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SIMULTANEOUS EXACT CONTROLLABILITY FOR MAXWELL
EQUATIONS AND FOR A SECOND-ORDER HYPERBOLIC

SYSTEM

BORIS V. KAPITONOV, GUSTAVO PERLA MENZALA

Abstract. We present a result on “simultaneous” exact controllability for
two models that describe two hyperbolic dynamics. One is the system of

Maxwell equations and the other a vector-wave equation with a pressure term.

We obtain the main result using modified multipliers in order to generate a
necessary observability estimate which allow us to use the Hilbert Uniqueness

Method (HUM) introduced by Lions.

1. Introduction

We consider two models which describe two distinct hyperbolic dynamics: One
of them is the system of Maxwell equations and the other is a vector wave equation
with a pressure term. In the solution (and vector-valued) variables {E,H, u} satisfy

EEt − curlH = 0
µHt + curlE = 0

divE = 0, divH = 0

 in Ω× (0, T ) (1.1)

E(x, 0) = E0(x), H(x, 0) = H0(x) in Ω (1.2)

η × E = Q(x, t) on ∂Ω× (0, T ) (1.3)

and
ρutt − α∆u+ grad p = 0

div u = 0

}
in Ω× (0, T ) (1.4)

u(x, 0) = g1(x), ut(x, 0) = g2(x) in Ω (1.5)

u = P (x, t) on ∂Ω× (0, T ). (1.6)

In (1.1), E = (E1, E2, E3) and H = (H1,H2,H3) denote the electric and magnetic
field respectively and E and µ are positive constants representing the permittivity
and magnetic permeability respectively.

In (1.4), ρ denotes the scalar density which we will assume to be a positive
constant and p = p(x, t) is the pressure term (an scalar function). Also, α is a
positive constant depending on the elastic properties of the material. In (1.3),
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η = η(x) denotes the unit normal vector at x ∈ ∂Ω pointing the exterior of Ω.
Finally, grad, curl, ∆,div and × denote the usual gradient, rotational, Laplace
operator, divergent and vector product in R3.

Generally speaking the problem of exact controllability (for either problem (1.1)–
(1.3) or (1.4)–(1.6)) can be state as follows: Given a time T > 0 and any initial data
and desired terminal data, to find a corresponding control F driving the system
to the terminal data at time T . One of the most usefull methods to solve such
problems of controllability is the Hilbert Uniqueness Method (HUM) introduced
by J.L. Lions in the middle 80’s and is based on the construction of appropriate
Hilbert space structures on the space of initial data. These Hilbert structures are
connected with uniqueness properties.

Several authors considered the problem of exact controllability either for problem
(1.1)–(1.3) (see for instance Russell [16], Lagnese [9], Eller and Masters [2], Eller
[3], Kapitonov [5], Weck [17], Phung [14]) or problem (1.4)–(1.6) (see for instance
Lions [12] and Rocha dos Santos [15]).

Clearly, the above results provide the existence of controls Q(x, t) and P (x, t)
which are not necessarily related one to the other. In the middle 80’s, Russell [16]
and Lions [10] raised the question if it is possible to solve the exact controllability
problem for two evolution models using only one control. They named this prob-
lem “simultaneous” exact controllability. In the absence of dissipative effects, due
to technical difficulties “simultaneous” exact controllability were only treated for
one system with two different boundary conditions (see for instance, Lions [10],
Kapitonov [6], Kapitonov, Raupp [7] and Kapitonov, Perla Menzala [8]).

Now, let us formulate the “simultaneous” exact controllability for systems (1.1)–
(1.3) and (1.4)–(1.6): Given initial the states (f1, f2, g1, g2) and the terminal data
(ϕ1, ϕ2, ψ1, ψ2) in suitable function spaces we ask if it is possible to find one vector-
valued function P = P (x, t) such that the solution {E,H, u} de (1.1)–(1.6) with Q
in terms of P satisfies at terminal time T

(E(T ),H(T ), u(T ), ut(T )) = (ϕ1, ϕ2, ψ1, ψ2).

The main purpose of this work is to prove that this is indeed the case, P serving
as a control function for (1.4)–(1.6) while the vector-valued function

Q = µη × (η × Pt)

is a control function for (1.1)–(1.3).
Let us briefly describe the sections in this paper: In Section 2 we briefly indicate

the function space where the solutions of systems (1.1)–(1.3) and (1.4)–(1.6) will
be considered. Then, we use modified multipliers in order to obtain a boundary
observability inequality valid for system (1.1)–(1.6) with P and Q identically equal
to zero (see inequalities (2.17), (2.18)). However, the right hand side of this in-
equality is not suitable to apply the steps of the Hilbert Uniqueness Method. That
is why we assume a suitable (numerically) relation between important parameters
of (1.1)–(1.6). The observability inequality is obtain assuming that the region is
substar-shaped. In Section 3, the “simultaneous” exact controllability is studied by
means of the Hilbert Uniqueness Method (HUM) introduced by Lions (see [10, 11]).

Systems (1.1)–(1.3) and (1.4)–(1.6) are not directly coupled to each other. A
more interesting problem would be to study the case when they are coupled say
with coupling terms – γ curlE and γ curlut (with γ > 0) for system (1.1)–(1.3)
and (1.4)–(1.6) respectively. As far as we know this remains an open problem. Our
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techniques seem to work when the coefficients E , µ, ρ and α are functions of x which
are smooth and they and their partial derivatives of first order are bounded below
by strictly positive constants.

We will use standard notations which can be found in Duvaut and Lions’ book
[1]. For example, Hm(Ω) andHr(∂Ω) will denote the Sobolev spaces of orderm and
r on Ω and ∂Ω respectively. Given a real-valued function g the notation

∫
∂Ω
gdΓ

means the surface integral of g over the surface ∂Ω. If X is a vector space, then
[X]m means X ×X ×X × · · · ×X m-times. For any vector v ∈ R3, |v| denotes the
usual norm of v in R3.

2. A Boundary Observability Inequality

We consider suitable function spaces where the solutions {E,H, u, ut} of problem
(1.1)–(1.6) (with P and Q identically equal to zero) will be considered. Let Ω be a
bounded region of R3 with smooth boundary ∂Ω and E > 0, µ > 0 as indicated in
Section 1. We consider the Hilbert space H defined as follows

H = [L2(Ω)]3 × [L2(Ω)]3

with inner product given by

〈v, w〉H =
∫

Ω

[Ev1 · w1 + µv2 · w2]dx

for any v = (v1, v2), w = (w1, w2) in H. Here the central dot · means the usual
inner product in R3. We also consider the Hilbert space

H(curl,Ω) = {w ∈ [L2(Ω)]3; curl w ∈ [L2(Ω)]3}

with inner product

〈v1, v2〉H(curl,Ω) =
∫

Ω

[v1 · v2 + curl v1 · curl v2]dx

for any v1, v2 ∈ H(curl,Ω). It is well known (see [1]) that the map Z 7→ η × Z|∂Ω

from [C1
0 (Ω)]3 into [C1(∂Ω)]3 extends by continuity to a continuous linear map from

H(curl,Ω) into [H−1/2(∂Ω)]3. This result allow us to consider the space

H0(curl,Ω) = {w ∈ H(curl,Ω), η × w = 0 on ∂Ω}.

Here η = η(x) denotes the unit normal vector at x ∈ ∂Ω pointing the exterior of
Ω. We define the operator A : D(A) ⊆ H 7→ H with domain D(A) given by

D(A) = H0(curl,Ω)×H(curl,Ω)

and A is defined as follows

A(v1, v2) = (E−1 curl v2,−µ−1 curl v1)

The skew-selfadjointness of A can be easily verified. By Stone’s Theorem, the
operator A generates a one-parameter group of unitary operators {U(t)}t∈R on
H. Observe that in order U(t)f to solve problem (1.1)–(1.3) with Q ≡ 0 and
given f ∈ D(A) remains to prove that the components of U(t)f are divergent
free. In order to overcome this issue we consider M = {(grad ϕ1, grad ϕ2) with
ϕ1, ϕ2 ∈ C∞0 (Ω)} and M1 = M⊥. We observe that M is not closed in H but
M1 is closed in H. In the distributional sense it is easy to prove that whenever
w = (w1, w2) ∈ M1 then divw1 = 0 and divw2 = 0. Furthermore, we claim that
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U(t) takes M1 ∩ D(A) into itself. Indeed, for any w in M and v in M1 ∩ D(A) we
have

d

dt
〈U(t)v, w〉H = 〈AU(t)v, w〉H = 〈U(t)v,A∗w〉H = 0 for any t ∈ R.

Thus

〈U(t)v, w〉H = constant for any t ∈ R.

Therefore, taking t = 0 we have 〈v, w〉 = 0. Consequently U(t)v ∈ M1 ∩ D(A)
for any t ∈ R which proves our claim. Observe that for any element v = (v1, v2)
belonging to M1 ∩ D(A) and w = (0, gradϕ2) with ϕ2 ∈ H2(Ω) we have

0 = 〈v, w〉H =
∫

Ω

µv2 · gradϕ2dx = µ

∫
∂Ω

ϕ2v2 · ηdΓ.

Since ϕ2 ∈ H2(Ω) is arbitrary, the above identify say that

η · v2 = 0 on ∂Ω. (2.1)

We conclude that problem (1.1)–(1.3) with Q ≡ 0 has a generator A1 which applies
M1 ∩ D(A) into M1 ∩ D(A) and for any w = (w1, w2) ∈ M1 ∩ D(A) the relation
η · w2 = 0 on ∂Ω holds.

Next, we consider problem (1.3)–(1.6) with P ≡ 0. We can use Galerkin’s method
to find u and p (defined up to a constant). We choose the spaces

V = {ϕ ∈ [C∞0 (Ω)]3,divϕ = 0 in Ω}.

Let Y be the closure of V with respect to the norm of [H1
0 (Ω)]3 and

W = Y ∩ [H2(Ω)]3.

Considering u0 ∈ W , u1 ∈ Y we obtain by using the Galerkin method a unique
solution of problem (1.3)–(1.6) such that u ∈ C([0,+∞);V )∩C1([0,+∞);H) where
H denotes the closure of V with respect to the norm of [L2(Ω)]3. We can also obtain
more regularity. For example, if u0 ∈ V ∩ [H4(Ω)]3 and u1 ∈ W then the solution
u ∈ C([0,∞);W ) ∩ C1([0,+∞);V ) with p ∈ H2(Ω).

Let us now concern ourselves with the simultaneous boundary observability prob-
lem. We use the multiplier method. They are conveniently modified in such a way
that we can handle the extra boundary terms appearing in the identities. Let h(x)
be an auxiliary scalar smooth function on Ω, which we will choose later on. For
problem (1.1) we consider the multipliers

M1 = tE + µ gradh×H,

M2 = tH − E gradh× E

Since {E,H} solves (1.1)–(1.2) then we have the identity

0 = 2M1 · (EEt − curlH) + 2M2 · (µHt + curlE)

+ 2E(gradh · E) divE + 2µ(gradh ·H) divH.
(2.2)

We can rearrange the terms on the right hand of (2.2) to obtain

∂A

∂t
= div( ~B) +D (2.3)
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where

A = A(x, t) = t(E|E|2 + µ|H|2) + 2Eµ gradh · (H × E) (2.4)

~B = ~B(x, t) = 2tH × E + gradh(E|E|2 + µ|H|2)
− 2EE(E · gradh)− 2µH(H · gradh),

(2.5)

D = 2
3∑

i,j=1

∂2h

∂xi∂xj
(EEiEj + µHiHj)− (∆h− 1)(E|E|2 + µ|H|2), (2.6)

where

|E|2 =
3∑

j=1

E2
j , |H|2 =

3∑
j=1

H2
j .

Similarly, for problem (1.4) we consider the multipliers

M3 = tut + (gradh · grad)u+ u,

M4 = tp
∂

∂t
+ p(gradh · grad) + p.

Here gradh · grad =
∑3

j=1
∂h
∂xj

∂
∂xj

. Observe that M4 is actually an operator. Since
{u, p} is a solution of (1.4) then we have the identity

0 = 2M3 · (ρutt − α∆u+ grad p) + 2M4 div u. (2.7)

We can rearrange terms in identity (2.7) to obtain

∂A1

∂t
= div ~G+ div ~F +D1 (2.8)

where

A1 = t
(
ρ|ut|2 + α

3∑
i=1

∣∣ ∂u
∂xi

∣∣2) + 2ρ[ut · (gradh · grad)u+ u],

~G = (G1, G2, G3)

with

Gi = 2[tut + (gradh · grad)u+ u] · α ∂u
∂xi

+
∂h

∂xi

(
ρ|ut|2 − α

3∑
j=1

∣∣ ∂u
∂xj

∣∣2), (2.9)

~F = −2p[tut + (gradh · grad)u+ u]

and

D1 = (3−∆h)ρ|ut|2 + (∆h− 1)α
3∑

j=1

∣∣ ∂u
∂xj

∣∣2
− 2

3∑
i,q=1

∂2h

∂xi∂xq
α
( ∂u
∂xi

· ∂u
∂xq

)
+ 2p

3∑
i,j=1

∂2h

∂xi∂xj

∂uj

∂xi
.

Remark 2.1. If we choose h(x) = 1
2 |x− x0|2 for some x0 ∈ R3 then we can verify

that D and D1 in (2.3) and (2.8) are identically zero. Therefore in the case (2.3)
and (2.8) represent a conservation law.
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Let (E0,H0) ∈M1 ∩D(A) and (E,H) be the corresponding solution of problem
(1.1)–(1.3) with Q ≡ 0. Integration in Ω× (0, T ) of identity (2.3) give us

T

∫
Ω

{E|E|2 + µ|H|2}dx+ 2Eµ
∫

Ω

gradh · (H × E)dx
∣∣∣t=T

t=0

=
∫ T

0

∫
∂Ω

β(E,H, h)dΓdt+
∫ T

0

∫
Ω

Ddxds

(2.10)

where

β(E,H, h) = 2tη · (H × E) +
∂h

∂η
(E|E|2 + µ|H|2)

− 2E(E · η)(E · gradh)− 2µ(H · η)(H · gradh).
(2.11)

and D is given as in (2.6). Using the boundary conditions, (1.3) (with Q ≡ 0) and
the vector identities on ∂Ω we get

η · (H × E) = −(η × E) ·H = 0, |E|2 = (E · η)2 + |E × η|2 = (E · η)2

E = η × (η × E) + η(E · η) = η(E · η), |H|2 = (H · η)2 + |H × η|2 = |H × η|2

because |η| = 1 and (2.1) holds for H. Thus we obtain from (2.11)

β(E,H, h) =
∂h

∂η
{µ|H × η|2 − E(E · η)2}. (2.12)

Now, we want to get appropriate estimates for the term
∫ T

0

∫
Ω
Ddxdt in (2.10). Let

us choose a convenient function h(x). We consider the elliptic problem

∆Φ = 1 in Ω

∂Φ
∂η

=
vol(Ω)

area(∂Ω)
on ∂Ω

which admits a solution Φ ∈ C2(Ω)∩C1(Ω). Here area(∂Ω) means the surface area
of S = ∂Ω. Let 0 < δ < 1 and x0 ∈ R3 we define

h(x) = δΦ(x) +
1
2
|x− x0|2. (2.13)

substitution of such h(x) into (2.6) give us

D = 2δ
3∑

i,j=1

∂2Φ
∂xi∂xj

(EEiEj + µHiHj)− δ(E|E|2 + µ|H|2).

Let C1 = C1(Φ) be the constant given by

C1 = max
x∈Ω, i,j=1,2,3

∣∣∂2Φ(x)
∂xi∂xj

∣∣.
We can easily verified that C1 ≥ 1/3 and

|D| ≤ δC2(E|E|2 + µ|H|2) (2.14)

where C2 = 6C1 − 1 > 0 and 0 < δ < 1. Since the quantity 1
2

∫
Ω
{E|E|2 + µ|H|2}dx

is constant for any t ∈ R for the solution (E,H) of (1.1)–(1.3) (with Q ≡ 0) then,
from (2.14) it follows that∫ T

0

∫
Ω

Ddxdt ≤ δC2T

∫
Ω

{E|E|2 + µ|H|2}dx. (2.15)
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Now, we want to estimate the term 2Eµ
∫
Ω

gradh · (H × E)dx
∣∣∣t=T

t=0
in (2.10). Let

C3 > 0 given by
C3 = max

x∈Ω
{| gradΦ(x)|+ |x− x0|}

Since |H × E| ≤ 2|E||H| and h as in (2.13) we deduce

2
∫

Ω

Eµ gradh · (H × E)dx ≤ 4(1 + δ)C3

√
Eµ

∫
Ω

√
Eµ|E||H|dx

≤ 4(1 + δ)C3

√
Eµ

∫
Ω

(E|E|2 + µ|H|2)dx
(2.16)

for any 0 ≤ t ≤ T . Thus, from identity (2.10) and inequalities (2.12), (2.15) and
(2.16) we get

(1− δC2)(T − T0)
∫

Ω

{E|E|2 + µ|H|2}dx

≤
∫ T

0

∫
∂Ω

∂h

∂η
{µ|H × η|2 − E(E · η)2}dΓ

(2.17)

where T0 = 4(1 + δ)C3

√
Eµ

/
1− δC2. Similarly, using identity (2.8) and assuming

some geometric condition on the region Ω (say for instance, “substar” like [4, 8])
we can prove that the solution of problem (1.4)–(1.6) (with P ≡ 0) satisfies the
inequality

(1− δC̃2)(T − T̃0)
∫

Ω

{
ρ|ut|2 + α

3∑
i=1

∣∣ ∂u
∂xi

∣∣∣2}dx
≤

∫ T

0

∫
∂Ω

∂h

∂η
α
∣∣η × ∂u

∂η

∣∣2dΓdt (2.18)

for some C̃2 > 0 and T̃0 > 0.

Remark 2.2. By choosing δ > 0 sufficiently small and adding inequalities (2.17)
and (2.18) we would obtain a boundary observability provided ∂h

∂η ≥ 0 on ∂Ω .
However, in order to apply the techniques to use the HUM would not help that
much.

We want to prove the following observability inequality.

Theorem 2.3. Let {E,H, u, ut} be the solution of (1.1)–(1.6) with P = Q = 0 on
∂Ω. Suppose there exist δ1 > 0 and x0 ∈ R3 (δ1 < min{C−1

2 , C̃−1
2 }) where C2 and

C̃2 are as in (2.17) and (2.18) such that

δ1
vol(Ω)

area(∂Ω)
+ (x− x0) · η > 0 for all x ∈ ∂Ω (2.19)

and the parameters in (1.1) and (1.4) satisfy (numerically) the relation ρ = Eµα.
Then, there exist constants C5, C6 and a T1 > 0 such that

(2− δ1C6)(T − T1)
∫

Ω

{
E|E|3 + µ|H|2 + ρ|ut|2 + α

3∑
i=1

∣∣ ∂u
∂xi

∣∣2}
≤

∫ T

0

∫
∂Ω

{C5

2

∣∣µH + α
∂u

∂η

∣∣2 − ∂h

∂η
E(E · η)2

}
dΓdt
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Proof. In (2.13) we choose δ = δ1. Observe that (2.19) tell us that ∂h
∂η > 0 for all

x ∈ ∂Ω. we can easily verify the identity

µH · (ρutt − α∆u+ grad p) + ρE−1 curlu · (EEt − curlH)

+ ρut · (µHt + curlE) + (µp− αµdiv u) divH

+ (ρE−1 − αµ) curlu · curlH

=
∂

∂t
A2 − div ~B2.

(2.20)

where

A2 = ρut · EH + ρ curlu · E,
~B2 = ρut × E + αµ(div u)H + αµH × curlu− µpH.

From (2.20) it follows that ∂
∂tA2 = divB2. Integration over Ω× (0, T ) give us∫

Ω

{ρut · EH + ρ curlu · E}dx
∣∣∣t=T

t=0
= −αµ

∫ T

0

∫
∂Ω

(H × η) · curlu dΓdt. (2.21)

We use the identity

|µ(H × η)− α curlu|2 = µ2|H × η|2 − 2αµ(H × η) · curlu+ α2| curlu|2.

Substitution into (2.21) give us∫
Ω

{ρut · EH + ρ curlu · E}dx
∣∣∣t=T

t=0

=
∫ T

0

∫
∂Ω

{1
2
|µ(H × η)− α curlu|2 − 1

2
µ2|H × η|2 − α2

2
| curlu|2

}
dΓdt

=
∫ T

0

∫
∂Ω

{1
2
|µ(H × η)− α curlu|2 − 1

2
µ2|H × η|2 − α2

2

∣∣∂u
∂η

× η
∣∣2}dΓdt

(2.22)

because u = 0 on ∂Ω × (0, T ) (and u ∈ [H2(Ω) ∩ H1
0 (Ω)]3 then ∂ui

∂xj
= ηj

∂ui

∂η ;
therefore curlu = η × ∂u

∂η on ∂Ω× (0;T ). Observe that

| curlu|2 ≤ 2
3∑

i,j=1

( ∂ui

∂xj

)2 = 2
3∑

j=1

∣∣ ∂u
∂xj

∣∣2. (2.23)

Using (2.23) we can also obtain the inequality∣∣ ∫
Ω

{ρut · EH + ρ curlu · E}dx
∣∣

≤ C4

∫
Ω

{
ρ|ut|2 + α

3∑
j=1

∣∣ ∂u
∂xj

∣∣2 + E|E|2 + µ|H|2
}
dx

(2.24)

where C4 = max{(ρ/µ)1/2E , 2ρ/
√
E}. Consider

C5 = 2max
{∥∥∂h
∂η

∥∥
L∞(∂Ω)

α−1,
∥∥∂h
∂η

∥∥
L∞(∂Ω)

µ−1
}
.
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We multiply (2.22) by C5 and obtain from (2.17), (2.18), (2.22) and (2.24)

(1− δ1C6)(T − T1)
∫

Ω

{
E|E|2 + µ|H|2 + ρ|ut|2 + α

3∑
i=1

∣∣ ∂u
∂xi

∣∣2}dx
≤

∫ T

0

∫
∂Ω

∂h

∂η

{
µ|H × η|2 − E(E · η)2 + α

∣∣η × ∂u

∂η

∣∣2}
+
C5

2
|µ(H × η)− α curlu|2 − C5

2
µ2|H × η|2 − α2

2
C5

∣∣∂u
∂η

× η
∣∣2dΓdt

≤
∫ T

0

∫
∂Ω

{C5

2
|µ(H × η)− α curlu|2 − ∂h

∂η
E(E · η)2

}
dΓdt

where C6 = C2 + C̃2 and

T1 =
(T0 + T̃0)− δ1(C2T0 + C̃2T̃0)

2− δ1C6
> 0

We claim that the term |µ(H×η)−α curlu| on the right hand side of (2.19) equals
to |α∂u

∂η + µH| for any (x, t) ∈ ∂Ω × (0, T ) q.t.p. In fact, using the boundary
conditions we have

|µ(H × η)− α curlu| =
∣∣µ(H × η) + α

(∂u
∂η

× η
)∣∣.

Using the identity |v× η|2 + (v · η)2 = |v|2 valid for any vector of v ∈ R3 we obtain∣∣(µH + α
∂u

∂η

)
× η

∣∣2 +
[(
µH + α

∂u

∂η

)
· η

]2

=
∣∣α∂u
∂η

+ µH
∣∣2

because H · η = 0 and ∂u
∂η · η = 0 on ∂Ω × (0, T ). This proves our claim and the

conclusion of Theorem 2.3. �

Corollary 2.4. Let {E,H, u, ut} be the solution of (1.1)-(1.6) with zero boundary
conditions and assume the conditions of Theorem 2.3. If the condition

µH + α
∂u

∂η
= 0 on ∂Ω× (0, T )

holds, then for any T > T1 we will have

E(x, t) ≡ H(x, t) ≡ u(x, t) ≡ 0 in Ω× (0, T ).

3. Simultaneous exact controllability

Let {E,H, u, ut} be the solution of (1.1)–(1.6) with zero boundary conditions.
In the function space of initial data (for strong solutions) we consider the Hilbert
space F obtained by completing such space with respect to the norm

‖(f, g)‖F =
( ∫ T

0

∫
∂Ω

∣∣µH + α
∂u

∂η

∣∣2dΓdt)1/2

for T > T1 where f = (f1, f2) and g = (g1, g2) are the initial data of problems
(1.1)–(1.3) and (1.4)–(1.6) respectively. From Corollary 2.4 it follows that ‖ · ‖F is
indeed a norm. Let us denote by ‖ · ‖K the energy norm

‖(f, g)‖2K =
∫

Ω

{
E|E|2 + µ|H|2 + ρ|ut|2 + α

3∑
j=1

∣∣ ∂u
∂xj

∣∣2}dx
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then, clearly we have F ⊆ K and ‖(f, g)‖K ≤ C‖(f, g)‖F for some positive constant
C. Let us consider the dual space of F with respect to K. We will denoted by F ′.
Definition. Given R = R(x, t) ∈ [L2(∂Ω × (0, T ))]3 and (f1, f2, g1, g2) ∈ F ′. We
say that {E,H, u, ut} is a solution of the Maxwell/elasticity system if {E,H} solves
(1.1)–(1.2) with boundary condition.

η × E = 0 = µη × (η ×R) on ∂Ω× (0, T ) (3.1)

and (u, ut) solves (1.4)–(1.5) with boundary conditions ut = R on ∂Ω × (0, T ).
Furthermore,

(a) (E(·, t),H(·, t), u(·, t), ut(·, t)) ∈ L∞(0, T ;F ′) and
(b)

〈(E(·, t),H(·, t), u(·, t), ut(·, t)), (Ẽ(·, t), H̃(·, t), ũ(·, t), ũt(·, t))〉K
= 〈(f1, f2, g1, g2), (f̃1, f̃2, g̃1, g̃2)〉K

+
∫ t

0

∫
∂Ω

R ·
(
µH̃0 + α

∂ũ

∂η
− p̃η

)
dΓdτ

(3.2)

holds for any (f̃1, f̃2, g̃1, g̃2) ∈ F and t ∈ (0, T ) where (Ẽ, H̃, ũ, ũt) is a
solution of (1.1)–(1.6) with zero boundary conditions. In (3.1)

〈(f1, f2, g1, g2), (f̃1, f̃2, g̃1, g̃2)〉K

=
∫

Ω

{
Ef1 · f̃1 + µf2 · f̃2 + α

3∑
i=1

∂g1
∂xi

· ∂g̃1
∂xi

+ ρg2 · g̃2
}
dx.

Here p̃ denotes the pressure term for the solution (ũ, ũt) of (1.4)–(1.6) with zero
boundary conditions.
Definition. Given R = R(x, t) ∈ [L2(∂Ω × (0, T )]3 we say that {E,H, u, ut} is a
solution of the Maxwell/elasticity system with zero initial data at time t = T if
{E,H} solves (1.1)–(1.2) with boundary condition

η × E = µη × (η ×R) on ∂Ω× (0, T )

and {u, ut} solves (1.4)–(1.5) with boundary condition

ut = R on ∂Ω× (0, T ) (3.3)

Furthermore,

(a) (E(·, t),H(·, t), u(·, t), ut(·, t)) ∈ L∞(0, T ;F ′) and
(b)

〈(E(·, t),H(·, t), u(·, t), ut(·, t)), (Ẽ(·, t), H̃(·, t), ũ(·, t), ũt(·, t))〉K

= −
∫ T

t

∫
∂Ω

R ·
(
α
∂ũ

∂η
+ µH̃ − p̃η

)
dΓdτ

(3.4)

holds for any (f̃1, f̃2, g̃1, g̃2) ∈ F and t ∈ (0, T ).

Due to the linearity and reversibility of system (1.1)-(1.6) it is clear that in order
to solve the problem of exact controllability it is sufficient to prove that for any
initial data (f1, f2, g1, g2) ∈ F ′ then the corresponding solution can be driven to
the equilibrium state at time T .
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Theorem 3.1. Under the assumptions of Theorem 2.3. If T > T1, then for any
initial data (f1, f2, g1, g2) ∈ F ′ of problems (1.1)–(1.2) and (1.4)–(1.5) there ex-
ist a control P ∈ H1(0, T ; [L2(∂Ω)]3) such that u = P on ∂Ω × (0, T ) and the
corresponding solution satisfies

(u, ut)
∣∣
t=T

= (0, 0)

while the vector-valued function Q = µη × (η × Pt) drives system (1.1)–(1.2) such
that η × E = Q on ∂Ω× (0, T ) and the corresponding solution satisfies

(E,H)
∣∣
t=T

= (0, 0)

Proof. We use our previous discussion to apply the Hilbert Uniqueness Method
(HUM). Let (h1, h2, q1, q2) be an (arbitrary) element of F and (ϕ,ψ, v, vt) the so-
lution of (1.1)–(1.6) with zero boundary conditions and initial data

(ϕ,ψ, v, vt)
∣∣
t=0

= (h1, h2, q1, q2). (3.5)

Finally, let (E,H, u, ut) be the solution of (1.1), (3.1), (1.4), (3.3) with zero initial
data at t = T > T1 where R is chosen to be

−R(x, t) = µψ + α
∂v

∂η
on ∂Ω× (0, T ). (3.6)

We consider the map M : F 7→ F ′ given by

M(h1, h2, q1, q2) = (E,H, u, ut)
∣∣
t=0

.

Our objective is to show that M is an isomorphism from F onto F ′. From to (3.4)
(with t = 0) and (3.6) it follows

〈M(h1, h2, q1, q2), (f̃1, f̃2, q̃1, q̃2)〉K

=
∫ T

0

∫
∂Ω

(
µψ + α

∂v

∂η

)
·
(
α
∂ũ

∂η
+ µH̃ − p̃η

)
dΓdτ

(3.7)

where (Ẽ, H̃, ũ, ũt) is a solution of (1.1)–(1.6) with zero boundary conditions. Since
we know that ψ · η = 0 and ∂v

∂η · η = 0 on ∂Ω × (0, T ) because (2.1) and v = 0 on

∂Ω × (0, T ), then it follows that
(
µψ + α ∂v

∂η

)
· p̃η = 0 on ∂Ω × (0, T ). Therefore

from (3.7) we deduce

〈M(h1, h2, q1, q2), (f̃1, f̃2, q̃1, q̃2)〉K

=
∫ T

0

∫
∂Ω

(
µψ + α

∂v

∂η

)
·
(
α
∂ũ

∂η
+ µH̃

)
dΓdτ

= 〈(h1, h2, q1, q2), (f̃1, f̃2, q̃1, q̃2)〉F

(3.8)

for any (f̃1, f̃2, q̃1, q̃2) ∈ F . Clearly (3.8) implies that M is an isomorphism from F
onto F ′. Now, we return to problems (1.1), (1.2), (3.1) and (1.4), (1.5), (3.3). Let
(f1, f2, g1, g2) ∈ F ′. We set

(h1, h2, q1, q2) = M−1(f1, f2, g1, g2), R = −
(
µψ + α

∂v

∂η

)
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where (ϕ,ψ, v, vt) is the solution of (1.1), (1.6) with zero boundary conditions and
initial data at t = 0 as in (3.5). From (3.4) with t = T > T1 we deduce

〈(E(T ),H(T ), u(T ), ut(T )), (Ẽ(T ), H̃(T ), ũ(T ), ũt(T ))〉K
= 〈M(h1, h2, q1, q2), (f̃1, f̃2, q̃1, q̃2)〉K
− 〈(h1, h2, q1, q2), (f̃1, f̃2, q̃1, q̃2)〉F .

(3.9)

Using (3.8), we conclude that the right hand side of (3.9) is equal to zero. This
means that (E(T ),H(T ), u(T ), ut(T )) generates the zero functional on F . Now,
the conclusion of Theorem 3.1 is a consequence of the above discussion: Construct
R(x, t) as in (3.6) and let

P (x, t) =
∫ t

0

R(x, s)ds+ g1(x)

Obviously P = u and η × E = µη × (η × Pt) by construction. �
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