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PARABOLIC EQUATIONS WITH ROBIN TYPE BOUNDARY
CONDITIONS IN A NON-RECTANGULAR DOMAIN

AREZKI KHELOUFI, BOUBAKER-KHALED SADALLAH

Abstract. In this article, we study the parabolic equation ∂tu−c2(t)∂2
xu = f

in the non-necessarily rectangular domain

Ω = {(t, x) ∈ R2 : 0 < t < T, ϕ1(t) < x < ϕ2(t)}.
The boundary conditions are of Robin type, while the right-hand side lies
in the Lebesgue space L2(Ω). Our aim is to find conditions on c and the

functions (ϕi)i=1,2 such that the solution belongs to the anisotropic Sobolev

space H1,2(Ω) = {u ∈ L2(Ω) : ∂tu, ∂xu, ∂2
xu ∈ L2(Ω)}. For goal we use the

method of approximation of domains.

1. Introduction

Let Ω ⊂ R2 be the triangular domain

Ω = {(t, x) ∈ R2 : 0 < t < T, ϕ1(t) < x < ϕ2(t)},
where ϕ1, ϕ2 are the functions of parametrization with ϕ1(0) = ϕ2(0), and T is a
finite positive number. In Ω, we consider the boundary-value problem

∂tu− c2(t)∂2
xu = f in L2(Ω)

bi(t)∂xu+ αi(t)u
∣∣
x=ϕi(t)

= 0, i = 1, 2,
(1.1)

where (αi) and (bi) are given. We look for conditions on the functions (bi, αi, ϕi)i=1,2

and the coefficient c such that (1.1) admits a unique solution u belonging to the
anisotropic Sobolev space

H1,2(Ω) = {u ∈ L2(Ω) : ∂tu, ∂xu, ∂
2
xu ∈ L2(Ω)}.

We consider the case where αi(t) 6= 0 and bi(t) 6= 0 for all t ∈]0, T [. So, (1.1) may
be written in the form

∂tu− c2(t)∂2
xu = f in L2(Ω)

∂xu+ βi(t)u
∣∣
Γi

= 0, i = 1, 2,
(1.2)

where βi(t) = αi(t)
bi(t)

, Γi = {(t, ϕi(t)), t ∈]0, T [}, i = 1, 2.
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In the sequel, the hypothesis

(−1)i(c2(t)βi(t)−
ϕ′i(t)

2
) ≥ 0 a.e. t ∈]0, T [, i = 1, 2, (1.3)

is imposed in order to guarantee the uniqueness of the solution of (1.2). Indeed, if
u is the solution of the (1.2) with a null right-hand side, the calculations show that
the inner product 〈∂tu− c2(t)∂2

xu, u〉 in L2(Ω) gives

0 =
2∑

i=1

∫
Γi

(−1)i
(
c2(t)βi(t)−

ϕ′i(t)
2

)
u2(t, ϕi(t))dt

+
1
2

∫
Γ3

u2dx+
∫

Ω

c2.(∂xu)2 dt dx

where Γ3 = {(T, x) : ϕ1(T ) < x < ϕ2(T )} if ϕ1(T ) 6= ϕ2(T ). The hypothesis (1.3)
implies that ∂xu = 0 and consequently ∂2

xu = 0. Then, (1.2) gives ∂tu = 0. Thus,
u is constant. The boundary conditions and the fact that βi(t) 6= 0 for all t ∈]0, T [
imply u = 0.

We also assume that the functions (βi)i=1,2 satisfy the assumption

β1(t) < 0, β2(t) > 0 for all t ∈ [0, T ]. (1.4)

The most interesting point of the parabolic problem studied here is the fact that
ϕ1(0) = ϕ2(0) or ϕ1(T ) = ϕ2(T ). In this case the domain Ω is not rectangular
and cannot be transformed into a regular domain without the appearance of some
degenerate terms in the parabolic equation; see, for example Sadallah [7].

The solvability of this kind of problems with Cauchy-Dirichlet boundary con-
ditions has been investigated in [3, 4, 8, 9]. In Sadallah [9], the same equation is
studied by another approach making use of the so-called Schur’s Lemma and gives
the same result obtained in [8] by the a priori estimates technique. In [3] and [4],
the authors deal with the heat equation (i.e., the case where c(t) = 1) set in a non-
rectangular domain with a right-hand side taken in Lp, where p ∈]1,∞[, and have
obtained optimal regularity results by the operators sum method. These results
are generalized in [5] to a parabolic equation of the type

∂tu(t, x)− ∂2
xu(t, x) + λm(t, x)u(t, x) = f(t, x)

where λ is a positive spectral parameter and m(.) some positive weight functions.
Hofmann and Lewis [2] have also considered the classical heat equation with Neu-
mann boundary condition in noncylindrical domains satisfying some conditions of
Lipschitz’s type. The authors showed that the optimal Lp regularity holds for p = 2
and the situation gets progressively worse as p approaches 1. In Savaré [10], par-
abolic problems in noncylindrical domains are considered in the Hilbertian case.
The author obtains some regularity results under assumption on the geometrical
behavior of the boundary which cannot include our triangular domain.

The plan of this paper is as follows. In Section 2, we derive some technical
lemmas which will allow us to prove an a priori estimate (in a sense to be defined
later). In Section 3, there are two main steps. First, we prove that (1.2) admits a
(unique) solution in the case of a domain which can be transformed into a rectangle.
Secondly, for T small enough, we prove that the result holds true in the case of a
triangular domain under some assumptions on the coefficient c and the functions
(βi, ϕi)i=1,2 to be made more precise later on. The method used here is based on
the approximation of the triangular domain by a sequence of subdomains (Ωn)n
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which can be transformed into regular domains (rectangles) and we establish an a
priori estimate of the type

‖un‖H1,2(Ωn) ≤ K‖f‖L2(Ωn),

where un is the solution of (1.2) in Ωn and K is a constant independent of n, which
allows us to pass to the limit. Finally, in Section 4 we study (1.2) in the case where
T is not necessarily small.

2. Preliminaries

Let (βi)i=1,2 be continuous real-valued functions on ]0, T [. Assume that there
exists a constant l > 0 such that∣∣ (1 + β2(t))

A(t)

∣∣ ≤ l, (2.1)

∣∣β1(t)(1 + β2(t))
A(t)

∣∣ ≤ l, (2.2)

where
A(t) = β1(t)β2(t) + β1(t)− β2(t) 6= 0, (2.3)

for every t ∈]0, T [.

Lemma 2.1. Assume that β1 and β2 fulfil the conditions (2.1), (2.2) and (2.3).
Then, for a fixed t ∈]0, 1[, there exists a positive constant K1 independent of t, such
that for each u ∈ H2

γ(0, 1)

‖u
(j)
‖L2(0,1) ≤ K1‖u

(2)
‖L2(0,1), j = 0, 1,

where

H2
γ(0, 1) = {u ∈ H2(0, 1) : u′(0) + β1(t)u(0) = 0, u′(1) + β2(t)u(1) = 0}.

Proof. Let t ∈]0, 1[ and f an arbitrary fixed element of L2(0, 1). Then the solution
of the problem

u′′ = f

u′(0) + β1(t)u(0) = 0

u′(1) + β2(t)u(1) = 0,

can be written in the form

u(y) =
∫ y

0

{∫ x

0

f(s)ds
}
dx+ yu′(0) + u(0),

where

u(0) =

∫ 1

0
f(s)ds+ β2(t)

∫ 1

0
{
∫ x

0
f(s)ds}dx

A(t)
u′(0) = −β1(t)u(0).

The uniqueness of the solution is easy to check, thanks to the boundary conditions
and the condition (2.3).
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Using the Cauchy-Schwarz inequality, we obtain the following two estimates

|u(0)| ≤ C| (1 + β2(t))
A(t)

|‖f‖L2(0,1)

|u′(0)| ≤ C|β1(t)(1 + β2(t))
A(t)

|‖f‖L2(0,1),

which will allow us to obtain the desired estimates, thanks to the conditions (2.1),
(2.2). �

Lemma 2.2. Under the assumptions (2.1), (2.2) and (2.3) on (βi)i=1,2 and for a
fixed t ∈]0, 1[, there exists a constant C1 (independent of a and b) such that

‖v(j)‖2L2(a,b) ≤ C1(b− a)2(2−j)‖v(2)‖2L2(a,b), j = 0, 1,

for each v ∈ H2
γ(a, b), with

H2
γ(a, b) = {v ∈ H2(a, b) : v′(a) +

β1(t)
b− a

v(a) = 0, v′(b) +
β2(t)
b− a

v(b) = 0}.

Proof. It is a direct consequence of Lemma 2.1 by using the affine change of variable
[0, 1] → [a, b], x→ (1− x)a+ xb = y. �

3. Solution of the problem (1.2)

3.1. A domain that can be transformed into a rectangle. Let

Ω = {(t, x) ∈ R2 : 0 < t < T,ϕ1(t) < x < ϕ2(t)}

where T is a finite positive number, while ϕ1 and ϕ2 are Lipschitz continuous in
[0, T ], such that ϕ1(t) < ϕ2(t) for all t ∈ [0, T ]. Consider c a continuous function
on [0, T ], such that

0 < d1 ≤ c ≤ d2, (3.1)

where d1, d2 are two constants.

Theorem 3.1. Under assumptions (1.3), (2.1), (2.2) and (2.3) on (βi)i=1,2, the
problem

∂tu− c2(t)∂2
xu = f in L2(Ω),

u
∣∣
t=0

= 0,

∂xu+ βi(t)u
∣∣
x=ϕi(t)

= 0, i = 1, 2,

(3.2)

admits a (unique) solution u ∈ H1,2(Ω).

Proof. The uniqueness of the solution is easy to check, thanks to (1.3). Let us prove
the existence. The change of variables

(t, x) 7→ (t, y) =
(
t,

x− ϕ1(t)
ϕ2(t)− ϕ1(t)

)
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transforms Ω into the rectangle R =]0, T [×]0, 1[. Putting u(t, x) = v(t, y) and
f(t, x) = g(t, y), then Problem (3.2) becomes

∂tv(t, y) + a(t, y)∂yv(t, y)−
1

b2(t)
∂2

yv(t, y) = g(t, y)

v
∣∣
t=0

= 0
1
ϕ(t)

∂yv + β1(t)v
∣∣
y=0

= 0,

1
ϕ(t)

∂yv + β2(t)v
∣∣
y=1

= 0,

(3.3)

where

ϕ(t) = ϕ2(t)− ϕ1(t)

b(t) =
ϕ(t)
c(t)

a(t, y) = −yϕ
′(t) + ϕ′1(t)
ϕ(t)

.

This change of variables conserves the spaces H1,2 and L2. In other words

f ∈ L2(Ω) ⇔ g ∈ L2(R)

u ∈ H1,2(Ω) ⇔ v ∈ H1,2(R).

�

Lemma 3.2. The operator

B : H1,2
γ (R) → L2(R)

v 7→ Bv = a(t, y)∂yv

is compact, where for a fixed t ∈]0, T [,

H1,2
γ (R) = {v ∈ H1,2(R) : v

∣∣
Γ0

= 0, ∂yv + ϕ(t)βi(t)v
∣∣
Γi,R

= 0, i = 1, 2},

with Γ0 = {0}×]0, 1[, Γ1,R =]0, T [×{0} and Γ2,R =]0, T [×{1}.

Proof. R has the “horn property” of Besov [1], so

∂y : H1,2
γ (R) → H

1
2 ,1(R)

v 7→ ∂yv

is continuous. Since R is bounded, the canonical injection is compact from H
1
2 ,1(R)

into L2(R), see for instance [1]. Here

H
1
2 ,1(R) = L2(0, T ;H1]0, 1[) ∩H 1

2 (0, T ;L2]0, 1[).

See [6] for the complete definitions of the Hr,s Hilbertian Sobolev spaces.
Then ∂y is a compact operator from H1,2

γ (R) to L2(R). Furthermore, since a(., .)
is a bounded function, the operator B = a∂y is then compact from H1,2

γ (R) into
L2(R). �

So, it is sufficient to show that the operator

∂t −
c2

ϕ2
∂2

y : H1,2
γ (R) → L2(R)
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is an isomorphism. A simple change of variable t = h(s) with h′(s) = ϕ2

c2 (t),
transforms the problem

∂tv(t, y)−
c2

ϕ2
(t)∂2

yv(t, y) = g(t, y) ∈ L2(R),

v
∣∣
t=0

= 0,
1
ϕ(t)

∂yv + β1(t)v
∣∣
y=0

= 0,

1
ϕ(t)

∂yv + β2(t)v
∣∣
y=1

= 0,

into
∂sw(s, y)− ∂2

yw(s, y) = ζ(s, y)

w
∣∣
s=h−1(0)

= 0

1
ϕ(h(s))

∂yw + β1(h(s))w
∣∣
y=0

= 0,

1
ϕ(h(s))

∂yw + β2(h(s))w
∣∣
y=1

= 0,

(3.4)

with ζ(s, y) = g(t,y)
h′(s) and w(s, y) = v(t, y). Note that this change of variables

preserves the spaces L2 and H1,2. It follows from (1.4) that there exists a unique
w ∈ H1,2 solution of the problem (3.4). This implies that Problem (3.2) admits
a unique solution u ∈ H1,2(Ω). We obtain the function u by setting u(t, x) =
v(t, y) = w(h−1(t), y). This completes the proof of Theorem 3.1.

We shall need the following result in order to justify the calculus of the next
section.

Lemma 3.3. The space

W = {u ∈ D([0, T ];H2(0, 1)) : ∂xu+ βi(t)u
∣∣
Γi

= 0, i = 1, 2}

is dense in

H1,2
γ (]0, T [×]0, 1[) = {u ∈ H1,2(]0, T [×]0, 1[) : ∂xu+ βi(t)u

∣∣
Γi

= 0, i = 1, 2}

where Γ1 =]0, T [×{0} and Γ2 =]0, T [×{1}.

The above lemma is a particular case of [6, Theorem 2.1].

Remark 3.4. We can replace in Lemma 3.3 R =]0, T [×]0, 1[ by Ω with the help
of the change of variables defined above.

3.2. Case of a triangular domain. In this case, we define Ω by

Ω = {(t, x) ∈ R2 : 0 < t < T,ϕ1(t) < x < ϕ2(t)}
with

ϕ1(0) = ϕ2(0)

ϕ1(T ) < ϕ2(T ).
(3.5)

We assume that the functions (ϕi)i=1,2 satisfy

ϕ′i(t)(ϕ2(t)− ϕ1(t)) → 0 as t→ 0, i = 1, 2. (3.6)

For each n ∈ N, we define Ωn by

Ωn = {(t, x) ∈ R2 : an < t < T,ϕ1(t) < x < ϕ2(t)}
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where (an)n is a decreasing sequence to zero. Thus, we have

ϕ1(an) < ϕ2(an),

ϕ1(T ) < ϕ2(T ).

Setting fn = f
∣∣
Ωn

, where f ∈ L2(Ω), we denote un ∈ H1,2(Ωn) the solution of (3.2)
in Ωn

∂tun − c2(t)∂2
xun = fn in L2(Ωn)

un/t=an
= 0

∂xun + βi(t)un/Γn,i
= 0, i = 1, 2,

(3.7)

here Γn,i = {(t, ϕi(t)), an < t < T}, i = 1, 2, and c is a bounded differentiable
coefficient depending on time such that

0 < α ≤ c(t)c′(t) ≤ β (3.8)

for every t ∈]0, T [, where α and β are two constants. We also assume that

(β1c
2) is an increasing function on ]0, T [ (3.9)

(β2c
2) is a decreasing function on ]0, T [. (3.10)

Such a solution un exists by Theorem 3.1.

Theorem 3.5. There exists a constant K > 0 independent of n such that

‖un‖2H1,2(Ωn) ≤ K‖fn‖2L2(Ωn) ≤ K‖f‖2L2(Ω).

To prove Theorem 3.5, we need some preliminary results.

Lemma 3.6. For every ε > 0 satisfying (ϕ2(t)−ϕ1(t)) ≤ ε, there exists a constant
C > 0 independent of n, such that

‖∂j
xun‖2L2(Ωn) ≤ Cε2(2−j)‖∂2

xun‖2L2(Ωn), j = 0, 1.

Proof. Replacing in Lemma 2.2 v by un and ]a, b[ by ]ϕ1(t), ϕ2(t)[, for a fixed t, we
obtain ∫ ϕ2(t)

ϕ1(t)

(∂j
xun)2dx ≤ C(ϕ2(t)− ϕ1(t))2(2−j)

∫ ϕ2(t)

ϕ1(t)

(∂2
xun)2dx

≤ Cε2(2−j)

∫ ϕ2(t)

ϕ1(t)

(∂2
xun)2dx

where C is the constant of Lemma 2.2. Integrating with respect to t, we obtain the
desired estimates. �

Proposition 3.7. There exists a constant C > 0 independent of n such that

‖∂tun‖2L2(Ωn) + ‖∂2
xun‖2L2(Ωn) ≤ C‖f‖2L2(Ω).

Then Theorem 3.5 is a direct consequence of Lemma 3.6 and Proposition 3.7,
since ε is independent of n.

Proposition 3.7. Thanks to the density results, Lemma 2.2 and Remark 3.4, it is
sufficient to prove the first part of the proposition (Relationship (3.11) below) in
the case when un ∈ {v ∈ H2(Ωn), ∂xv + βi(t)v

∣∣
Γn,i

= 0, i = 1, 2} without assuming
the Cauchy condition un/t=an

= 0.
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For this end, we develop the inner product in L2(Ωn)

‖fn‖2L2(Ωn) = 〈∂tun − c2∂2
xun, ∂tun − c2∂2

xun〉

= ‖∂tun‖2L2(Ωn) + ‖c2.∂2
xun‖2L2(Ωn) − 2〈∂tun, c

2∂2
xun〉.

Calculating the last term of the previous relation, we obtain

〈∂tun, c
2∂2

xun〉 =
∫

Ωn

∂tun.c
2∂2

xun dt dx

= −
∫

Ωn

c2∂x∂tun.∂xun dt dx+
∫

∂Ωn

c2∂tun.∂xunνxdσ.

So,

− 2〈∂tun, c
2∂2

xun〉

=
∫

Ωn

c2∂t(∂xun)2 dt dx− 2
∫

∂Ωn

c2∂tun.∂xunνxdσ

= −
∫

Ωn

2cc′(∂xun)2 dt dx+
∫

∂Ωn

c2(∂xun)2νtdσ − 2
∫

∂Ωn

c2∂tun.∂xunνxdσ

=
∫

∂Ωn

c2[(∂xun)2νt − 2∂tun.∂xunνx]dσ −
∫

Ωn

2cc′(∂xun)2 dt dx,

where νt, νx are the components of the outward normal vector at the boundary of
Ωn. We shall rewrite the boundary integral making use of the boundary conditions.
On the part of the boundary of Ωn where t = an, we have νx = 0 and νt = −1.
The corresponding boundary integral

A1 = −
∫ ϕ1(an)

ϕ2(an)

c2(∂xun)2dx =
∫ ϕ2(an)

ϕ1(an)

c2(∂xun)2dx ≥ 0.

On the part of the boundary of Ωn where t = T , we have νx = 0 and νt = 1.
Accordingly the corresponding boundary integral

A2 =
∫ ϕ2(T )

ϕ1(T )

c2(∂xun)2dx

is nonnegative. On the parts of the boundary where x = ϕi(t), i = 1, 2, we have

νx =
(−1)i√

1 + (ϕ′i)2(t)
, νt =

(−1)i+1ϕ′i(t)√
1 + (ϕ′i)2(t)

and ∂xun(t, ϕi(t))+βi(t)un(t, ϕi(t)) = 0, i = 1, 2. Consequently, the corresponding
integral is∫ T

an

c2ϕ′1(t)[∂xun(t, ϕ1(t))]2dt− 2
∫ T

an

(β1c
2)(t)∂tun(t, ϕ1(t)).un(t, ϕ1(t))dt

−
∫ T

an

c2ϕ′2(t)[∂xun(t, ϕ2(t))]2dt+ 2
∫ T

an

(β2c
2)(t)∂tun(t, ϕ2(t)).un(t, ϕ2(t))dt.
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By setting

In,k = (−1)k+1

∫ T

an

c2ϕ′k(t)[∂xun(t, ϕk(t))]2dt, k = 1, 2,

Jn,k = (−1)k2
∫ T

an

(βkc
2)(t)∂tun(t, ϕk(t)).un(t, ϕk(t))dt, k = 1, 2,

we have

−2〈∂tun, c
2∂2

xun〉 ≥ −|In,1| − |In,2| − |Jn,1| − |Jn,2| −
∫

Ωn

2cc′(∂xun)2 dt dx. (3.11)

�

1. Estimation of In,k, k = 1, 2.

Lemma 3.8. There exists a constant K > 0 independent of n such that

|In,k| ≤ Kε‖∂2
xun‖2L2(Ωn), k = 1, 2.

Proof. We convert the boundary integral In,1 into a surface integral by setting

[∂xun(t, ϕ1(t))]2 = − ϕ2(t)− x

ϕ2(t)− ϕ1(t)
[∂xun(t, x)]2

∣∣x=ϕ2(t)

x=ϕ1(t)

= −
∫ ϕ2(t)

ϕ1(t)

∂

∂x
{ ϕ2(t)− x

ϕ2(t)− ϕ1(t)
[∂xun(t, x)]2}dx

= −2
∫ ϕ2(t)

ϕ1(t)

ϕ2(t)− x

ϕ2(t)− ϕ1(t)
∂xun(t, x)∂2

xun(t, x)dx

+
∫ ϕ2(t)

ϕ1(t)

1
ϕ2(t)− ϕ1(t)

[∂xun(t, x)]2dx.

Then

In,1 =
∫ T

an

c2(t)ϕ′1(t)[∂xun(t, ϕ1(t))]2dt

=
∫

Ωn

c2(t)
ϕ′1(t)

ϕ2(t)− ϕ1(t)
(∂xun)2 dt dx

− 2
∫

Ωn

c2(t)
ϕ2(t)− x

ϕ2(t)− ϕ1(t)
ϕ′1(t)(∂xun)(∂2

xun) dt dx.

Thanks to Lemma 3.6, we can write∫ ϕ2(t)

ϕ1(t)

[∂xun(t, x)]2dx ≤ C[ϕ2(t)− ϕ1(t)]2
∫ ϕ2(t)

ϕ1(t)

[∂2
xun(t, x)]2dx.

Therefore,∫ ϕ2(t)

ϕ1(t)

[∂xun(t, x)]2
|ϕ′1|

ϕ2 − ϕ1
dx ≤ C|ϕ′1|[ϕ2 − ϕ1]

∫ ϕ2(t)

ϕ1(t)

[∂2
xun(t, x)]2dx,

consequently,

|In,1| ≤ C

∫
Ωn

c2(t)|ϕ′1|[ϕ2 − ϕ1](∂2
xun)2 dt dx+ 2

∫
Ωn

c2(t)|ϕ′1||∂xun||∂2
xun| dt dx,
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since | ϕ2(t)−x
ϕ2(t)−ϕ1(t)

| ≤ 1. So, for all ε > 0, we have

|In,1| ≤ C

∫
Ωn

c2(t)|ϕ′1|[ϕ2 − ϕ1](∂2
xun)2 dt dx

+
∫

Ωn

εc2(t)(∂2
xun)2 dt dx+

1
ε

∫
Ωn

c2(t)(ϕ′1)
2(∂xun)2 dt dx.

Lemma 3.6 yields

1
ε

∫
Ωn

c2(t)(ϕ′1)
2(∂xun)2 dt dx ≤ C

1
ε

∫
Ωn

c2(t)(ϕ′1)
2[ϕ2 − ϕ1]2(∂2

xun)2 dt dx.

Thus, there exists a constant M > 0 independent of n such that

|In,1| ≤ C

∫
Ωn

c2(t)[|ϕ′1||ϕ2 − ϕ1|+
1
ε
(ϕ′1)

2|ϕ2 − ϕ1|2](∂2
xun)2 dt dx

+
∫

Ωn

c2(t)ε(∂2
xun)2 dt dx

≤Mε

∫
Ωn

(∂2
xun)2 dt dx,

because |ϕ′1(ϕ2 − ϕ1)| ≤ ε and c2(t) is bounded. The inequality

|In,2| ≤ Kε‖∂2
xun‖2L2(Ωn)

can be proved by a similar argument.

Estimation of Jn,k, k = 1, 2. We have

Jn,1 = −2
∫ T

an

(β1c
2)(t)∂tun(t, ϕ1(t)).un(t, ϕ1(t))dt

= −
∫ T

an

(β1c
2)(t)[∂tu

2
n(t, ϕ1(t))]dt.

By setting h(t) = u2
n(t, ϕ1(t)), we obtain

Jn,1 = −
∫ T

an

β1c
2.

[
h′(t)− ϕ′1(t)∂xu

2
n(t, ϕ1(t))

]
dt

= −β1c
2.h(t)

]T

an
+

∫ T

an

(β1c
2)′.h(t)dt+

∫ T

an

β1c
2.ϕ′1(t)∂xu

2
n(t, ϕ1(t))dt.

Thanks to (1.4), (3.9) and the fact that u2
n(an, ϕ1(an)) = 0, we have

−β1c
2.h(t)

]T

an
+

∫ T

an

(β1c
2)′.h(t)dt ≥ 0.

The last boundary integral in the expression of Jn,1 can be treated by a similar
argument used in Lemma 3.8. So, we obtain the existence of a positive constant K
independent of n, such that∣∣ ∫ T

an

β1c
2.ϕ′1(t)∂xu

2
n(t, ϕ1(t))dt

∣∣ ≤ Kε‖∂2
xun‖2L2(Ωn). (3.12)
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By a similar method, we obtain

Jn,2 = β2(t)c2(t)u2
n(t, ϕ2(t))

]T

an
−

∫ T

an

(β2c
2)′.u2

n(t, ϕ2(t))dt

−
∫ T

an

β2c
2.ϕ′2(t)∂xu

2
n(t, ϕ2(t))dt.

Thanks to (1.4), (3.10) and the fact that u2
n(an, ϕ2(an)) = 0, we have

β2(t)c2(t)u2
n(t, ϕ2(t))

]T

an
−

∫ T

an

(β2c
2)′.u2

n(t, ϕ2(t))dt ≥ 0.

Then

| −
∫ T

an

β2c
2.ϕ′2(t)∂xu

2
n(t, ϕ2(t))dt| ≤ Kε‖∂2

xun‖2L2(Ωn) (3.13)

where K is a positive constant independent of n.
Now, we can complete the proof of Proposition 3.7. Summing up the estimates

(3.8), (3.11), (3.12) and (3.13), and making use of Lemma 3.6, we then obtain

‖fn‖2L2(Ωn)

≥ ‖∂tun‖2L2(Ωn) + ‖c2∂2
xun‖2L2(Ωn) −Kε‖∂2

xun‖2L2(Ωn) −K2ε‖∂2
xun‖2L2(Ωn)

≥ ‖∂tun‖2L2(Ωn) + (d2
1 −Kε−K2ε)‖∂2

xun‖2L2(Ωn)

where K2 is a positive number. Then, it is sufficient to choose ε such that (d2
1 −

Kε−K2ε) > 0, to get a constant K0 > 0 independent of n such that

‖fn‖2L2(Ωn) ≥ K0(‖∂tun‖2L2(Ωn) + ‖∂2
xun‖2L2(Ωn)).

However,
‖fn‖L2(Ωn) ≤ ‖f‖L2(Ω),

then, there exists a constant C > 0, independent of n satisfying

‖∂tun‖2L2(Ωn) + ‖∂2
xun‖2L2(Ωn) ≤ C‖fn‖2L2(Ωn) ≤ C‖f‖2L2(Ω).

This completes the proof of Proposition 3.7. �

Passage to the limit. We are now in position to prove the first main result of
this work.

Theorem 3.9. Assume that the following conditions are satisfied
(1) (ϕi)i=1,2 fulfil the assumptions (3.5) and (3.6).
(2) the coefficient c verifies the conditions (3.1) and (3.8).
(3) (βi)i=1,2 fulfil the conditions (1.4), (2.1), (2.2) and (2.3).
(4) (ϕi, βi, c)i=1,2 fulfil the conditions (1.3), (3.9) and (3.10).

Then, for T small enough, (1.2) admits a (unique) solution u belonging to

H1,2
γ (Ω) = {u ∈ H1,2(Ω); (∂xu+ βi(t)u)

∣∣
Γi

= 0, i = 1, 2},

where Γi, i = 1, 2 are the parts of the boundary of Ω where x = ϕi(t).

Proof. Choose a sequence (Ωn)n∈N of the domains defined above, such that Ωn ⊆ Ω
with (an) a decreasing sequence to 0, as n→∞. Then, we have Ωn → Ω, as n→∞.
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Consider the solution un ∈ H1,2(Ωn) of the Robin boundary value problem

∂tun − c2(t)∂2
xun = fn in Ωn

un/t=an
= 0

∂xun + βi(t)un

∣∣
Γn,i

= 0, i = 1, 2,

where Γn,i are the parts of the boundary of Ωn where x = ϕi(t), i = 1, 2. Such a
solution un exists by Theorem 3.1. Let ũn the 0−extension of un to Ω. In virtue
of Theorem 3.5, we know that there exists a constant K > 0 such that

‖ũn‖2L2(Ω) + ‖∂̃tun‖2L2(Ω) + ‖∂̃xun‖2L2(Ω) + ‖∂̃2
xun‖2L2(Ω) ≤ K‖f‖2L2(Ω).

This means that ũn, ∂̃tun, ∂̃j
xun, for j = 1, 2 are bounded functions in L2(Ω). So,

for a suitable increasing sequence of integers nk, k = 1, 2, . . . , there exist functions
u, v and vj , j = 1, 2 in L2(Ω) such that

ũnk
⇀ u weakly in L2(Ω), k →∞

∂̃tunk
⇀ v weakly in L2(Ω), k →∞

∂̃j
xunk

⇀ vj weakly in L2(Ω), k →∞, j = 1, 2.

Clearly v = ∂tu, v1 = ∂xu and v2 = ∂2
xu in the sense of distributions in Ω. So,

u ∈ H1,2(Ω) and
∂tu− c2(t)∂2

xu = f in Ω.

On the other hand, the solution u satisfies the boundary conditions

∂xu+ βi(t)u
∣∣
Γi

= 0, i = 1, 2,

since for all n ∈ N, u
∣∣
Ωn

= un. This proves the existence of solution to (1.2).
The uniqueness of the solution is easy to check, thanks to the hypothesis (1.3).

�

4. The case of an arbitrary T

Assume that Ω satisfies (3.5). In the case where T is not in the neighborhood of
zero, we set Ω = D1 ∪D2 ∪ ΓT1 where

D1 = {(t, x) ∈ R2 : 0 < t < T1, ϕ1(t) < x < ϕ2(t)}
D2 = {(t, x) ∈ R2 : T1 < t < T,ϕ1(t) < x < ϕ2(t)}

ΓT1 = {(T1, x) ∈ R2 : ϕ1(T1) < x < ϕ2(T1)}

with T1 small enough.
In the sequel, f stands for an arbitrary fixed element of L2(Ω) and fi = f

∣∣
Di

,
i = 1, 2.

Theorem 3.9 applied to the triangular domain D1, shows that there exists a
unique solution u1 ∈ H1,2(D1) of the problem

∂tu1 − c2(t)∂2
xu1 = f1 in L2(D1)

∂xu1 + βi(t)u1/Γi,1 = 0, i = 1, 2,
(4.1)

where Γi,1 are the parts of the boundary of D1, and x = ϕi(t), i = 1, 2.



EJDE-2010/25 PARABOLIC EQUATIONS 13

Lemma 4.1. If u ∈ H1,2(]0, T [×]0, 1[), then u
∣∣
t=0

∈ H1(γ0), u
∣∣
x=0

∈ H 3
4 (γ1) and

u
∣∣
x=1

∈ H 3
4 (γ2), where γ0 = {0}×]0, 1[, γ1 =]0, T [×{0} and γ2 =]0, T [×{1}.

The above lemma is a particular case of [6, Theorem 2.1, Vol.2]. The transfor-
mation

(t, x) 7−→ (t′, x′) = (t, (ϕ2(t)− ϕ1(t))x+ ϕ1(t))
leads to the following lemma.

Lemma 4.2. If u ∈ H1,2(D2), then u
∣∣
ΓT1

∈ H1(ΓT1), u
∣∣
x=ϕ1(t)

∈ H
3
4 (Γ1,2) and

u
∣∣
x=ϕ2(t)

∈ H
3
4 (Γ2,2), where Γi,2 are the parts of the boundary of D2 where x =

ϕi(t), i = 1, 2.

Hereafter, we denote the trace u1

∣∣
ΓT1

by ψ which is in the Sobolev space H1(ΓT1)

because u1 ∈ H1,2(D1) (see Lemma 4.2).
Now, consider the following problem in D2

∂tu2 − c2(t)∂2
xu2 = f2 in L2(D2)

u2

∣∣
ΓT1

= ψ

∂xu2 + βi(t)u2/Γi,2 = 0, i = 1, 2,

(4.2)

where Γi,2 are the parts of the boundary of D2, and x = ϕi(t), i = 1, 2.
We use the following result, which is a consequence of [6, Theorem 4.3, Vol.2] to

solve (4.2).

Proposition 4.3. Let Q be the rectangle ]0, T [×]0, 1[, f ∈ L2(Q) and ψ ∈ H1(γ0).
Then the problem

∂tu− c2(t)∂2
xu = f in Q

u
∣∣
γ0

= ψ

∂xu+ βi(t)u
∣∣
γi

= 0, i = 1, 2,

where γ0 = {0}×]0, 1[, γ1 =]0, T [×{0} and γ2 =]0, T [×{1}, admits a (unique)
solution u ∈ H1,2(Q).

Remark 4.4. In the application of [6, Theorem 4.3, Vol 2], we can observe that
there are no compatibility conditions to satisfy because ∂xψ is only in L2(γ0).

Thanks to the transformation

(t, x) 7−→ (t, y) = (t, (ϕ2(t)− ϕ1(t))x+ ϕ1(t)),

we deduce the following result.

Proposition 4.5. Problem (4.2) admits a (unique) solution u2 ∈ H1,2(D2).

So, the function

u =

{
u1 in D1

u2 in D2

is the (unique) solution of (1.2) for an arbitrary T . Our second main result is as
follows.

Theorem 4.6. Assume that the following conditions are satisfied
(1) (ϕi)i=1,2 satisfies assumptions (3.5) and (3.6).
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(2) the coefficient c satisfies conditions (3.1) and (3.8).
(3) (βi)i=1,2 fulfil the conditions (1.4), (2.1), (2.2) and (2.3).
(4) (ϕi, βi, c)i=1,2 fulfil the conditions (1.3), (3.9) and (3.10).

Then, (1.2) admits a (unique) solution u belonging to

H1,2
γ (Ω) = {u ∈ H1,2(Ω); (∂xu+ βi(t)u)

∣∣
Γi

= 0, i = 1, 2},

where Γi, i = 1, 2 are the parts of the boundary of Ω where x = ϕi(t).

Remark 4.7. Using the same method in the case where ϕ1(T ) = ϕ2(T ) we can
obtain a result similar to Theorem 4.6.
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