}(t)>0$ on $\left[t_{1}, \infty\right)$. Let

$$
w(t)=z(t)+a z(t-h)+b z(t+g)
$$

then we show that

$$
\begin{equation*}
w^{(n)}(t)=p \int_{c}^{d} z(t-\xi) d \xi+q \int_{c}^{d} z(t+\xi) d \xi \tag{2.22}
\end{equation*}
$$

and then

$$
\begin{equation*}
[w(t)+a w(t-h)+b w(t+g)]^{(n)}=p \int_{c}^{d} w(t-\xi) d \xi+q \int_{c}^{d} w(t+\xi) d \xi \tag{2.23}
\end{equation*}
$$

Since $z(t)>0$ and $z^{\prime}(t)>0$ are eventually increasing, from 2.22 we see that $w^{(n)}(t)>0$ and $w^{(n+1)}(t)>0$ for $t \geq t_{2} \geq t_{1}$. As a result of this $w^{(i)}(t)>0$ for $i=0,1, \ldots, n+1$ and $t \geq t_{2}$. Thus from 2.23, we have

$$
(1+a+b) w^{(n)}(t+g) \geq q \int_{c}^{d} w(t+\xi) d \xi
$$

and then using the eventually increasing nature of $w(t)$, we obtain

$$
w^{(n)}(t+g) \geq \frac{q(d-c)}{1+a+b} w(t+c)
$$

or

$$
\begin{equation*}
w^{(n)}(t) \geq \frac{q(d-c)}{1+a+b} w\left(t+(c-g), \quad t \geq t_{3} \geq t_{2}\right. \tag{2.24}
\end{equation*}
$$

In view of Lemma $2.1(i)$ and 2.20 , the inequality 2.24 has no eventually positive solutions, which leads to a contradiction. Thus, the proof is complete.

Example 2.11. Consider the neutral differential equation

$$
\left[x(t)+x(t-\pi)+x\left(t+\frac{3 \pi}{2}\right)\right]^{\prime \prime \prime}=\frac{1}{4} \int_{5 \pi / 2}^{7 \pi / 2} x(t-\xi) d \xi+\frac{1}{4} \int_{5 \pi / 2}^{7 \pi / 2} x(t+\xi) d \xi
$$

so that $n=3, a=b=1, c=\frac{5 \pi}{2}, d=\frac{7 \pi}{2}, p=q=\frac{1}{4}, h=\pi, g=\frac{3 \pi}{2}$. One can see that the conditions of Theorem 2.10 are satisfied. In fact $x(t)=\sin t+\cos t$ is an oscillatory solution of this problem.

The proofs of the following two theorems are similar to that of Theorem 2.10 and therefore omitted.

Theorem 2.12. Suppose that $c>g>h$, and 2.20 holds. Then the equation

$$
[x(t)+a x(t+h)+b x(t+g)]^{(n)}=p \int_{c}^{d} x(t-\xi) d \xi+q \int_{c}^{d} x(t+\xi) d \xi
$$

is oscillatory.

Theorem 2.13. Suppose that

$$
\left(\frac{q(d-c)}{1+a+b}\right)^{1 / n}\left(\frac{c}{n}\right) e>1 .
$$

Then

$$
[x(t)+a x(t-h)+b x(t-g)]^{(n)}=p \int_{c}^{d} x(t-\xi) d \xi+q \int_{c}^{d} x(t+\xi) d \xi
$$

is oscillatory.
Theorem 2.14. Suppose $a>0, c>h$,

$$
\begin{gather*}
\left(\frac{p(d-c)}{a+b}\right)^{1 / n}\left(\frac{c-h}{n}\right) e>1 \tag{2.25}\\
(q(d-c))^{1 / n}\left(\frac{c}{n}\right) e>1 \tag{2.26}
\end{gather*}
$$

Then

$$
\begin{equation*}
[x(t)-a x(t-h)-b x(t+g)]^{(n)}=p \int_{c}^{d} x(t-\xi) d \xi+q \int_{c}^{d} x(t+\xi) d \xi \tag{2.27}
\end{equation*}
$$

is oscillatory.
Proof. Suppose that $x(t)$ is a non-oscillatory solution of 2.27. We may assume that $x(t)$ is eventually positive, say $x(t)>0$ for $t \geq t_{0}$. Let

$$
\begin{equation*}
z(t)=x(t)-a x(t-h)-b x(t+g), \quad t \geq t_{0}+h . \tag{2.28}
\end{equation*}
$$

From (2.27), we have

$$
\begin{equation*}
z^{(n)}(t)=p \int_{c}^{d} x(t-\xi) d \xi+q \int_{c}^{d} x(t+\xi) d \xi \tag{2.29}
\end{equation*}
$$

for $t \geq t_{1}$ for some $t_{1} \geq t_{0}+h$, implies that $z^{(i)}(t), i=0,1, \ldots, n$ are of constant sign on $\left[t_{1}, \infty\right)$. We have two cases: $z(t)>0$ for $t \geq t_{1}$, and $z(t)<0$ for $t \geq t_{1}$.

Case 1: $z(t)>0$ for $t \geq t_{1}$. From 2.28,

$$
\begin{equation*}
x(t) \geq z(t) \tag{2.30}
\end{equation*}
$$

In view of 2.29 and 2.30 , we have

$$
z^{(n)}(t) \geq q \int_{c}^{d} z(t+\xi) d \xi \quad \text { for } t \geq t_{1}
$$

As in the proof of Theorem 2.3, $z^{\prime}(t)$ is eventually positive. Thus

$$
\overline{z^{(n)}}(t) \geq q(d-c) z(t+c)
$$

which contradicts to Lemma 2.1 (i) and condition 2.26.
Case 2: $z(t)<0$ for $t \geq t_{1}$. Let

$$
0<v(t)=-z(t)=-x(t)+a x(t-h)+b x(t+g)
$$

then

$$
v^{(n)}(t)+p \int_{c}^{d} x(t-\xi) d \xi+q \int_{c}^{d} x(t+\xi) d \xi=0
$$

Set

$$
w(t)=-v(t)+a v(t-h)+b v(t+g) .
$$

Then

$$
\begin{equation*}
w^{(n)}(t)+p \int_{c}^{d} v(t-\xi) d \xi+q \int_{c}^{d} v(t+\xi) d \xi=0 \tag{2.31}
\end{equation*}
$$

and since the function satisfies 2.27, we obtain

$$
[-w(t)+a w(t-h)+b w(t+g)]^{(n)}+p \int_{c}^{d} w(t-\xi) d \xi+q \int_{c}^{d} w(t+\xi) d \xi=0
$$

If $w(t)<0$ for $t \geq t_{1}$, we can handle as in case 1 . Now suppose $w(t)>0$ for $t \geq t_{1}$. On the other hand, $v^{\prime}(t)<0$ for $t \geq t_{2} \geq t_{1}$, otherwise from 2.31) we see that $w^{(n)}(t)<0$ and $w^{(n+1)}(t)<0$ for $t \geq t_{2}$ which is a contradiction. As a result of this,

$$
(-1)^{i} w^{(i)}(t)>0 \quad \text { for } i=0,1, \ldots, n+1 \quad \text { and } \quad t \geq t_{2},
$$

and then

$$
\begin{gathered}
(a+b) w^{(n)}(t-h)+p \int_{c}^{d} w(t-\xi) d \xi \leq 0 \\
w^{(n)}(t)+\frac{p(d-c)}{a+b} w(t-(c-h)) \leq 0
\end{gathered}
$$

which leads to a contradiction by condition 2.25) and Lemma 2.1 (ii). This completes the proof.

Example 2.15. Consider the equation

$$
\left[x(t)-\frac{3}{2} x\left(t-\frac{3 \pi}{2}\right)-\frac{4}{3} x(t+2 \pi)\right]^{\prime \prime \prime}=\frac{7}{12} \int_{2 \pi}^{7 \pi / 2} x(t-\xi) d \xi+\frac{11}{12} \int_{2 \pi}^{7 \pi / 2} x(t+\xi) d \xi
$$

We see that $n=3, a=\frac{3}{2}, b=\frac{4}{3}, c=2 \pi, d=\frac{7 \pi}{2}, p=\frac{7}{12}, q=\frac{11}{12}, h=\frac{3 \pi}{2}$, $g=2 \pi$. Clearly the conditions of Theorem 2.14 are satisfied. In fact, $x(t)=\sin t$ is a solution of this problem.

The proofs of the following two theorems are similar to that of Theorem 2.14 hence the proofs are omitted.

Theorem 2.16. Suppose $a>0, h>g$, and 2.25 and 2.26 hold. Then

$$
[x(t)-a x(t-h)-b x(t-g)]^{(n)}=p \int_{c}^{d} x(t-\xi) d \xi+q \int_{c}^{d} x(t+\xi) d \xi
$$

is oscillatory.
Theorem 2.17. Suppose $b>0, h>g, \lambda=\mu=-1, \alpha=\beta=1$. In addition, if (2.26) and

$$
\left(\frac{p(d-c)}{a+b}\right)^{1 / n}\left(\frac{c+g}{n}\right) e>1
$$

Then

$$
[x(t)-a x(t+h)-b x(t+g)]^{(n)}=p \int_{c}^{d} x(t-\xi) d \xi+q \int_{c}^{d} x(t+\xi) d \xi
$$

is oscillatory.

References

[1] D. D. Bainov and D. P. Mishev; Oscillation Theory for Neutral Differential Equations with Delay, Adam Hilger, Bristol, 1991.
[2] T. Candan; Oscillation behavior of solutions for even order neutral functional differential equations, Appl. Math. Mech. Engl., 27 (10) (2006), 1311-1320.
[3] T. Candan and R. S. Dahiya; On the oscillation of certain mixed neutral equations, Appl. Math. Lett., 21 (3) (2008), 222-226.
[4] S. R Grace and B. S. Lalli; Oscillation theorems for second order neutral functional differential equations, Appl. Math. Comput., 51 (1992), 119-133.
[5] S. R Grace; Oscillation criteria for nth-order neutral functional differential equations, J. Math. Anal. Appl., 184 (1994), 44-55.
[6] S. R Grace; On the oscillations of mixed neutral equations, J. Math. Anal. Appl., 194 (1995), 377-388.
[7] S. R Grace; Oscillation of mixed neutral functional differential equations, Appl. Math. Comput., 68 (1) (1995), 1-13.
[8] J. Hale; Theory of Functional Differential Equations, Springer-Verlag, New York, 1977.
[9] I. T. Kiguradze; On the oscillation of solutions of the equation $d^{m} u / d t^{m}+a(t)|u|^{m} \operatorname{sign} u=0$, Mat. Sb., 65 (1964), 172-187.
[10] G. S. Ladde, V. Lakshmikantham and B. G. Zhang; Oscillation Theory of Differential Equations with Deviating Arguments, Marcel Dekker, Inc., New York, 1987.
[11] G. Ladas and I. P. Stavroulakis; On delay differential inequalities of higher order, Cannad. Math. Bull., 25 (1982), 348-354.

Tuncay Candan
Department of Mathematics, Faculty of Art and Science, Niğde University, Niğde, 51200, Turkey

E-mail address: tcandan@nigde.edu.tr

[^0]: 2000 Mathematics Subject Classification. 34K11, 34K40.
 Key words and phrases. Neutral differential equations; oscillation of solutions; distributed deviating arguments.
 © 2010 Texas State University - San Marcos.
 Submitted December 9, 2009. Published February 4, 2010.

