Electronic Journal of Differential Equations, Vol. 2010(2010), No. 25, pp. 1-14. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

PARABOLIC EQUATIONS WITH ROBIN TYPE BOUNDARY CONDITIONS IN A NON-RECTANGULAR DOMAIN

AREZKI KHELOUFI, BOUBAKER-KHALED SADALLAH

Abstract. In this article, we study the parabolic equation $\partial_{t} u-c^{2}(t) \partial_{x}^{2} u=f$ in the non-necessarily rectangular domain

$$
\Omega=\left\{(t, x) \in \mathbb{R}^{2}: 0<t<T, \varphi_{1}(t)<x<\varphi_{2}(t)\right\} .
$$

The boundary conditions are of Robin type, while the right-hand side lies in the Lebesgue space $L^{2}(\Omega)$. Our aim is to find conditions on c and the functions $\left(\varphi_{i}\right)_{i=1,2}$ such that the solution belongs to the anisotropic Sobolev space $H^{1,2}(\Omega)=\left\{u \in L^{2}(\Omega): \partial_{t} u, \partial_{x} u, \partial_{x}^{2} u \in L^{2}(\Omega)\right\}$. For goal we use the method of approximation of domains.

1. Introduction

Let $\Omega \subset \mathbb{R}^{2}$ be the triangular domain

$$
\Omega=\left\{(t, x) \in \mathbb{R}^{2}: 0<t<T, \varphi_{1}(t)<x<\varphi_{2}(t)\right\}
$$

where φ_{1}, φ_{2} are the functions of parametrization with $\varphi_{1}(0)=\varphi_{2}(0)$, and T is a finite positive number. In Ω, we consider the boundary-value problem

$$
\begin{gather*}
\partial_{t} u-c^{2}(t) \partial_{x}^{2} u=f \quad \text { in } L^{2}(\Omega) \\
b_{i}(t) \partial_{x} u+\left.\alpha_{i}(t) u\right|_{x=\varphi_{i}(t)}=0, \quad i=1,2 \tag{1.1}
\end{gather*}
$$

where $\left(\alpha_{i}\right)$ and $\left(b_{i}\right)$ are given. We look for conditions on the functions $\left(b_{i}, \alpha_{i}, \varphi_{i}\right)_{i=1,2}$ and the coefficient c such that (1.1) admits a unique solution u belonging to the anisotropic Sobolev space

$$
H^{1,2}(\Omega)=\left\{u \in L^{2}(\Omega): \partial_{t} u, \partial_{x} u, \partial_{x}^{2} u \in L^{2}(\Omega)\right\}
$$

We consider the case where $\alpha_{i}(t) \neq 0$ and $b_{i}(t) \neq 0$ for all $\left.t \in\right] 0, T[$. So, 1.1 may be written in the form

$$
\begin{align*}
& \partial_{t} u-c^{2}(t) \partial_{x}^{2} u=f \quad \text { in } L^{2}(\Omega) \tag{1.2}\\
& \partial_{x} u+\left.\beta_{i}(t) u\right|_{\Gamma_{i}}=0, \quad i=1,2
\end{align*}
$$

where $\beta_{i}(t)=\frac{\alpha_{i}(t)}{b_{i}(t)}, \Gamma_{i}=\left\{\left(t, \varphi_{i}(t)\right), t \in\right] 0, T[\}, i=1,2$.

[^0]In the sequel, the hypothesis

$$
\begin{equation*}
\left.(-1)^{i}\left(c^{2}(t) \beta_{i}(t)-\frac{\varphi_{i}^{\prime}(t)}{2}\right) \geq 0 \quad \text { a.e. } t \in\right] 0, T[, i=1,2 \tag{1.3}
\end{equation*}
$$

is imposed in order to guarantee the uniqueness of the solution of 1.2 . Indeed, if u is the solution of the (1.2) with a null right-hand side, the calculations show that the inner product $\left\langle\partial_{t} u-c^{2}(t) \partial_{x}^{2} u, u\right\rangle$ in $L^{2}(\Omega)$ gives

$$
\begin{aligned}
0= & \sum_{i=1}^{2} \int_{\Gamma_{i}}(-1)^{i}\left(c^{2}(t) \beta_{i}(t)-\frac{\varphi_{i}^{\prime}(t)}{2}\right) u^{2}\left(t, \varphi_{i}(t)\right) d t \\
& +\frac{1}{2} \int_{\Gamma_{3}} u^{2} d x+\int_{\Omega} c^{2} \cdot\left(\partial_{x} u\right)^{2} d t d x
\end{aligned}
$$

where $\Gamma_{3}=\left\{(T, x): \varphi_{1}(T)<x<\varphi_{2}(T)\right\}$ if $\varphi_{1}(T) \neq \varphi_{2}(T)$. The hypothesis 1.3 implies that $\partial_{x} u=0$ and consequently $\partial_{x}^{2} u=0$. Then, (1.2) gives $\partial_{t} u=0$. Thus, u is constant. The boundary conditions and the fact that $\beta_{i}(t) \neq 0$ for all $\left.t \in\right] 0, T[$ imply $u=0$.

We also assume that the functions $\left(\beta_{i}\right)_{i=1,2}$ satisfy the assumption

$$
\begin{equation*}
\beta_{1}(t)<0, \quad \beta_{2}(t)>0 \quad \text { for all } t \in[0, T] . \tag{1.4}
\end{equation*}
$$

The most interesting point of the parabolic problem studied here is the fact that $\varphi_{1}(0)=\varphi_{2}(0)$ or $\varphi_{1}(T)=\varphi_{2}(T)$. In this case the domain Ω is not rectangular and cannot be transformed into a regular domain without the appearance of some degenerate terms in the parabolic equation; see, for example Sadallah [7.

The solvability of this kind of problems with Cauchy-Dirichlet boundary conditions has been investigated in [3, 4, 8, 9]. In Sadallah [9, the same equation is studied by another approach making use of the so-called Schur's Lemma and gives the same result obtained in [8] by the a priori estimates technique. In [3] and 4], the authors deal with the heat equation (i.e., the case where $c(t)=1$) set in a nonrectangular domain with a right-hand side taken in L^{p}, where $\left.p \in\right] 1, \infty[$, and have obtained optimal regularity results by the operators sum method. These results are generalized in [5] to a parabolic equation of the type

$$
\partial_{t} u(t, x)-\partial_{x}^{2} u(t, x)+\lambda m(t, x) u(t, x)=f(t, x)
$$

where λ is a positive spectral parameter and $m($.$) some positive weight functions.$ Hofmann and Lewis [2] have also considered the classical heat equation with Neumann boundary condition in noncylindrical domains satisfying some conditions of Lipschitz's type. The authors showed that the optimal L^{p} regularity holds for $p=2$ and the situation gets progressively worse as p approaches 1. In Savaré [10], parabolic problems in noncylindrical domains are considered in the Hilbertian case. The author obtains some regularity results under assumption on the geometrical behavior of the boundary which cannot include our triangular domain.

The plan of this paper is as follows. In Section 2, we derive some technical lemmas which will allow us to prove an a priori estimate (in a sense to be defined later). In Section 3, there are two main steps. First, we prove that 1.2 admits a (unique) solution in the case of a domain which can be transformed into a rectangle. Secondly, for T small enough, we prove that the result holds true in the case of a triangular domain under some assumptions on the coefficient c and the functions $\left(\beta_{i}, \varphi_{i}\right)_{i=1,2}$ to be made more precise later on. The method used here is based on the approximation of the triangular domain by a sequence of subdomains $\left(\Omega_{n}\right)_{n}$
which can be transformed into regular domains (rectangles) and we establish an a priori estimate of the type

$$
\left\|u_{n}\right\|_{H^{1,2}\left(\Omega_{n}\right)} \leq K\|f\|_{L^{2}\left(\Omega_{n}\right)},
$$

where u_{n} is the solution of $\sqrt{1.2}$ in Ω_{n} and K is a constant independent of n, which allows us to pass to the limit. Finally, in Section 4 we study 1.2 in the case where T is not necessarily small.

2. Preliminaries

Let $\left(\beta_{i}\right)_{i=1,2}$ be continuous real-valued functions on $] 0, T[$. Assume that there exists a constant $l>0$ such that

$$
\begin{gather*}
\left|\frac{\left(1+\beta_{2}(t)\right)}{A(t)}\right| \leq l \tag{2.1}\\
\left|\frac{\beta_{1}(t)\left(1+\beta_{2}(t)\right)}{A(t)}\right| \leq l \tag{2.2}
\end{gather*}
$$

where

$$
\begin{equation*}
A(t)=\beta_{1}(t) \beta_{2}(t)+\beta_{1}(t)-\beta_{2}(t) \neq 0 \tag{2.3}
\end{equation*}
$$

for every $t \in] 0, T[$.
Lemma 2.1. Assume that β_{1} and β_{2} fulfil the conditions (2.1), 2.2 and (2.3). Then, for a fixed $t \in] 0,1\left[\right.$, there exists a positive constant K_{1} independent of t, such that for each $u \in H_{\gamma}^{2}(0,1)$

$$
\left\|u^{(j)}\right\|_{L^{2}(0,1)} \leq K_{1}\left\|u^{(2)}\right\|_{L^{2}(0,1)}, j=0,1
$$

where

$$
H_{\gamma}^{2}(0,1)=\left\{u \in H^{2}(0,1): u^{\prime}(0)+\beta_{1}(t) u(0)=0, u^{\prime}(1)+\beta_{2}(t) u(1)=0\right\} .
$$

Proof. Let $t \in] 0,1\left[\right.$ and f an arbitrary fixed element of $L^{2}(0,1)$. Then the solution of the problem

$$
\begin{gathered}
u^{\prime \prime}=f \\
u^{\prime}(0)+\beta_{1}(t) u(0)=0 \\
u^{\prime}(1)+\beta_{2}(t) u(1)=0,
\end{gathered}
$$

can be written in the form

$$
u(y)=\int_{0}^{y}\left\{\int_{0}^{x} f(s) d s\right\} d x+y u^{\prime}(0)+u(0)
$$

where

$$
\begin{gathered}
u(0)=\frac{\int_{0}^{1} f(s) d s+\beta_{2}(t) \int_{0}^{1}\left\{\int_{0}^{x} f(s) d s\right\} d x}{A(t)} \\
u^{\prime}(0)=-\beta_{1}(t) u(0)
\end{gathered}
$$

The uniqueness of the solution is easy to check, thanks to the boundary conditions and the condition 2.3 .

Using the Cauchy-Schwarz inequality, we obtain the following two estimates

$$
\begin{gathered}
|u(0)| \leq C\left|\frac{\left(1+\beta_{2}(t)\right)}{A(t)}\right|\|f\|_{L^{2}(0,1)} \\
\left|u^{\prime}(0)\right| \leq C\left|\frac{\beta_{1}(t)\left(1+\beta_{2}(t)\right)}{A(t)}\right|\|f\|_{L^{2}(0,1)}
\end{gathered}
$$

which will allow us to obtain the desired estimates, thanks to the conditions (2.1), (2.2).

Lemma 2.2. Under the assumptions (2.1), (2.2) and 2.3) on $\left(\beta_{i}\right)_{i=1,2}$ and for a fixed $t \in] 0,1\left[\right.$, there exists a constant C_{1} (independent of a and b) such that

$$
\left\|v^{(j)}\right\|_{L^{2}(a, b)}^{2} \leq C_{1}(b-a)^{2(2-j)}\left\|v^{(2)}\right\|_{L^{2}(a, b)}^{2}, \quad j=0,1
$$

for each $v \in H_{\gamma}^{2}(a, b)$, with

$$
H_{\gamma}^{2}(a, b)=\left\{v \in H^{2}(a, b): v^{\prime}(a)+\frac{\beta_{1}(t)}{b-a} v(a)=0, v^{\prime}(b)+\frac{\beta_{2}(t)}{b-a} v(b)=0\right\}
$$

Proof. It is a direct consequence of Lemma 2.1] by using the affine change of variable $[0,1] \rightarrow[a, b], x \rightarrow(1-x) a+x b=y$.

3. Solution of the problem 1.2

3.1. A domain that can be transformed into a rectangle. Let

$$
\Omega=\left\{(t, x) \in \mathbb{R}^{2}: 0<t<T, \varphi_{1}(t)<x<\varphi_{2}(t)\right\}
$$

where T is a finite positive number, while φ_{1} and φ_{2} are Lipschitz continuous in $[0, T]$, such that $\varphi_{1}(t)<\varphi_{2}(t)$ for all $t \in[0, T]$. Consider c a continuous function on $[0, T]$, such that

$$
\begin{equation*}
0<d_{1} \leq c \leq d_{2} \tag{3.1}
\end{equation*}
$$

where d_{1}, d_{2} are two constants.
Theorem 3.1. Under assumptions (1.3), 2.1, 2.2 and (2.3) on $\left(\beta_{i}\right)_{i=1,2}$, the problem

$$
\begin{gather*}
\partial_{t} u-c^{2}(t) \partial_{x}^{2} u=f \quad \text { in } L^{2}(\Omega), \\
\left.u\right|_{t=0}=0, \tag{3.2}\\
\partial_{x} u+\left.\beta_{i}(t) u\right|_{x=\varphi_{i}(t)}=0, \quad i=1,2
\end{gather*}
$$

admits a (unique) solution $u \in H^{1,2}(\Omega)$.
Proof. The uniqueness of the solution is easy to check, thanks to 1.3 . Let us prove the existence. The change of variables

$$
(t, x) \mapsto(t, y)=\left(t, \frac{x-\varphi_{1}(t)}{\varphi_{2}(t)-\varphi_{1}(t)}\right)
$$

transforms Ω into the rectangle $R=] 0, T[\times] 0,1[$. Putting $u(t, x)=v(t, y)$ and $f(t, x)=g(t, y)$, then Problem 3.2 becomes

$$
\begin{gather*}
\partial_{t} v(t, y)+a(t, y) \partial_{y} v(t, y)-\frac{1}{b^{2}(t)} \partial_{y}^{2} v(t, y)=g(t, y) \\
\left.v\right|_{t=0}=0 \\
\frac{1}{\varphi(t)} \partial_{y} v+\left.\beta_{1}(t) v\right|_{y=0}=0 \tag{3.3}\\
\frac{1}{\varphi(t)} \partial_{y} v+\left.\beta_{2}(t) v\right|_{y=1}=0
\end{gather*}
$$

where

$$
\begin{gathered}
\varphi(t)=\varphi_{2}(t)-\varphi_{1}(t) \\
b(t)=\frac{\varphi(t)}{c(t)} \\
a(t, y)=-\frac{y \varphi^{\prime}(t)+\varphi_{1}^{\prime}(t)}{\varphi(t)} .
\end{gathered}
$$

This change of variables conserves the spaces $H^{1,2}$ and L^{2}. In other words

$$
\begin{gathered}
f \in L^{2}(\Omega) \Leftrightarrow g \in L^{2}(R) \\
u \in H^{1,2}(\Omega) \Leftrightarrow v \in H^{1,2}(R) .
\end{gathered}
$$

Lemma 3.2. The operator

$$
\left.\begin{array}{rl}
B: \quad H_{\gamma}^{1,2}(R) & \rightarrow L^{2}(R) \\
& v
\end{array}\right) \quad \mapsto v=a(t, y) \partial_{y} v .
$$

is compact, where for a fixed $t \in] 0, T[$,

$$
H_{\gamma}^{1,2}(R)=\left\{v \in H^{1,2}(R):\left.v\right|_{\Gamma_{0}}=0, \partial_{y} v+\left.\varphi(t) \beta_{i}(t) v\right|_{\Gamma_{i, R}}=0, i=1,2\right\}
$$

with $\left.\Gamma_{0}=\{0\} \times\right] 0,1\left[, \Gamma_{1, R}=\right] 0, T\left[\times\{0\}\right.$ and $\left.\Gamma_{2, R}=\right] 0, T[\times\{1\}$.
Proof. R has the "horn property" of Besov [1], so

$$
\begin{aligned}
\partial_{y}: \quad H_{\gamma}^{1,2}(R) & \rightarrow H^{\frac{1}{2}, 1}(R) \\
v & \mapsto \partial_{y} v
\end{aligned}
$$

is continuous. Since R is bounded, the canonical injection is compact from $H^{\frac{1}{2}, 1}(R)$ into $L^{2}(R)$, see for instance [1]. Here

$$
H^{\frac{1}{2}, 1}(R)=L^{2}\left(0, T ; H^{1}\right] 0,1[) \cap H^{\frac{1}{2}}\left(0, T ; L^{2}\right] 0,1[) .
$$

See [6] for the complete definitions of the $H^{r, s}$ Hilbertian Sobolev spaces.
Then ∂_{y} is a compact operator from $H_{\gamma}^{1,2}(R)$ to $L^{2}(R)$. Furthermore, since $a(.,$. is a bounded function, the operator $B=a \partial_{y}$ is then compact from $H_{\gamma}^{1,2}(R)$ into $L^{2}(R)$.

So, it is sufficient to show that the operator

$$
\partial_{t}-\frac{c^{2}}{\varphi^{2}} \partial_{y}^{2}: H_{\gamma}^{1,2}(R) \rightarrow L^{2}(R)
$$

is an isomorphism. A simple change of variable $t=h(s)$ with $h^{\prime}(s)=\frac{\varphi^{2}}{c^{2}}(t)$, transforms the problem

$$
\begin{gathered}
\partial_{t} v(t, y)-\frac{c^{2}}{\varphi^{2}}(t) \partial_{y}^{2} v(t, y)=g(t, y) \in L^{2}(R) \\
\left.v\right|_{t=0}=0 \\
\frac{1}{\varphi(t)} \partial_{y} v+\left.\beta_{1}(t) v\right|_{y=0}=0 \\
\frac{1}{\varphi(t)} \partial_{y} v+\left.\beta_{2}(t) v\right|_{y=1}=0
\end{gathered}
$$

into

$$
\begin{gather*}
\partial_{s} w(s, y)-\partial_{y}^{2} w(s, y)=\zeta(s, y) \\
\left.w\right|_{s=h^{-1}(0)}=0 \\
\frac{1}{\varphi(h(s))} \partial_{y} w+\left.\beta_{1}(h(s)) w\right|_{y=0}=0 \tag{3.4}\\
\frac{1}{\varphi(h(s))} \partial_{y} w+\left.\beta_{2}(h(s)) w\right|_{y=1}=0
\end{gather*}
$$

with $\zeta(s, y)=\frac{g(t, y)}{h^{\prime}(s)}$ and $w(s, y)=v(t, y)$. Note that this change of variables preserves the spaces L^{2} and $H^{1,2}$. It follows from (1.4) that there exists a unique $w \in H^{1,2}$ solution of the problem (3.4). This implies that Problem 3.2 admits a unique solution $u \in H^{1,2}(\Omega)$. We obtain the function u by setting $u(t, x)=$ $v(t, y)=w\left(h^{-1}(t), y\right)$. This completes the proof of Theorem 3.1.

We shall need the following result in order to justify the calculus of the next section.

Lemma 3.3. The space

$$
W=\left\{u \in D\left([0, T] ; H^{2}(0,1)\right): \partial_{x} u+\left.\beta_{i}(t) u\right|_{\Gamma_{i}}=0, i=1,2\right\}
$$

is dense in

$$
H_{\gamma}^{1,2}(] 0, T[\times] 0,1[)=\left\{u \in H^{1,2}(] 0, T[\times] 0,1[): \partial_{x} u+\left.\beta_{i}(t) u\right|_{\Gamma_{i}}=0, i=1,2\right\}
$$

where $\left.\Gamma_{1}=\right] 0, T\left[\times\{0\}\right.$ and $\left.\Gamma_{2}=\right] 0, T[\times\{1\}$.
The above lemma is a particular case of [6, Theorem 2.1].
Remark 3.4. We can replace in Lemma $3.3 R=] 0, T[\times] 0,1[$ by Ω with the help of the change of variables defined above.
3.2. Case of a triangular domain. In this case, we define Ω by

$$
\Omega=\left\{(t, x) \in \mathbb{R}^{2}: 0<t<T, \varphi_{1}(t)<x<\varphi_{2}(t)\right\}
$$

with

$$
\begin{align*}
\varphi_{1}(0) & =\varphi_{2}(0) \\
\varphi_{1}(T) & <\varphi_{2}(T) \tag{3.5}
\end{align*}
$$

We assume that the functions $\left(\varphi_{i}\right)_{i=1,2}$ satisfy

$$
\begin{equation*}
\varphi_{i}^{\prime}(t)\left(\varphi_{2}(t)-\varphi_{1}(t)\right) \rightarrow 0 \quad \text { as } t \rightarrow 0, i=1,2 \tag{3.6}
\end{equation*}
$$

For each $n \in \mathbb{N}$, we define Ω_{n} by

$$
\Omega_{n}=\left\{(t, x) \in \mathbb{R}^{2}: a_{n}<t<T, \varphi_{1}(t)<x<\varphi_{2}(t)\right\}
$$

where $\left(a_{n}\right)_{n}$ is a decreasing sequence to zero. Thus, we have

$$
\begin{aligned}
\varphi_{1}\left(a_{n}\right) & <\varphi_{2}\left(a_{n}\right) \\
\varphi_{1}(T) & <\varphi_{2}(T)
\end{aligned}
$$

Setting $f_{n}=\left.f\right|_{\Omega_{n}}$, where $f \in L^{2}(\Omega)$, we denote $u_{n} \in H^{1,2}\left(\Omega_{n}\right)$ the solution of 3.2 in Ω_{n}

$$
\begin{gather*}
\partial_{t} u_{n}-c^{2}(t) \partial_{x}^{2} u_{n}=f_{n} \quad \text { in } L^{2}\left(\Omega_{n}\right) \\
u_{n / t=a_{n}}=0 \tag{3.7}\\
\partial_{x} u_{n}+\beta_{i}(t) u_{n / \Gamma_{n, i}}=0, \quad i=1,2,
\end{gather*}
$$

here $\Gamma_{n, i}=\left\{\left(t, \varphi_{i}(t)\right), a_{n}<t<T\right\}, i=1,2$, and c is a bounded differentiable coefficient depending on time such that

$$
\begin{equation*}
0<\alpha \leq c(t) c^{\prime}(t) \leq \beta \tag{3.8}
\end{equation*}
$$

for every $t \in] 0, T[$, where α and β are two constants. We also assume that

$$
\begin{align*}
& \left.\left(\beta_{1} c^{2}\right) \text { is an increasing function on }\right] 0, T[\tag{3.9}\\
& \left.\left(\beta_{2} c^{2}\right) \text { is a decreasing function on }\right] 0, T[. \tag{3.10}
\end{align*}
$$

Such a solution u_{n} exists by Theorem 3.1.
Theorem 3.5. There exists a constant $K>0$ independent of n such that

$$
\left\|u_{n}\right\|_{H^{1,2}\left(\Omega_{n}\right)}^{2} \leq K\left\|f_{n}\right\|_{L^{2}\left(\Omega_{n}\right)}^{2} \leq K\|f\|_{L^{2}(\Omega)}^{2}
$$

To prove Theorem 3.5, we need some preliminary results.
Lemma 3.6. For every $\epsilon>0$ satisfying $\left(\varphi_{2}(t)-\varphi_{1}(t)\right) \leq \epsilon$, there exists a constant $C>0$ independent of n, such that

$$
\left\|\partial_{x}^{j} u_{n}\right\|_{L^{2}\left(\Omega_{n}\right)}^{2} \leq C \epsilon^{2(2-j)}\left\|\partial_{x}^{2} u_{n}\right\|_{L^{2}\left(\Omega_{n}\right)}^{2}, \quad j=0,1
$$

Proof. Replacing in Lemma $2.2 v$ by u_{n} and $] a, b[$ by $] \varphi_{1}(t), \varphi_{2}(t)[$, for a fixed t, we obtain

$$
\begin{aligned}
\int_{\varphi_{1}(t)}^{\varphi_{2}(t)}\left(\partial_{x}^{j} u_{n}\right)^{2} d x & \leq C\left(\varphi_{2}(t)-\varphi_{1}(t)\right)^{2(2-j)} \int_{\varphi_{1}(t)}^{\varphi_{2}(t)}\left(\partial_{x}^{2} u_{n}\right)^{2} d x \\
& \leq C \epsilon^{2(2-j)} \int_{\varphi_{1}(t)}^{\varphi_{2}(t)}\left(\partial_{x}^{2} u_{n}\right)^{2} d x
\end{aligned}
$$

where C is the constant of Lemma 2.2. Integrating with respect to t, we obtain the desired estimates.

Proposition 3.7. There exists a constant $C>0$ independent of n such that

$$
\left\|\partial_{t} u_{n}\right\|_{L^{2}\left(\Omega_{n}\right)}^{2}+\left\|\partial_{x}^{2} u_{n}\right\|_{L^{2}\left(\Omega_{n}\right)}^{2} \leq C\|f\|_{L^{2}(\Omega)}^{2}
$$

Then Theorem 3.5 is a direct consequence of Lemma 3.6 and Proposition 3.7 , since ϵ is independent of n.

Proposition 3.7. Thanks to the density results, Lemma 2.2 and Remark 3.4, it is sufficient to prove the first part of the proposition (Relationship (3.11) below) in the case when $u_{n} \in\left\{v \in H^{2}\left(\Omega_{n}\right), \partial_{x} v+\left.\beta_{i}(t) v\right|_{\Gamma_{n, i}}=0, i=1,2\right\}$ without assuming the Cauchy condition $u_{n / t=a_{n}}=0$.

For this end, we develop the inner product in $L^{2}\left(\Omega_{n}\right)$

$$
\begin{aligned}
\left\|f_{n}\right\|_{L^{2}\left(\Omega_{n}\right)}^{2} & =\left\langle\partial_{t} u_{n}-c^{2} \partial_{x}^{2} u_{n}, \partial_{t} u_{n}-c^{2} \partial_{x}^{2} u_{n}\right\rangle \\
& =\left\|\partial_{t} u_{n}\right\|_{L^{2}\left(\Omega_{n}\right)}^{2}+\left\|c^{2} . \partial_{x}^{2} u_{n}\right\|_{L^{2}\left(\Omega_{n}\right)}^{2}-2\left\langle\partial_{t} u_{n}, c^{2} \partial_{x}^{2} u_{n}\right\rangle
\end{aligned}
$$

Calculating the last term of the previous relation, we obtain

$$
\begin{aligned}
\left\langle\partial_{t} u_{n}, c^{2} \partial_{x}^{2} u_{n}\right\rangle & =\int_{\Omega_{n}} \partial_{t} u_{n} \cdot c^{2} \partial_{x}^{2} u_{n} d t d x \\
& =-\int_{\Omega_{n}} c^{2} \partial_{x} \partial_{t} u_{n} . \partial_{x} u_{n} d t d x+\int_{\partial \Omega_{n}} c^{2} \partial_{t} u_{n} . \partial_{x} u_{n} \nu_{x} d \sigma
\end{aligned}
$$

So,

$$
\begin{aligned}
& -2\left\langle\partial_{t} u_{n}, c^{2} \partial_{x}^{2} u_{n}\right\rangle \\
& =\int_{\Omega_{n}} c^{2} \partial_{t}\left(\partial_{x} u_{n}\right)^{2} d t d x-2 \int_{\partial \Omega_{n}} c^{2} \partial_{t} u_{n} . \partial_{x} u_{n} \nu_{x} d \sigma \\
& =-\int_{\Omega_{n}} 2 c c^{\prime}\left(\partial_{x} u_{n}\right)^{2} d t d x+\int_{\partial \Omega_{n}} c^{2}\left(\partial_{x} u_{n}\right)^{2} \nu_{t} d \sigma-2 \int_{\partial \Omega_{n}} c^{2} \partial_{t} u_{n} . \partial_{x} u_{n} \nu_{x} d \sigma \\
& =\int_{\partial \Omega_{n}} c^{2}\left[\left(\partial_{x} u_{n}\right)^{2} \nu_{t}-2 \partial_{t} u_{n} . \partial_{x} u_{n} \nu_{x}\right] d \sigma-\int_{\Omega_{n}} 2 c c^{\prime}\left(\partial_{x} u_{n}\right)^{2} d t d x
\end{aligned}
$$

where ν_{t}, ν_{x} are the components of the outward normal vector at the boundary of Ω_{n}. We shall rewrite the boundary integral making use of the boundary conditions. On the part of the boundary of Ω_{n} where $t=a_{n}$, we have $\nu_{x}=0$ and $\nu_{t}=-1$. The corresponding boundary integral

$$
A_{1}=-\int_{\varphi_{2}\left(a_{n}\right)}^{\varphi_{1}\left(a_{n}\right)} c^{2}\left(\partial_{x} u_{n}\right)^{2} d x=\int_{\varphi_{1}\left(a_{n}\right)}^{\varphi_{2}\left(a_{n}\right)} c^{2}\left(\partial_{x} u_{n}\right)^{2} d x \geq 0
$$

On the part of the boundary of Ω_{n} where $t=T$, we have $\nu_{x}=0$ and $\nu_{t}=1$. Accordingly the corresponding boundary integral

$$
A_{2}=\int_{\varphi_{1}(T)}^{\varphi_{2}(T)} c^{2}\left(\partial_{x} u_{n}\right)^{2} d x
$$

is nonnegative. On the parts of the boundary where $x=\varphi_{i}(t), i=1,2$, we have

$$
\nu_{x}=\frac{(-1)^{i}}{\sqrt{1+\left(\varphi_{i}^{\prime}\right)^{2}(t)}}, \quad \nu_{t}=\frac{(-1)^{i+1} \varphi_{i}^{\prime}(t)}{\sqrt{1+\left(\varphi_{i}^{\prime}\right)^{2}(t)}}
$$

and $\partial_{x} u_{n}\left(t, \varphi_{i}(t)\right)+\beta_{i}(t) u_{n}\left(t, \varphi_{i}(t)\right)=0, i=1,2$. Consequently, the corresponding integral is

$$
\begin{aligned}
& \int_{a_{n}}^{T} c^{2} \varphi_{1}^{\prime}(t)\left[\partial_{x} u_{n}\left(t, \varphi_{1}(t)\right)\right]^{2} d t-2 \int_{a_{n}}^{T}\left(\beta_{1} c^{2}\right)(t) \partial_{t} u_{n}\left(t, \varphi_{1}(t)\right) \cdot u_{n}\left(t, \varphi_{1}(t)\right) d t \\
& -\int_{a_{n}}^{T} c^{2} \varphi_{2}^{\prime}(t)\left[\partial_{x} u_{n}\left(t, \varphi_{2}(t)\right)\right]^{2} d t+2 \int_{a_{n}}^{T}\left(\beta_{2} c^{2}\right)(t) \partial_{t} u_{n}\left(t, \varphi_{2}(t)\right) \cdot u_{n}\left(t, \varphi_{2}(t)\right) d t
\end{aligned}
$$

By setting

$$
\begin{gathered}
I_{n, k}=(-1)^{k+1} \int_{a_{n}}^{T} c^{2} \varphi_{k}^{\prime}(t)\left[\partial_{x} u_{n}\left(t, \varphi_{k}(t)\right)\right]^{2} d t, k=1,2 \\
J_{n, k}=(-1)^{k} 2 \int_{a_{n}}^{T}\left(\beta_{k} c^{2}\right)(t) \partial_{t} u_{n}\left(t, \varphi_{k}(t)\right) \cdot u_{n}\left(t, \varphi_{k}(t)\right) d t, k=1,2
\end{gathered}
$$

we have

$$
\begin{equation*}
-2\left\langle\partial_{t} u_{n}, c^{2} \partial_{x}^{2} u_{n}\right\rangle \geq-\left|I_{n, 1}\right|-\left|I_{n, 2}\right|-\left|J_{n, 1}\right|-\left|J_{n, 2}\right|-\int_{\Omega_{n}} 2 c c^{\prime}\left(\partial_{x} u_{n}\right)^{2} d t d x \tag{3.11}
\end{equation*}
$$

1. Estimation of $I_{n, k}, k=1,2$.

Lemma 3.8. There exists a constant $K>0$ independent of n such that

$$
\left|I_{n, k}\right| \leq K \epsilon\left\|\partial_{x}^{2} u_{n}\right\|_{L^{2}\left(\Omega_{n}\right)}^{2}, \quad k=1,2
$$

Proof. We convert the boundary integral $I_{n, 1}$ into a surface integral by setting

$$
\begin{aligned}
{\left[\partial_{x} u_{n}\left(t, \varphi_{1}(t)\right)\right]^{2}=} & -\left.\frac{\varphi_{2}(t)-x}{\varphi_{2}(t)-\varphi_{1}(t)}\left[\partial_{x} u_{n}(t, x)\right]^{2}\right|^{x=\varphi_{2}(t)} \begin{array}{l}
x=\varphi_{1}(t)
\end{array} \\
= & -\int_{\varphi_{1}(t)}^{\varphi_{2}(t)} \frac{\partial}{\partial x}\left\{\frac{\varphi_{2}(t)-x}{\varphi_{2}(t)-\varphi_{1}(t)}\left[\partial_{x} u_{n}(t, x)\right]^{2}\right\} d x \\
= & -2 \int_{\varphi_{1}(t)}^{\varphi_{2}(t)} \frac{\varphi_{2}(t)-x}{\varphi_{2}(t)-\varphi_{1}(t)} \partial_{x} u_{n}(t, x) \partial_{x}^{2} u_{n}(t, x) d x \\
& +\int_{\varphi_{1}(t)}^{\varphi_{2}(t)} \frac{1}{\varphi_{2}(t)-\varphi_{1}(t)}\left[\partial_{x} u_{n}(t, x)\right]^{2} d x
\end{aligned}
$$

Then

$$
\begin{aligned}
I_{n, 1}= & \int_{a_{n}}^{T} c^{2}(t) \varphi_{1}^{\prime}(t)\left[\partial_{x} u_{n}\left(t, \varphi_{1}(t)\right)\right]^{2} d t \\
= & \int_{\Omega_{n}} c^{2}(t) \frac{\varphi_{1}^{\prime}(t)}{\varphi_{2}(t)-\varphi_{1}(t)}\left(\partial_{x} u_{n}\right)^{2} d t d x \\
& -2 \int_{\Omega_{n}} c^{2}(t) \frac{\varphi_{2}(t)-x}{\varphi_{2}(t)-\varphi_{1}(t)} \varphi_{1}^{\prime}(t)\left(\partial_{x} u_{n}\right)\left(\partial_{x}^{2} u_{n}\right) d t d x
\end{aligned}
$$

Thanks to Lemma 3.6, we can write

$$
\int_{\varphi_{1}(t)}^{\varphi_{2}(t)}\left[\partial_{x} u_{n}(t, x)\right]^{2} d x \leq C\left[\varphi_{2}(t)-\varphi_{1}(t)\right]^{2} \int_{\varphi_{1}(t)}^{\varphi_{2}(t)}\left[\partial_{x}^{2} u_{n}(t, x)\right]^{2} d x
$$

Therefore,

$$
\int_{\varphi_{1}(t)}^{\varphi_{2}(t)}\left[\partial_{x} u_{n}(t, x)\right]^{2} \frac{\left|\varphi_{1}^{\prime}\right|}{\varphi_{2}-\varphi_{1}} d x \leq C\left|\varphi_{1}^{\prime}\right|\left[\varphi_{2}-\varphi_{1}\right] \int_{\varphi_{1}(t)}^{\varphi_{2}(t)}\left[\partial_{x}^{2} u_{n}(t, x)\right]^{2} d x
$$

consequently,

$$
\left|I_{n, 1}\right| \leq C \int_{\Omega_{n}} c^{2}(t)\left|\varphi_{1}^{\prime}\right|\left[\varphi_{2}-\varphi_{1}\right]\left(\partial_{x}^{2} u_{n}\right)^{2} d t d x+2 \int_{\Omega_{n}} c^{2}(t)\left|\varphi_{1}^{\prime}\right|\left|\partial_{x} u_{n}\right|\left|\partial_{x}^{2} u_{n}\right| d t d x
$$

since $\left|\frac{\varphi_{2}(t)-x}{\varphi_{2}(t)-\varphi_{1}(t)}\right| \leq 1$. So, for all $\epsilon>0$, we have

$$
\begin{aligned}
\left|I_{n, 1}\right| \leq & C \int_{\Omega_{n}} c^{2}(t)\left|\varphi_{1}^{\prime}\right|\left[\varphi_{2}-\varphi_{1}\right]\left(\partial_{x}^{2} u_{n}\right)^{2} d t d x \\
& +\int_{\Omega_{n}} \epsilon c^{2}(t)\left(\partial_{x}^{2} u_{n}\right)^{2} d t d x+\frac{1}{\epsilon} \int_{\Omega_{n}} c^{2}(t)\left(\varphi_{1}^{\prime}\right)^{2}\left(\partial_{x} u_{n}\right)^{2} d t d x
\end{aligned}
$$

Lemma 3.6 yields

$$
\frac{1}{\epsilon} \int_{\Omega_{n}} c^{2}(t)\left(\varphi_{1}^{\prime}\right)^{2}\left(\partial_{x} u_{n}\right)^{2} d t d x \leq C \frac{1}{\epsilon} \int_{\Omega_{n}} c^{2}(t)\left(\varphi_{1}^{\prime}\right)^{2}\left[\varphi_{2}-\varphi_{1}\right]^{2}\left(\partial_{x}^{2} u_{n}\right)^{2} d t d x
$$

Thus, there exists a constant $M>0$ independent of n such that

$$
\begin{aligned}
\left|I_{n, 1}\right| \leq & C \int_{\Omega_{n}} c^{2}(t)\left[\left|\varphi_{1}^{\prime}\right|\left|\varphi_{2}-\varphi_{1}\right|+\frac{1}{\epsilon}\left(\varphi_{1}^{\prime}\right)^{2}\left|\varphi_{2}-\varphi_{1}\right|^{2}\right]\left(\partial_{x}^{2} u_{n}\right)^{2} d t d x \\
& +\int_{\Omega_{n}} c^{2}(t) \epsilon\left(\partial_{x}^{2} u_{n}\right)^{2} d t d x \\
\leq & M \epsilon \int_{\Omega_{n}}\left(\partial_{x}^{2} u_{n}\right)^{2} d t d x
\end{aligned}
$$

because $\left|\varphi_{1}^{\prime}\left(\varphi_{2}-\varphi_{1}\right)\right| \leq \epsilon$ and $c^{2}(t)$ is bounded. The inequality

$$
\left|I_{n, 2}\right| \leq K \epsilon\left\|\partial_{x}^{2} u_{n}\right\|_{L^{2}\left(\Omega_{n}\right)}^{2}
$$

can be proved by a similar argument.
Estimation of $J_{n, k}, k=1,2$. We have

$$
\begin{aligned}
J_{n, 1} & =-2 \int_{a_{n}}^{T}\left(\beta_{1} c^{2}\right)(t) \partial_{t} u_{n}\left(t, \varphi_{1}(t)\right) \cdot u_{n}\left(t, \varphi_{1}(t)\right) d t \\
& =-\int_{a_{n}}^{T}\left(\beta_{1} c^{2}\right)(t)\left[\partial_{t} u_{n}^{2}\left(t, \varphi_{1}(t)\right)\right] d t
\end{aligned}
$$

By setting $h(t)=u_{n}^{2}\left(t, \varphi_{1}(t)\right)$, we obtain

$$
\begin{aligned}
J_{n, 1} & =-\int_{a_{n}}^{T} \beta_{1} c^{2} \cdot\left[h^{\prime}(t)-\varphi_{1}^{\prime}(t) \partial_{x} u_{n}^{2}\left(t, \varphi_{1}(t)\right)\right] d t \\
& \left.=-\beta_{1} c^{2} \cdot h(t)\right]_{a_{n}}^{T}+\int_{a_{n}}^{T}\left(\beta_{1} c^{2}\right)^{\prime} \cdot h(t) d t+\int_{a_{n}}^{T} \beta_{1} c^{2} \cdot \varphi_{1}^{\prime}(t) \partial_{x} u_{n}^{2}\left(t, \varphi_{1}(t)\right) d t
\end{aligned}
$$

Thanks to (1.4), 3.9) and the fact that $u_{n}^{2}\left(a_{n}, \varphi_{1}\left(a_{n}\right)\right)=0$, we have

$$
\left.-\beta_{1} c^{2} . h(t)\right]_{a_{n}}^{T}+\int_{a_{n}}^{T}\left(\beta_{1} c^{2}\right)^{\prime} \cdot h(t) d t \geq 0
$$

The last boundary integral in the expression of $J_{n, 1}$ can be treated by a similar argument used in Lemma 3.8. So, we obtain the existence of a positive constant K independent of n, such that

$$
\begin{equation*}
\left|\int_{a_{n}}^{T} \beta_{1} c^{2} \cdot \varphi_{1}^{\prime}(t) \partial_{x} u_{n}^{2}\left(t, \varphi_{1}(t)\right) d t\right| \leq K \epsilon\left\|\partial_{x}^{2} u_{n}\right\|_{L^{2}\left(\Omega_{n}\right)}^{2} \tag{3.12}
\end{equation*}
$$

By a similar method, we obtain

$$
\begin{aligned}
J_{n, 2}= & \left.\beta_{2}(t) c^{2}(t) u_{n}^{2}\left(t, \varphi_{2}(t)\right)\right]_{a_{n}}^{T}-\int_{a_{n}}^{T}\left(\beta_{2} c^{2}\right)^{\prime} \cdot u_{n}^{2}\left(t, \varphi_{2}(t)\right) d t \\
& -\int_{a_{n}}^{T} \beta_{2} c^{2} \cdot \varphi_{2}^{\prime}(t) \partial_{x} u_{n}^{2}\left(t, \varphi_{2}(t)\right) d t
\end{aligned}
$$

Thanks to (1.4), 3.10 and the fact that $u_{n}^{2}\left(a_{n}, \varphi_{2}\left(a_{n}\right)\right)=0$, we have

$$
\left.\beta_{2}(t) c^{2}(t) u_{n}^{2}\left(t, \varphi_{2}(t)\right)\right]_{a_{n}}^{T}-\int_{a_{n}}^{T}\left(\beta_{2} c^{2}\right)^{\prime} \cdot u_{n}^{2}\left(t, \varphi_{2}(t)\right) d t \geq 0
$$

Then

$$
\begin{equation*}
\left|-\int_{a_{n}}^{T} \beta_{2} c^{2} \cdot \varphi_{2}^{\prime}(t) \partial_{x} u_{n}^{2}\left(t, \varphi_{2}(t)\right) d t\right| \leq K \epsilon\left\|\partial_{x}^{2} u_{n}\right\|_{L^{2}\left(\Omega_{n}\right)}^{2} \tag{3.13}
\end{equation*}
$$

where K is a positive constant independent of n.
Now, we can complete the proof of Proposition 3.7. Summing up the estimates (3.8), 3.11, 3.12 and (3.13), and making use of Lemma 3.6, we then obtain

$$
\begin{aligned}
& \left\|f_{n}\right\|_{L^{2}\left(\Omega_{n}\right)}^{2} \\
& \geq\left\|\partial_{t} u_{n}\right\|_{L^{2}\left(\Omega_{n}\right)}^{2}+\left\|c^{2} \partial_{x}^{2} u_{n}\right\|_{L^{2}\left(\Omega_{n}\right)}^{2}-K \epsilon\left\|\partial_{x}^{2} u_{n}\right\|_{L^{2}\left(\Omega_{n}\right)}^{2}-K_{2} \epsilon\left\|\partial_{x}^{2} u_{n}\right\|_{L^{2}\left(\Omega_{n}\right)}^{2} \\
& \geq\left\|\partial_{t} u_{n}\right\|_{L^{2}\left(\Omega_{n}\right)}^{2}+\left(d_{1}^{2}-K \epsilon-K_{2} \epsilon\right)\left\|\partial_{x}^{2} u_{n}\right\|_{L^{2}\left(\Omega_{n}\right)}^{2}
\end{aligned}
$$

where K_{2} is a positive number. Then, it is sufficient to choose ϵ such that $\left(d_{1}^{2}-\right.$ $\left.K \epsilon-K_{2} \epsilon\right)>0$, to get a constant $K_{0}>0$ independent of n such that

$$
\left\|f_{n}\right\|_{L^{2}\left(\Omega_{n}\right)}^{2} \geq K_{0}\left(\left\|\partial_{t} u_{n}\right\|_{L^{2}\left(\Omega_{n}\right)}^{2}+\left\|\partial_{x}^{2} u_{n}\right\|_{L^{2}\left(\Omega_{n}\right)}^{2}\right)
$$

However,

$$
\left\|f_{n}\right\|_{L^{2}\left(\Omega_{n}\right)} \leq\|f\|_{L^{2}(\Omega)}
$$

then, there exists a constant $C>0$, independent of n satisfying

$$
\left\|\partial_{t} u_{n}\right\|_{L^{2}\left(\Omega_{n}\right)}^{2}+\left\|\partial_{x}^{2} u_{n}\right\|_{L^{2}\left(\Omega_{n}\right)}^{2} \leq C\left\|f_{n}\right\|_{L^{2}\left(\Omega_{n}\right)}^{2} \leq C\|f\|_{L^{2}(\Omega)}^{2}
$$

This completes the proof of Proposition 3.7
Passage to the limit. We are now in position to prove the first main result of this work.

Theorem 3.9. Assume that the following conditions are satisfied
(1) $\left(\varphi_{i}\right)_{i=1,2}$ fulfil the assumptions (3.5) and (3.6).
(2) the coefficient c verifies the conditions (3.1) and (3.8).
(3) $\left(\beta_{i}\right)_{i=1,2}$ fulfil the conditions (1.4), (2.1), (2.2) and (2.3).
(4) $\left(\varphi_{i}, \beta_{i}, c\right)_{i=1,2}$ fulfil the conditions (1.3), (3.9) and (3.10).

Then, for T small enough, 1.2 admits a (unique) solution u belonging to

$$
H_{\gamma}^{1,2}(\Omega)=\left\{u \in H^{1,2}(\Omega) ;\left.\left(\partial_{x} u+\beta_{i}(t) u\right)\right|_{\Gamma_{i}}=0, i=1,2\right\}
$$

where $\Gamma_{i}, i=1,2$ are the parts of the boundary of Ω where $x=\varphi_{i}(t)$.
Proof. Choose a sequence $\left(\Omega_{n}\right)_{n \in \mathbb{N}}$ of the domains defined above, such that $\Omega_{n} \subseteq \Omega$ with $\left(a_{n}\right)$ a decreasing sequence to 0 , as $n \rightarrow \infty$. Then, we have $\Omega_{n} \rightarrow \Omega$, as $n \rightarrow \infty$.

Consider the solution $u_{n} \in H^{1,2}\left(\Omega_{n}\right)$ of the Robin boundary value problem

$$
\begin{aligned}
\partial_{t} u_{n}-c^{2}(t) \partial_{x}^{2} u_{n} & =f_{n} \quad \text { in } \Omega_{n} \\
u_{n / t=a_{n}} & =0 \\
\partial_{x} u_{n}+\left.\beta_{i}(t) u_{n}\right|_{\Gamma_{n, i}} & =0, \quad i=1,2,
\end{aligned}
$$

where $\Gamma_{n, i}$ are the parts of the boundary of Ω_{n} where $x=\varphi_{i}(t), i=1,2$. Such a solution u_{n} exists by Theorem 3.1. Let $\widetilde{u_{n}}$ the $0-$ extension of u_{n} to Ω. In virtue of Theorem 3.5, we know that there exists a constant $K>0$ such that

$$
\left\|\widetilde{u_{n}}\right\|_{L^{2}(\Omega)}^{2}+\left\|\widetilde{\partial_{t} u_{n}}\right\|_{L^{2}(\Omega)}^{2}+\left\|\widetilde{\partial_{x} u_{n}}\right\|_{L^{2}(\Omega)}^{2}+\left\|\widetilde{\partial_{x}^{2} u_{n}}\right\|_{L^{2}(\Omega)}^{2} \leq K\|f\|_{L^{2}(\Omega)}^{2}
$$

This means that $\widetilde{u_{n}}, \widetilde{\partial_{t} u_{n}}, \widetilde{\partial_{x}^{j} u_{n}}$, for $j=1,2$ are bounded functions in $L^{2}(\Omega)$. So, for a suitable increasing sequence of integers $n_{k}, k=1,2, \ldots$, there exist functions u, v and $v_{j}, j=1,2$ in $L^{2}(\Omega)$ such that

$$
\begin{gathered}
\widetilde{u_{n_{k}}} \rightharpoonup u \quad \text { weakly in } L^{2}(\Omega), k \rightarrow \infty \\
\widetilde{\partial_{t} u_{n_{k}}} \rightharpoonup v \quad \text { weakly in } L^{2}(\Omega), k \rightarrow \infty \\
\widetilde{\partial_{x}^{j} u_{n_{k}}} \rightharpoonup v_{j} \quad \text { weakly in } L^{2}(\Omega), k \rightarrow \infty, j=1,2 .
\end{gathered}
$$

Clearly $v=\partial_{t} u, v_{1}=\partial_{x} u$ and $v_{2}=\partial_{x}^{2} u$ in the sense of distributions in Ω. So, $u \in H^{1,2}(\Omega)$ and

$$
\partial_{t} u-c^{2}(t) \partial_{x}^{2} u=f \quad \text { in } \Omega
$$

On the other hand, the solution u satisfies the boundary conditions

$$
\partial_{x} u+\left.\beta_{i}(t) u\right|_{\Gamma_{i}}=0, \quad i=1,2
$$

since for all $n \in \mathbb{N},\left.u\right|_{\Omega_{n}}=u_{n}$. This proves the existence of solution to 1.2 .
The uniqueness of the solution is easy to check, thanks to the hypothesis 1.3 .

4. The case of an arbitrary T

Assume that Ω satisfies 3.5 . In the case where T is not in the neighborhood of zero, we set $\Omega=D_{1} \cup D_{2} \cup \Gamma_{T_{1}}$ where

$$
\begin{gathered}
D_{1}=\left\{(t, x) \in \mathbb{R}^{2}: 0<t<T_{1}, \varphi_{1}(t)<x<\varphi_{2}(t)\right\} \\
D_{2}=\left\{(t, x) \in \mathbb{R}^{2}: T_{1}<t<T, \varphi_{1}(t)<x<\varphi_{2}(t)\right\} \\
\Gamma_{T_{1}}=\left\{\left(T_{1}, x\right) \in \mathbb{R}^{2}: \varphi_{1}\left(T_{1}\right)<x<\varphi_{2}\left(T_{1}\right)\right\}
\end{gathered}
$$

with T_{1} small enough.
In the sequel, f stands for an arbitrary fixed element of $L^{2}(\Omega)$ and $f_{i}=\left.f\right|_{D_{i}}$, $i=1,2$.

Theorem 3.9 applied to the triangular domain D_{1}, shows that there exists a unique solution $u_{1} \in H^{1,2}\left(D_{1}\right)$ of the problem

$$
\begin{align*}
& \partial_{t} u_{1}-c^{2}(t) \partial_{x}^{2} u_{1}=f_{1} \quad \text { in } L^{2}\left(D_{1}\right) \\
& \partial_{x} u_{1}+\beta_{i}(t) u_{1 / \Gamma_{i, 1}}=0, \quad i=1,2 \tag{4.1}
\end{align*}
$$

where $\Gamma_{i, 1}$ are the parts of the boundary of D_{1}, and $x=\varphi_{i}(t), i=1,2$.

Lemma 4.1. If $u \in H^{1,2}(] 0, T[\times] 0,1[)$, then $\left.u\right|_{t=0} \in H^{1}\left(\gamma_{0}\right),\left.u\right|_{x=0} \in H^{\frac{3}{4}}\left(\gamma_{1}\right)$ and $\left.u\right|_{x=1} \in H^{\frac{3}{4}}\left(\gamma_{2}\right)$, where $\left.\gamma_{0}=\{0\} \times\right] 0,1\left[, \gamma_{1}=\right] 0, T\left[\times\{0\}\right.$ and $\left.\gamma_{2}=\right] 0, T[\times\{1\}$.

The above lemma is a particular case of [6, Theorem 2.1, Vol.2]. The transformation

$$
(t, x) \longmapsto\left(t^{\prime}, x^{\prime}\right)=\left(t,\left(\varphi_{2}(t)-\varphi_{1}(t)\right) x+\varphi_{1}(t)\right)
$$

leads to the following lemma.
Lemma 4.2. If $u \in H^{1,2}\left(D_{2}\right)$, then $\left.u\right|_{\Gamma_{T_{1}}} \in H^{1}\left(\Gamma_{T_{1}}\right),\left.u\right|_{x=\varphi_{1}(t)} \in H^{\frac{3}{4}}\left(\Gamma_{1,2}\right)$ and $\left.u\right|_{x=\varphi_{2}(t)} \in H^{\frac{3}{4}}\left(\Gamma_{2,2}\right)$, where $\Gamma_{i, 2}$ are the parts of the boundary of D_{2} where $x=$ $\varphi_{i}(t), i=1,2$.

Hereafter, we denote the trace $\left.u_{1}\right|_{\Gamma_{T_{1}}}$ by ψ which is in the Sobolev space $H^{1}\left(\Gamma_{T_{1}}\right)$ because $u_{1} \in H^{1,2}\left(D_{1}\right)$ (see Lemma 4.2).

Now, consider the following problem in D_{2}

$$
\begin{gather*}
\partial_{t} u_{2}-c^{2}(t) \partial_{x}^{2} u_{2}=f_{2} \quad \text { in } L^{2}\left(D_{2}\right) \\
\left.u_{2}\right|_{\Gamma_{T_{1}}}=\psi \tag{4.2}\\
\partial_{x} u_{2}+\beta_{i}(t) u_{2 / \Gamma_{i, 2}}=0, \quad i=1,2
\end{gather*}
$$

where $\Gamma_{i, 2}$ are the parts of the boundary of D_{2}, and $x=\varphi_{i}(t), i=1,2$.
We use the following result, which is a consequence of [6, Theorem 4.3, Vol.2] to solve 4.2).

Proposition 4.3. Let Q be the rectangle $] 0, T[\times] 0,1\left[, f \in L^{2}(Q)\right.$ and $\psi \in H^{1}\left(\gamma_{0}\right)$. Then the problem

$$
\begin{aligned}
\partial_{t} u-c^{2}(t) \partial_{x}^{2} u=f \quad \text { in } Q \\
\left.u\right|_{\gamma_{0}}=\psi \\
\partial_{x} u+\left.\beta_{i}(t) u\right|_{\gamma_{i}}=0, \quad i=1,2,
\end{aligned}
$$

where $\left.\gamma_{0}=\{0\} \times\right] 0,1\left[, \gamma_{1}=\right] 0, T\left[\times\{0\}\right.$ and $\left.\gamma_{2}=\right] 0, T[\times\{1\}$, admits a (unique) solution $u \in H^{1,2}(Q)$.
Remark 4.4. In the application of [6, Theorem 4.3, Vol 2], we can observe that there are no compatibility conditions to satisfy because $\partial_{x} \psi$ is only in $L^{2}\left(\gamma_{0}\right)$.

Thanks to the transformation

$$
(t, x) \longmapsto(t, y)=\left(t,\left(\varphi_{2}(t)-\varphi_{1}(t)\right) x+\varphi_{1}(t)\right),
$$

we deduce the following result.
Proposition 4.5. Problem 4.2) admits a (unique) solution $u_{2} \in H^{1,2}\left(D_{2}\right)$.
So, the function

$$
u= \begin{cases}u_{1} & \text { in } D_{1} \\ u_{2} & \text { in } D_{2}\end{cases}
$$

is the (unique) solution of $\sqrt[1.2]{ }$ for an arbitrary T. Our second main result is as follows.

Theorem 4.6. Assume that the following conditions are satisfied
(1) $\left(\varphi_{i}\right)_{i=1,2}$ satisfies assumptions (3.5) and (3.6).
(2) the coefficient c satisfies conditions (3.1) and (3.8).
(3) $\left(\beta_{i}\right)_{i=1,2}$ fulfil the conditions (1.4), (2.1), (2.2) and (2.3).
(4) $\left(\varphi_{i}, \beta_{i}, c\right)_{i=1,2}$ fulfil the conditions (1.3), (3.9) and (3.10).

Then, 1.2 admits a (unique) solution u belonging to

$$
H_{\gamma}^{1,2}(\Omega)=\left\{u \in H^{1,2}(\Omega) ;\left.\left(\partial_{x} u+\beta_{i}(t) u\right)\right|_{\Gamma_{i}}=0, i=1,2\right\}
$$

where $\Gamma_{i}, i=1,2$ are the parts of the boundary of Ω where $x=\varphi_{i}(t)$.
Remark 4.7. Using the same method in the case where $\varphi_{1}(T)=\varphi_{2}(T)$ we can obtain a result similar to Theorem 4.6.

Acknowledgment. The authors are thankful to the anonymous referee for his/her careful reading of a previous version of the manuscript, which led to a substantial improvement of this manuscript.

References

[1] V. Besov; The continuation of function in L_{p}^{1} and W_{p}^{1}, Proc. Steklov Inst. Math. 89 (1967), 5-17.
[2] S. Hofmann, J. L. Lewis; The L^{p} regularity problems for the heat equation in non-cylindrical domains, J. of Functional Analysis 220 (2005), 1-54.
[3] R. Labbas, A. Medeghri, B.-K. Sadallah; Sur une équation parabolique dans un domaine non cylindrique, C.R.A.S, Paris, 335 (2002), 1017-1022.
[4] R. Labbas, A. Medeghri, B.-K. Sadallah; On a parabolic equation in a triangular domain, Applied Mathematics and Computation 130 (2002), 511-523.
[5] R. Labbas, A. Medeghri, B.-K. Sadallah; An L^{p} approach for the study of degenerate parabolic equation, Electron. J. Diff. Equ., vol. 2005, no. 36, (2005), 1-20.
[6] J. L. Lions, E. Magenes; Problèmes aux limites non homogènes et applications, 1, 2, Dunod, Paris (1968).
[7] B.-K. Sadallah; Etude d'un problème $2 m$-parabolique dans des domaines plan non rectangulaires, Boll. Un. Mat. Ital., (5), 2-B (1983), 51-112.
[8] B. K. Sadallah; Regularity of a parabolic equation solution in a nonsmooth and unbounded domain, J. Aust. Math. Soc., 84 (2) (2008), 265-276.
[9] B. K. Sadallah; A remark on a parabolic problem in a sectorial domain, Applied Mathematics E-Notes, 8 (2008), 263-270.
[10] G. Savaré; Parabolic problems with mixed variable lateral conditions: an abstract approach, J. Math. Pures et Appl. 76 (1997), 321-351.

Arezki Kheloufi
Department of Sciences and Techniques, Faculty of Technology, Béjaia University, 6000. Béjaia, Algeria

E-mail address: arezkinet2000@yahoo.fr
Boubaker-Khaled Sadallah
Department of Mathematics, E.N.S., 16050 Kouba. Algiers, Algeria
E-mail address: sadallah@ens-kouba.dz

[^0]: 2000 Mathematics Subject Classification. 35K05, 35K20.
 Key words and phrases. Parabolic equation; non-rectangular domains; Robin condition; anisotropic Sobolev space.
 (C) 2010 Texas State University - San Marcos.

 Submitted July 29, 2009. Published February 10, 2010.
 Supported by grant 08MDU735 from EGIDE under the CMEP Program.

