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COMPACTNESS RESULTS FOR GINZBURG-LANDAU TYPE
FUNCTIONALS WITH GENERAL POTENTIALS

MATTHIAS KURZKE

Abstract. We study compactness and Γ-convergence for Ginzburg-Landau
type functionals. We only assume that the potential is continuous and positive

definite close to one circular well, but allow large zero sets inside the well. We

show that the relaxation of the assumptions does not change the results to
leading order unless the energy is very large.

1. Introduction

We study the family of functionals

Eε(u) =
1
2

∫
U

|∇u|2 +
1
ε2

P (u) (1.1)

for a smooth bounded domain U ⊂ R2 and u ∈ H1(U ; C), where P is a nonnegative
function with P = 0 on S1 = {z ∈ C : |z| = 1}.

In the case where P (u) = Pgl(u) = 1
2 (1− |u|2)2, this functional is the Ginzburg-

Landau functional

Gε(u) =
∫

U

1
2
|∇u|2 +

1
4ε2

(1− |u|2)2, (1.2)

which has been widely studied since the groundbreaking work of Bethuel, Brezis
and Hélein [4]. They considered minimizers and solutions of the Euler-Lagrange
equations under Dirichlet boundary condition and were able to show convergence
results and detailed energy asymptotics. Their methods relied on Rellich-Pohoz̆aev
type identities and thus on the PDE.

Later, Sandier [13] and Jerrard [6] were able to show the essential lower bounds
using more direct comparison arguments and without PDE arguments. This ap-
proach was refined and later used by Jerrard and Soner [7, 8] to show compact-
ness for the Jacobians and a Γ-convergence result for the energies. Independently,
Alberti-Baldo-Orlandi [1, 2] obtained a proof in the general case of maps from
Rn+k to Rn and an energy related to the k-Dirichlet energy. In the context of the
magnetic Ginzburg-Landau functional, a detailed presentation can be found in the
monograph by Sandier-Serfaty [14].
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The PDE approach of Bethuel-Brezis-Hélein [4] has been generalized to poten-
tials P that vanish near S1 to infinite order by Hadiji and Shafrir [5]. The main new
feature is that certain potentials with sufficiently slow growth allow for a vortex
energy that is not π| log ε|+ O(1), but instead π| log ε| − o(| log ε|).

Potentials given by distance functions to homeomorphic images of S1 instead of
S1 itself were also studied, see the work of Shafrir [15] and André and Shafrir [3].

In this article, we investigate a different type of generalization: we allow the
potential to vanish on a larger set, and in particular to have zeroes inside the unit
ball. One simple such potential is

Pcsh(u) = |u|2(1− |u|2)2. (1.3)

The study of this potential has applications in the theory of Chern-Simons-Higgs
vortices. In Kurzke-Spirn [9], the analysis of (1.1) with this potential is the basis
for a Γ-convergence analysis of the static Chern-Simons-Higgs functional,

Gε,µ
csh(u, A) =

1
2

∫
U

|(∇− iA)u|2 +
µ2

4
| curl−hex|2

|u|2
+

1
ε2
|u|2(1− |u|2)2, (1.4)

which contains an interaction with a magnetic vector potential A : U → R2 and an
external magnetic field hex. The particular potential (1.3) has also been studied
using the methods devised by Bethuel-Brezis-Hélein [4] for Pgl. Lassoued-Lefter
[10] showed a convergence result for minimizers in bounded domains, and Ma [12]
studied quantization properties for solutions of the corresponding Euler-Lagrange
equations in R2. Both of these works rely heavily on the Pohoz̆aev identity and on
the equations, requiring some differentiability of the potential.

In contrast to these works, in the present article we only require the potential
P to be continuous and nonnegative in {|z| ≤ 1} and comparable to the Ginzburg-
Landau potential near S1. We do not require any further smoothness or symmetry
assumptions, and allow the potential to vanish on large subsets of the unit ball. To
ensure the presence of vortices, we study situations where |u| = 1 on the boundary
(for example, this can be ensured by a Dirichlet boundary condition), although this
assumption can be weakened.

Our method is based on a few elementary Modica-Mortola type arguments and
the co-area formula. By an observation of G. Orlandi, these arguments lead to a
bound on the standard Ginzburg-Landau functional, and it is then possible to apply
the standard compactness results of [2, 7, 8] also to the generalized functional. The
method is applicable to the functional studied in [9], and yields a new and much
shorter and clearer proof of the central compactness statement there.

The Γ-convergence result turns out to be essentially the same as for the Ginzburg-
Landau energy, in contrast to the weighted Ginzburg-Landau energy with vanishing
weight as studied by Lefter-Radulescu [11], where P (u) is replaced by w(x)P (u)
with a nonnegative function w : U → [0,∞), and the behaviour depends on the
growth of the weight function near its zeroes.

A difference between our result and Ginzburg-Landau theory can be seen at very
high energies: our compactness theorem only holds for a smaller range of energies,
and we even have an explicit example of failure for very large energies, see Remark
2.7.
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Notation and assumptions. We will deal with sequences (uε) of functions uε ∈
C1(U ; C), labeled by an arbitrary (but assumed fixed) sequence ε = εk → 0. Sub-
sequences will be taken from this fixed sequence. As we are dealing mostly with
compactness issues, the regularity requirement is mostly technical.

We will generally assume |uε| ≤ 1, |uε| = 1 on ∂U , where U is a Lipschitz
domain in R2. The assumption |uε| ≤ 1 is technical and could be replaced by
suitable growth conditions on P (z) for |z| ≥ 1.

The assumption |uε| = 1 on ∂U is slightly more restrictive: it completely rules
out vortices on the boundary and at first glance seems to make it impossible to
use the results presented here for dynamical situations where vortices enter or leave
through the boundary. However, under reasonable assumptions on P and U , it is
possible to use the extension technique of Kurzke-Spirn [9] to show that any uε on
U with |uε| → 1 in L2(U) can be extended to ũε on Ũ ⊃ U with |ũε| = 1 on ∂Ũ ,
and then the compactness results of this article can be applied in Ũ .

Our assumptions on the potential P are as follows.
(A1) P ∈ C0({|z| ≤ 1}), P ≥ 0, P (S1) = {0}
(A2) There is a κ ∈ (0, 1) and an a > 0 such that P (z) ≥ a(1 − |z|2)2 for

|z| ∈ [1− κ, 1].
We note that both Pcsh and Pgl satisfy these assumptions.

For a, b ∈ C we write (a, b) := Re(ab) for the scalar product. Identifying R2 and
C, we can write the Jacobian of u as 1

2 curl(iu,∇u).
Our main results are a compactness result for the Jacobians, Theorem 2.6, hold-

ing for energies Eε(uε) � 1
ε , and Γ-convergence results for the energy scalings

Eε(uε) ≈ | log ε| and Eε(uε) ≈ | log ε|2, Theorems 3.1 and 3.2. Unlike in the
Ginzburg-Landau case, the Jacobian bounds of Theorem 2.6 cannot be extended
to energies in the range 1

ε � Eε(uε) � 1
ε2 , see Remark 2.7.

Remark 1.1. For the questions studied in this article, we may assume without
loss of generality that P is radial, more precisely, we can assume P (u) = V (|u|)
for some V with V ∈ C0([0, 1]) with V ≥ 0, V (1) = 0 and V (t) ≥ a(1 − t2)2 for
t ∈ [1− κ, 1]. To see this, set

V −(ρ) = inf
|u|=ρ

P (u) and V +(ρ) = sup
|u|=ρ

P (u). (1.5)

It is clear that
∫

U
V −(|u|) ≤

∫
U

P (u) ≤
∫

U
V +(|u|) and so compactness and lower

bound results for functionals involving V − carry over to P , while upper bound results
for V + imply upper bound results for P . We note that by compactness, V − ≤ V + ≤
C(P )V − and so any Γ-convergence results for radial functionals that are invariant
under rescaling V 7→ σV for σ > 0 automatically hold for non-radial P .

Acknowledgments. The author is grateful to Giandomenico Orlandi who sug-
gested a significant improvement of a first draft of the article using Propositions
2.3 and 2.5. This greatly simplified the proofs.

The author enjoyed the support of DFG SFB 611.

2. Energy bounds and Jacobian compactness

Definition 2.1. For any compact set K ⊂ R2, we define its radius r(K) as

r(K) = inf
{ N∑

i=1

ri : K ⊂
⋃

Bi, Bi a closed ball of radius ri

}
(2.1)
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Radius of a set and 1-dimensional Hausdorff measure H1 of its perimeter are
related by the following inequality:

r(K) ≤ 1
2
H1(∂K). (2.2)

For a proof, see [14, p. 71].
The radius also has the monotonicity property r(A) ≤ r(B) for A ⊂ B.

Proposition 2.2. There exists a constant C = C(a) > 0 such that for u ∈
C1(U, C) with |u| = 1 on ∂U , Eε(|u|) ≤ M and for any δ < κ and any ε, we
have the following covering estimate for Kδ := {|u| ≤ 1− δ}:

r(Kδ) ≤ C
εM

δ2
. (2.3)

In particular, the measure of {|u| ≤ 1− δ} satisfies

|Kδ| ≤ C̃ε2M2 (2.4)

for C̃ = 4πC(a)
κ2 .

Proof. Setting ρ = |u|, the energy bound

1
2

∫
U

|∇ρ|2 +
1
ε2

V (ρ) ≤ M

implies by Cauchy’s inequality that∫
U

|∇ρ|
√

V (ρ) ≤ εM.

Using the co-area formula, this shows∫ 1

1−κ

√
V (t)H1({ρ = t})dt ≤ εM.

Using the assumption (A2) on the potential, we see that in particular∫ 1− δ
2

1−δ

a(1− t2)H1({ρ = t}) ≤ εM.

Using that (1 − t2) ≥ (1 − (1 − δ
2 )2) ≥ δ

2 in (1 − δ, 1 − δ
2 ) and the mean value

theorem, we obtain the existence of t0 ∈ (1− δ, 1− δ
2 ) such that

H1({x ∈ U : ρ(x) = t0}) ≤
4εM

aδ2
(2.5)

Using that {ρ ≤ t0} is compactly contained in U by the boundary condition |u| = 1,
it follows that ∂{x ∈ U : ρ(x) ≤ t0} = {x ∈ U : ρ(x) = t0}). Hence we can use
(2.2) and see that r({ρ ≤ t0}) ≤ 4εM

aδ2 . The monotonicity of r now yields (2.3).
To prove (2.4), we note that Kδ ⊂

⋃
Bri

(ai) with
∑

ri ≤ r(Kδ). Hence |Kδ| ≤
π

∑
r2
i ≤ π(

∑
ri)2 ≤ π(r(Kδ))2, and (2.4) follows. �

The following observation was communicated to the author by Giandomenico
Orlandi:
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Proposition 2.3. For α ∈ (0, 1) and ε > 0 sufficiently small there exists a C =
C(a) > 0 such that the following holds: For every u ∈ C1(U, C) with |u| ≤ 1 in U ,
|u| = 1 on ∂U that satisfies the energy bound Eε(|u|) = M ≤ ε−α, there holds the
bound ∫

U

(1− |u|2)2 ≤ Cε2−αM. (2.6)

Proof. We split U = {|u| ≤ 1 − κ
2 } ∪ {|u| > 1 − κ

2 }. Using (2.5) applied to δ = κ
2

and (2.2), ∫
{|u|≤1−κ

2 }
(1− |u|2)2 ≤ πr({|u| ≤ 1− κ

2
})2

≤ C(a)(εM)2

≤ ε2ε−αM

= Cε2−αM

since M ≤ ε−α. On the other hand, using (A2) we estimate∫
{|u|>1−κ

2 }
(1− |u|2)2 ≤ 1

a

∫
{|u|>1−κ

2 }
V (|u|)

≤ C(a)ε2Eε(|u|)
≤ Cε2M

≤ Cε2−αM.

Combining these estimates we obtain (2.6). �

Remark 2.4. From the proof of Proposition 2.3 we see that the assumption |u| ≤ 1
in U could be replaced by assuming that (A2) also holds for |z| > 1.

Proposition 2.5. Let u ∈ C1(U, C) with Eε(u) ≤ M , |u| ≤ 1 in U , |u| = 1 on
∂U , where M ≤ ε−α for some α ∈ (0, 1). Then for η = ε1−α

2 , the Ginzburg-Landau
functional Gη(u) as defined in (1.2) satisfies the bound

Gη(u) ≤ CM (2.7)

If (uε) is a sequence satisfying the assumptions above, then the following bounds
hold for the sequence ηε = ε1−α

2 → 0:

(i) If Eε(uε) ≤ ε−α then Gηε
(uε) ≤ Cη

− 2α
2−α

ε .
(ii) If Eε(uε) ≤ K| log ε| then Gηε

(uε) ≤ CK 2
2−α | log ηε|.

(iii) If Eε(uε) ≤ K| log ε|2 then Gηε
(uε) ≤ CK 4

(2−α)2 | log ηε|2.

Proof. From (2.6) we obtain

η−2

∫
U

(1− |u|2)2 ≤ Cη−2η2M = CM,

and trivially
1
2

∫
U

|∇u|2 ≤ Eε(u) ≤ M.

The bounds (i)-(iii) follow from (2.7) by simply expressing the energy bounds in
terms of ηε. �
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Theorem 2.6. Let (uε) be a sequence in C1(U, C) with |uε| = 1 on ∂U , |uε| ≤ 1
in U and Eε(uε) ≤ Mε, where

| log ε| ≤ Mε ≤ ε−α

for some α ∈ (0, 1). Set

µε =
| log ε|
Mε

curl(iuε,∇uε).

Then the sequence of measures (µε) is precompact in (C0,β
0 )∗ for any β ∈ (0, 1).

Proof. By Proposition 2.5, Gηε
(uε) � η−2. Hence we can apply Theorem 1.1 of

[8], which yields the claim. �

Remark 2.7. For the Ginzburg-Landau energy, the analog of the previous com-
pactness result holds for energies up to Gε(u) � ε−2. In fact, we used that result
in its full strength, as Eε(uε) � ε−1 just implies Gη(uε) � η−2. That we cannot
relax the assumption Eε(uε) � ε−1 is not just an artifact of the proof: for our
more general potentials, the following example shows that compactness may fail for
higher energies.

Example 2.8. Set V (ρ) = (ρ2 − 1)2(ρ2 − 1
4 )2χ[ 12 ,1](ρ). Let 1

ε � dε. Then there

exist constants C1, C2 and a sequence of functions (uε), uε ∈ C1(B1(0), C) with
uε = 1 on ∂B1(0), Eε(uε) ≤ C1dε and

‖ curl(iuε,∇uε)‖(C0,1
0 )∗ ≥ C2Eε(uε).

In particular, the measures (µε) as in Theorem 2.6 will be unbounded.

Proof. Setting d = dε, we choose

uε(r, θ) =


1
2 (4r)deidθ 0 ≤ r < 1

4
1
2 (2− 4r)deidθ 1

4 ≤ r < 1
2

0 1
2 ≤ r < 1− ε

1− 1−r
ε 1− ε ≤ r ≤ 1.

Then it is not hard to check that |uε| ≤ 1
2 on B1/2 and Eε(uε) = Cdε + c

ε ≤ Cdε.
Testing with the C0,1 function

ζ(r, θ) =


1
8 r < 1

8
1
4 − r 1

8 ≤ r < 1
4

0 r ≥ 1
4

shows the claim for the Jacobians. �

3. Gamma limits

In this section, we use the results of the previous section to obtain Γ-limit results
in two scaling regimes: One is the smallest energy regime where vortices appear,
namely M ≈ | log ε|. The second is the “natural” energy scaling M ≈ | log ε|2, the
only scaling where both the Jacobian and the current (iu,∇u) make a significant
contribution. A full discussion of possible regimes can be found in [8]. We note
that results for Chern-Simons-Higgs type functionals (1.4) can be deduced as in [9],
at least for certain parameter regimes.



EJDE-2010/28 COMPACTNESS FOR GINZBURG-LANDAU FUNCTIONALS 7

Theorem 3.1 (Compactness and Γ-convergence in the | log ε| scaling). If (uε),
uε ∈ C1(U ; C) satisfies |uε| ≤ 1, |uε| = 1 on ∂U and Eε(uε) ≤ K| log ε|, then
the sequence µε = 1

2 curl(iuε,∇uε) is precompact in (C0,β
0 )∗, and any subsequential

weak limit µ satisfies

µ = π
n∑

j=1

djδaj
(3.1)

for some n ∈ N, aj ∈ U and dj ∈ Z. Moreover,

‖µ‖M = π
n∑

j=1

|dj | ≤ lim inf
ε→0

1
2| log ε|

∫
U

|∇uε|2 ≤ lim inf
ε→0

1
| log ε|

Eε(uε). (3.2)

Conversely, for any µ of the form (3.1) there exists a sequence (uε), uε ∈ C1(U ; C)
such that

‖µ‖M = lim
ε→0

1
| log ε|

Eε(uε) (3.3)

Proof. Let α ∈ (0, 1). From Proposition 2.5, Gη(uε) ≤ C| log ε|, where η = ε1−α
2 .

We have | log η| = (1− α
2 )| log ε| and so

Gη(uε) ≤
C

1− α
2

| log η|.

In particular, we can apply the standard compactness theory for the Ginzburg-
Landau functional in the form of Theorem 3.1 of [7], which yields the compactness
and the structure statement on µ. Furthermore, it yields the bound as well as the
following

‖µ‖M ≤ 1
| log η|

Gηε(uε). (3.4)

By the observation made in the Remark following Theorem 1.1 of [2] (the bound
in (3.4) does not depend on the shape of the potential), we can replace (1− |u|2)2
by σ(1− |u|2)2 and then let σ → 0 and arrive at

‖µ‖M ≤ 1
2| log ηε|

∫
U

|∇uε|2. (3.5)

Finally, we let α → 0 so | log ηε|
| log ε| = 1 − α

2 → 1, and we obtain (3.2). The upper
bound construction of [7] provides (3.3). Here our different potential does not
substantially change the proof, cf. Remark 1.1: Since P (u) ≤ K(P )(1− |u|2)2 and
so ε−2P (u) ≤ 1

2 ε̃−2(1 − |u|2)2 for ε̃ =
√

2K(P )ε and | log ε|
| log ε̃| → 1 for ε → 0, the

precise form of the potential is irrelevant. �

Theorem 3.2 (Compactness and Γ-convergence in the | log ε|2 scaling). Assume
that (uε), uε ∈ C1(U ; C) satisfies |uε| ≤ 1, |uε| = 1 on ∂U and Eε(uε) ≤ K| log ε|2.
Then a subsequence of vε = 1

| log ε| (iuε,∇uε) converges weakly in L2 to v ∈ L2(U).

The measures wε = curl(iuε,∇uε) converge subsequentially in (C0,β
0 )∗ to w =

curl v ∈ H−1(U).
The energy satisfies

lim inf
ε→0

1
| log ε|2

Eε(uε) ≥ lim inf
ε→0

1
2| log ε|2

∫
U

|∇uε|2 ≥
1
2

∫
U

|v|2 +
1
2
‖ curl v‖M .

(3.6)
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Furthermore, for any v ∈ L2(U) such that curl v is a Radon measure, there exists
a sequence (uε) such that vε and wε defined as above converge weakly in L2 and in
(C0,β)∗, respectively, and such that equality holds in (3.6).

Proof. We note that ‖vε‖2L2 ≤
∥∥∥ vε

|uε|

∥∥∥2

L2
≤ K. By Theorem 2.6, the wε are compact.

We again choose α ∈ (0, 1) and set ηε = ε1−α
2 . By Proposition 2.5, the Ginzburg-

Landau energy satisfies the bound

Gηε(uε) ≤ C| log ηε|2. (3.7)

Hence we can use Theorem 1.2 of [8] and obtain the compactness and compactness
and structure results of the theorem. To prove (3.6), we note that the cited theorem
implies

lim inf
ε→0

1
| log ηε|2

Gηε
(uε) ≥ lim inf

ε→0

1
2| log ηε|2

∫
U

|∇uε|2 ≥
1
2

∫
U

|v|2 +
1
2
‖ curl v‖M ,

(3.8)
where we have again used the observation of [2] to drop the potential term in the
lower bound. Just as in the proof of the previous theorem, we may now let α → 0,
which implies | log ηε|2

| log ε|2 → 1, hence (3.6).
For the construction of a recovery sequence that shows equality, we note that the

sequence constructed in Proposition 7.1 of [8] can be used without changes, keeping
in mind the remarks made at the end of the proof of Theorem 3.1. �
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