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SINGULAR ELLIPTIC EQUATIONS INVOLVING A CONCAVE
TERM AND CRITICAL CAFFARELLI-KOHN-NIRENBERG
EXPONENT WITH SIGN-CHANGING WEIGHT FUNCTIONS

MOHAMMED BOUCHEKIF, ATIKA MATALLAH

ABSTRACT. In this article we establish the existence of at least two distinct
solutions to singular elliptic equations involving a concave term and critical
Caffarelli-Kohn-Nirenberg exponent with sign-changing weight functions.

1. INTRODUCTION
This article shows the existence of at least two solutions to the problem
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(1.1)

where 2 C R¥ is an open bounded domain, N > 3,0 € Q, a < (N — 2)/2,
a<b<a+1l,1<qg<2,c<qgla+1)+N(1—-4q/2),2,:=2N/(N—-242(b—a))
is the critical Caffarelli-Kohn-Nirenberg exponent, p < jiq := (N — 2(a + 1))%/4, A
is a positive parameter and h, k are continuous functions which change sign in Q.

It is clear that degeneracy and singularity occur in problem . In these
situations, the classical methods fail to be applied directly so that the existence
results may become a delicate matter that is closely related to some phenomena due
to the degenerate (or singular) character of the differential equation. The starting
point of the variational approach to these problems is the following Caffarelli-Kohn-
Nirenberg inequality in [6]: there is a positive constant C, ; such that
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where —co <a < (N—-2)/2,a<b<a+1,2,=2N/(N—-2+2(b—a)). For sharp
constants and extremal functions, see [7,9]. In (1.2), as b = a + 1, then 2, = 2 and
we have the following weighted Hardy inequality [9]:

1/2. 1/2
u 2*dx) < Ca,b(/ |3:|72“|Vu|2d:c) Yu € C5°(9), (1.2)
RN

1
/ || 2@+ D2 < [7/ |z| 24| Vu|?dz for all u € CS°(Q). (1.3)
RN RN
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We introduce a weighted Sobolev space D}2(Q2) which is the completion of the
space C5°(£2) with respect to the norm

o 1/2
o = ([ lal19udo)

Define H,, as the completion of the space C§°(€2) with respect to the norm

1/2
1wl .0 == (/ (Jz|~**|Vul* — u|x|72(a+1)u2)d:c) for —oo < p < fig-
o

By weighted Hardy inequality || - ||,,,o is equivalent to || - [|o,q; i.€.,

1 1/2 1 1/2
1- — ,o) < <(1—7 i ,0) ,
(1= = max(1.0)) fulos < o < (1= o mine.0)) o
for all u € H,. From the boundedness of {} and the standard approximation
arguments, it is easy to see that (1.2)) hold for any u € H,, in the sense

1/
([ talupas) ™" < ([ fol200upan) 7, (14)

for 1 <p<2N/(N —-2),c<pla+1)+ N(1—-p/2), and in [I5] if p < 2N/(N — 2)
the embedding H,, — L,(Q, |x|~°) is compact, where L, (€, |z|~°) is the weighted

L, space with norm
el p 1/p
fulpe = ([ lal~fude) .
Q

We start by giving a brief historic point of view. It is known that the number of
nontrivial solutions of problem is affected by the concave and convex terms.
This study has been the focus of a great deal of research in recent years.

The case h = 1 and k£ = 1 has been studied extensively by many authors, we
refer the reader to [I], [2], [8], [14] and the references therein. In [I] Ambrosetti
et al. studied the problem fory=0,a=b=c=0,2, =2 =2N/(N - 2)
replaced by p, where 1 < p < 2,. They establish the existence of Ay > 0 such that
(Px,0) for A fixed in (0, A) has at least two positive solutions by using sub-super
method and the Mountain Pass Theorem, problem for A = Ag has also a
positive solution and no positive solution for A > Ag. When >0, a=0b=c=0,
Chen [§] studied the asymptotic behavior of solutions to problem by using
the Moser’s iteration. By applying the Ekeland Variational Principle he obtained a
first positive solution, and by the Mountain Pass Theorem he proved the existence
of a second positive solution. Recently, Bouchekif and Matallah [2] extended the
results of [§] to problem (Py,) with a = ¢ =0, 0 < b < 1, they established the
existence of two positive solutions under some sufficient conditions for A and p. Lin
[14] considered a more general problem with0 <a < (N—-2)/2,a<b<a+]l,
c=0,1<¢g<2and p>0.

For the case h # 1 or k # 1, we refer the reader to [3],[12] 17, [I8] and the references
therein. Tarantello [I7] studied the problem for p =0,a=>b=rc=0,
q=XA=1,k =1 and h not necessarily equals to 1, satisfying some conditions.
Recently, problem in Q = RY with ¢ = 1 has considered in [3].

Wu [I8] showed the existence of multiple positive solutions for problem
witha=b=c¢c=0,1<¢q<2,k=1,his a continuous function which changes sign
in Q. In [12], Hsu and Lin established the existence of multiple nontrivial solutions
to problem witha=b=c=0,1< q < 2, h and k are smooth functions
which change sign in Q.
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The operator L, qu := — div(|z|722Vu) — p|z|~2@+ Dy has been the subject of
many papers, we quote, among others [II] for a = 0 and p < [ig, and [I0] or [16]
for general case i.e —oo < a < (N —2)/2 and p < [iq.

Xuan et al. [I6] proved that under the conditions

N>3, a<(N-2)/2, 0<+ig—+Vie—p+a<(N-2)/2,
a<b<a+1l, p<fiq—"b%

for € > 0, the function

N w2, = — £=2, = _ -5
ue(z) = Cosz*%z (6ﬁ\x =3 2(‘/‘T‘L’V”“”‘)—i—|ac 3 Q(V‘T‘L*V““’“)) 0 (1.5)

with a suitable positive constant Cp, is a weak solution of

_div (|x\*2aVu) . u|:z:|*2(“+1)u — |x‘72*b 2.-2,, ip RN\{O}'

u

Furthermore,

Y Ry e
RN RN RN

where A, ,, is the best constant,

Aa,b,p, = uEPIII:f\.{O} Ea,b,p,(u) = Emb,u(ua)v (17)

u6|2*dx =Auppu, (1.6)

with
Eopu(u) = Jan 12172 VulPde — p [n | =D da
a,b,u : (fRN |m|—2*b|u Q*dx)2/2* :
Also in [13] and [14], they proved that for 0 < a < (N —2)/2, a < b < a+1,
0 < p < [ig, the function defined for € > 0 as

_ — __2
ve(z) = (2'2*52(11—“1 - ,u))ﬁ (52|x‘(2*—2)(\/§—\/#a—ﬂ) . 2022 oy Tafu)) 7,2

(1.8)
is a weak solution of

— div(je| V) — ple| 72y = o7

and satisfies

[ el 2eivede < [ ol e s = [ el
RN RN RN

where B, ., is the best constant,

=2y in RM\{0},

v5|2*dx =DBapp, (1.9)

Ba,b,u = anlw(u) = Ea’b’/_ll(vs). (110)

inf
ueH,\{0}

A natural question that arises in concert applications is to see what happens
if these elliptic (degenerate or non-degenerate) problems are affected by a certain
singular perturbations. In our work we prove the existence of at least two dis-
tinct nonnegative critical points of energy functional associated to problem
by splitting the Nehari manifold (see for example Tarantello [I7] or Brown and
Zhang [B]).

In this work we consider the following assumptions:

(H) h is a continuous function defined in € and there exist hg and py positive
such that h(z) > ho for all z € B(0,2pg), where B(a,r) is a ball centered
at a with radius r;
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(K) k is a continuous function defined in 2 and satisfies k(0) = max,q k(x) >
0, k(z) = k(0) + o(xP) for x € B(0,2p0) with 3 > 2.\/Tia — 1;
and one of the following two assumptions
(A1) N >2(]b] +1) and
(avﬂ) 6] - 17O[X]O’ﬂa - bZ[U[Oa %[X]a(a - N+ 2)vﬂa - b2[7

(A2) N >3, (a.p0) € [0. 552 [x[0. .
Following the method introduced in [I7, 12], we obtain the following existence
result.

Theorem 1.1. Suppose that a < (N —2)/2, a <b<a+1],1<qg<2 ¢<
gla+ 1)+ N(1 —q/2), (H), (K) hold and (A1) or (A2) are satisfy. Then there
exists A* > 0 such that for A € (0, A*) problem has at least two nonnegative
solutions in H,,.

This paper is organized as follows. In section 2 we give some preliminaries.
Section 3 is devoted to the proof of Theorem

2. PRELIMINARY RESULTS

We start by giving the following definitions.

Let E be a Banach space and a functional I € C1(E,R). We say that (u,) is a
Palais Smale sequence at level I ((PS); in short) if I(u,) — ! and I'(u,) — 0 in
E’ (dual of E) as n — oo. We say also that I satisfies the Palais Smale condition
at level [ if any (PS); sequence has a subsequence converging strongly in F.

Define

v {u6 if (a,p) €] — 1,0[x]0, i, — b?[U[0, X2 [x]a(a — N +2), fiq — b?,

ve if (a, ) € [0, 552 [x[0, fial,
(2.1)
and
Sabu =

Aapy if (a,p) €] = 1,00x]0, fig — b?[U[0, B2 [x]a(a — N +2), fia — V[, (2:2)
Bavbvﬂ if (a” lu) 6 [07 %[X[O’ laa[a .

Since our approach is variational, we define the functional I , as
1 A e 1 _
Do) = 3l = 5 [ W@el“lultde - o= [ K@lal >
qJa * JQ

for w € H,. By (1.2) and (L.4) we can guarantee that Iy , is well defined in H,
and I, , € C'(H,,R).
u € Hy, is said to be a weak solution of (L.1)) if it satisfies

2 du,

u|**2uv)dr = 0

/ (|| 2 VuVo—plz| "2 Dy —\n(z) |z~ u|?2uw—k(z)|z| 720
Q

for all v € H,. By the standard elliptic regularity argument, we have that u €
C2(@\{0}).

In many problems as (|1.1)), Iy, is not bounded below on H, but is bounded
below on an appropriate subset of H,, and a minimizer in this set (if it exists) may
give rise to solutions of the corresponding differential equation.
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A good candidate for an appropriate subset of H,, is the so called Nehari manifold
N = {u € H,\{0}, (I} ,(u),u) = O}.
It is useful to understand A, in terms of the stationary points of mappings of
the form
\I/u(t) = I,\,M(tu), t>0,
and so 1
WL () = (14, (0u), w) = (T4, (b)),
An immediate consequence is the following proposition.

Proposition 2.1. Let v € H,\{0} and t > 0. Then tu € Ny if and only if
v (t) = 0.

Let u be a local minimizer of I ,, then ¥, has a local minimum at ¢ = 1. So it is
natural to split \Vy into three subsets N, ;‘ , Ny and MV ¥ corresponding respectively
to local minimums, local maximums and points of inflexion.

We define
Juf?

N = fue Moz @=alul - (2. =) [ ko) lde > 0)

q
={ueNy:(2- 2*)”“”2@ + (2. — q))\/ h(x);td:z: > 0}.
Q
Note that Ny and N} similarly by replacing > by < and = respectively.
= inf I, ,(u); ¢ = inf I ;0 ¢y = inf T . 2.3
ex = inf I ,(u); c5 e )i o= in . (W) (2.3)

The following lemma shows that minimizers on Ny are critical points for I ,.

Lemma 2.2. Assume that u is a local minimizer for Iy, on Ny and that u ¢ N7.
Then I ,(u) = 0.

The proof of the above lemma is essentially the same as that of [5] Theorem 2.3].

Lemma 2.3. Let

A .f(27q)22*%q‘7( 2, -2 >|h+|71|k+| (S )Tx,(ff__qi)
P\, g (2. —q)Ch oo [ loo kb ’

where n* (x) = max(n(z),0), and |77 | = sup,eq essin™(z)|. Then NY =0 for all
A€ (0,Aq).

Proof. Suppose that N = (). Then for u € N7, we have

fulfya = 5= | K ||U|d
Il =524 [ e e
Moreover by (H), (K), Caffarelli-Kohn-Nirenberg and Holder inequalities, we obtain
Il > (g Sons )
HUHia = (A;: :g(S‘lvb,u)ﬂ/zcl|h+|oo)2/(2_Q).

Thus A > A;. From this, we can conclude that NY = () if A € (0, A;). O
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Thus we conclude that Ny = N7 UN, for all A € (0, A).
Lemma 2.4. Let cj\, cy defined in (2.1). Then there exists 5o > 0 such that
cf <0VA€E(0,A)) and c; > by VA € (0, gAl).

Proof. Let u € Nyf. Then

Jul> 2—q o
k dr < )
| ko) e < 5=l

which implies

C; < Du(w)

11y, 11 |2
= (= — = PR — k(x)——
(2 q)“uH ’“+(q 2*)/9 (I)‘xmb x
2-9)2.—2),
< ——||ul||5.. <0

Let u € Ny . Then
2 |ul*

— 49 2
sl < [ ko)t
Moreover by (H), (K) and Caffarelli-Kohn-Nirenberg inequality, we have

- ;
| T < (S 2l

dr.

This implies
2—q
llullp,a > (m
On the other hand,
1 1 _
Do) = o (5 = 50) lullZ27 = A

Thus, if A € (0,2A1) we get I ,(u) > do, where

)1/(2*72) (Sas H)z*/(z(m—z)).

2, —q
2.q

(Sa) ™ol * )

aq
) o_ -3 249 1 1 24 (2—q) 9 2=%
0 1= (7(2*—2”7#\%) (Sa,b,u) 7= ((5 = 5) e > (@=gier)

- )‘gi:g (Sa,b,u)_q/ch |h+|<x>> .

As in [I8, Proposition 9], we have the following result.

Lemma 2.5. (i) If X € (0,A1), then there exists a (PS)., sequence (u,) C Ny
for I ..
(ii) If X € (0,2Aq), then there exists a (PS)c; sequence (un,) C Ny for Iy ,.

We define
|2-

K= {uEJ\/}:/kj(x)&Q o >0}, Ky = {ue i [ ko)
Q " Q

Juf*

|x|2*bdx < 0}7
\ ol ) ul?

HT :={ueNyx: [ hz)—zdz >0}, Hy :={ueNy: [ hiz)—-dz <0},

Q || Q |z
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and

|u

)

2. —1/(2.-2)
i)

2 . _
tmax :tmax(u) — (2 _2)1/ (24—2) || ||2/ (24 2)(Ak(m)

|
for u € K*. Then we have the following result.
Proposition 2.6. For A € (0,A;) we have
(1) Ifue KTNHy then there exists unique tT > tmax such that tTu € Ny and
L (tTu) > I (tu) - for t > tax;

(2) Ifue KT N HT, then there exist unique t—, tT such that 0 <t~ < tpax <
tt, ttue Ny, ttu e Ny and

Iy, (ttu) > I, (tu) fort >t~ and Iy, (¢ u) < Iy ,(tu) fort € [0,t7].

(3) Ifue K~ N H~, then does not exist t > 0 such that tu € Ny.
(4) Ifu e Ky NHT, then there exists unique 0 < t~ < 400 such that t™u € N;
and

Dot u) = tHZlg Iy p(tu).
Proof. For v € H,, we have

2 4 |ul 13 >
U, (t) = I, (tu) = EHu||#a - )\E ; h(x) dx — A k(x)7|x|2*bdx

|| 2,
and
q
W, (1) = 197 (pult) - A/ () Y ).
Q |z[°
where
2— 2 2, — Juf*
eult) = £l o = 77 [ bl

Easy computations show that ¢, is concave and achieves its maximum at

L (274\1/@=2) a2 [u> 7M@)
tmax := (2*_2) ||’U’H,u,{(g )( Qk(x) 2.b )

for v € Kt; that is,

(¢—2)/(2+—2)
\Il(tmax) = Ca,b,q,N”UH(Q*iq)/(Q —2) / ]C )

|:v|2 b )
where
2* + q— 4 2 —q 2— —
C — (2—9)/(2+=2)
a,b,g.N 5. 3 (2* —5)
Then we can get the conclusion of our proposition easily. (Il

3. PROOF OF THEOREM [I.1]

Existence of a local minimum for I, on N;' We want to prove that I ,
can achieve a local minimizer on Ny .

Proposition 3.1. Let A € (0,A1), then I, has a minimizer uy in Ny such that

I u(uy) = c}f <0.
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Proof. By Lemma there exists a minimizing sequence (u,) C Ny such that
Inu(un) = cx and Iy ,(uy) — 0 in H, ' (dual of H,).

Since

11 11 |4
I n)=\5 — n o AM——— h
A,H(u ) (2 2*)”u ”u,a (q 2*)/Q (.’17)

|z’
by Caffarelli-Kohn-Nirenberg inequality, we have
1 1 2. —q -
exFon(l) 2 (5 - ;)Hunui,a - )‘Tq(sa,b,u) 201 W |oo [ tin |4 o

where o, (1) denotes that o,(1) — 0 as n — co.Thus (u,) is bounded in H,,, then
passing to a subsequence if necessary, we have the following convergence:

Up, —uy in Hy,
Up — uy  in Lo, (9, |m|72*b),
Up, — uy in Le(Q,|z|7°),
U, — Uy a.e. in Q.

Thus uy € N, is a weak solution of (L.1)). As ¢y < 0 and I,,(0) = 0, then
ux # 0. Now we show that u, — wy in H,. Suppose otherwise, then |[luy|l, <
lim inf,, . ||t ||, and we obtain

ex < Iy p(un)

1 1 2 2*_(1/ |ux|?
= (=) ualr, — A h(z

||
o 11 2, —q ||
< timint (5= gl =250 [ o) el)
= C).

We obtain a contradiction. Consequently u,, — uy strongly in H,,. Moreover, we
have uy € Ny If not uy € Ny, thus ¥/, (1) = 0 and /(1) < 0, which implies that
I ., (ux) > 0, contradiction. O

Existence of a local minimum for I, on N, . To prove the existence of a
second nonnegative solution we need the following results.

Lemma 3.2. Let (u,) is a (PS); sequence with u, — w in H,. Then there exists
positive constant C := C(a,b,N,q, |h"|o, Sap,u) such that

Iy, (u)=0 and IA#(u)Zfé’)ﬁ/(Q*Q).

Proof. 1t is easy to prove that I} ,(u) = 0, which implies that (I, ,(u),u) =0, and

Lo 1 2 |ul

zmm—imwwwzg—immf-f—f/h|k

By Caffarelli-Kohn-Nirenberg, Holder and Young inequalities we find that
1 1 2, —q _
Do) 2 (5 = gl = A== (San) ™ Col " ol o

There exists C such that

11 2, — ~ e

(2 — )2 = A8, )20 R ot > —C A9 for all ¢ > 0.

2 2, 2.q
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Then we conclude that I ,(u) > —C \¥/(2=9),

Lemma 3.3. Let (uy,) in H, be such that
1 1 ~
Doy(up) = 1<l = (5 — ?)‘k+‘oo(sa,b,p)2*/(2*_2) — O\
I}, (un) — 0 in H '

Then there exists a subsequence strongly convergent.

Proof. From (3.1) and (3.2) we deduce that (u,) is bounded. Thus up a

quence, we have the following convergence:
U, —~u in H,,
Wy = in Ly (] 720),
up, — u in Ly(Q, |z]79),
Up — u  a.e. in Q.

Then u is a weak solution of problem ({1.1J).

(3.1)
(3.2)

subse-

Denote v,, = u, —u. As k is continuous on 2, then the Brézis - Lieb [4] leads to

|tn|* |vn | |ul*
‘/Qk(l') ‘m 2.0 dl’: Qk(m) |x Q*bdw—’_ - k(l’)mdl’,
and
2 _ 2 2
||un||ﬂ,a - an”p,,a + Hqu,,a + On(l)

Using the Lebesgue theorem, it follows that

a a
lim h(x)'un| dac:/h(m)‘u| dx
Q

n= Jq || |zl

From (3.3)), (3.4) and (3.5, we deduce that
|Un|2*

1 1
Ty (1) = In (1) + o2 — / k(o) g 1o, (1),
2 2* Q |$ *

and

|Un|2*
(i)t} = () ) + oo = [ G0 240, 0)

using the fact that v, — 0 in H,, we can assume that
fonlfe =6 and [ ko)
Q

By the definition of S, ,, we have

joal? . \2/2-
||’Un||i,a > Sa,b,y,( o |xn2*bd$) s

2.

|Un
2.b

dx — 6 > 0.
|z

and so 6 > |k+|ooSa7b’#92/2*.

(3.3)

(3.4)

Assume 0 # 0, then 6 > [k¥ |00 (Sa0,.)%/ 32, and we get by Lemmathat

1 1

| = I)\“u(u) + (5 — 2—*)9
> _C\Y/(2-a) 4 (% _ zi)|k+|oo(sa,b7#)2*/(2*72) —

which is a contradiction. So ! = 0; i.e., u, — uin H,.
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In the following, we shall give some estimates for the extremal functions defined

in (2.1). Let ¥(z) € C§°(9) such that 0 < ¥(z) < 1, ¥U(x) = 1 for |z| < po,
U(z) = 0 for |z| > 2pg, where pg is a small positive number. Set

__2
ﬁaw)
2

2 \/lTa+VNa M)) 22

Ha—+fa—H Ha

i(z) = <|x

fra—

uau

W(a) (e

. if (A1) holds,
Ue(x) = 2
\I/(x)( V= ¢/Ta+m>) ==

if (A2) holds.

By a straightforward computation, one finds

0|2 ~2(at1-b)
/ k(z) |”€l Cdp =& Harion |k+|oo/ ~d+0(e),
Q |22 q |z[>*

where O(£¢) denotes |O(£%)| /¢ < O,

B _ N—2(at1=b)
151150 = ™ 2@ a7, + O(1),

1917 N_2(at1-b)

W = O(e ati=n ).
fQ |rs|2 pdr

Lemma 3.4. Let [*be defined in Lemmal[3.3, then there exists Ay > 0 such that for
all A € (0,A4) we have I* >0 and suply ,(t0.) < I*.
t>0

Proof. We consider the following two functions

50 = Bttt = SR~ o [ k@ [ el
= 0e) = = |0l 0 — x T — A\— x x,
e 2 T2 ey |]?? q Jry ||

and
- 2.t |0 |
F) = Sl = 5t [ B

Let Ay > 0 be such that

1 1 5
(5= 5 )E foo(Sap,) /272 = OXYE70 > 0 for all A € (0, Ag).

Then

1 1 -
FO)=0<(5~ 2*)|k+|oo(5a)b7u)2*/(2*‘2) —CNY2=D for all X € (0, As).

By the continuity of f(t), there exists ¢; > 0 small enough such that
1 1 ~
ft) < (5 - ?)‘k-i_loo(sa,b,p,)%/(z*_m —CNYC=D forallte (0,t1).
On the other hand,

1 1 N-2(at1-b)
maxf( ) (7 - 2*)|k*|oo(Sa7b7M)2 /(2* 2) —+ 0(6 2(a+1-0) )

t>0 2 *
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Then

1 1 N-2(at1-—b)
D I (182) < (5~ ) oo/ + O( T
t>0 *

t4 0|4
- A—lho/ LE
q B(0,p0) |z

Let 0 <e < p(()Q*fz) VHe=H then

AL
/ |fU<‘5|C dl‘
B(0,p0) |z|

_ / 2]~ (e Ve || 25 ViV | || 5 Vet VI~ 523 gy
B(0,p0)

> Cs.
Now, taking ¢ = ,\2(22:7:;) we get \ < p(()z—q)m and
- 1 1 B - 4
Sup I)"/‘(tvf) <(5- *)|k+|oo(sa,b,#)2*/(2* 24 O()\2/(2 Q)) - Aih(]Cz.
t>0 2 2. q

Choosing A3 > 0 such that

q ~
00y \picy < —ON/CD for all A € (0, Ag),
q

Then if we take Ay = min{As, A3, pézfq) v ﬂ‘ﬁ#} we deduce that

sup Jx(t0:) < I* for all A € (0,Ay).
>0

Now, we prove that Iy , can achieve a local minimizer on N .

Proposition 3.5. Let A* = min{gA1/2,A4}. Then for all X € (0,A*), I, has a
minimaizer vy in ./\/; such that I)\,M(’U)\) =c .

Proof. By Lemma there exists a minimizing sequence (u,) C N, for all A €
(0,gA1/2) such that Iy ,(un) — ¢y and I} ,(u,) — 0 in H;'. Since I, is

coercive on Ny thus (u,) bounded. Then, passing to a subsequence if necessary,
we have the following convergence:

U, — vy in Hy,
Up — vy in Ly (Q,]z]72P),
Up — vx in Lg(, |z]79),
U, — Uy a.e. in .
By Lemma ¢, < 1*, thus from Lemma we deduce that u,, — vy in H,.
Then we conclude that Iy ,(vx) = ¢; > 0. Similarly as the proof of Proposition

we conclude that I, has a minimizer vy in Ny for all A € (0, A*) such that
IA,H(UA) :C; > 0. O

Proof of Theorem[1.1 By Propositions and there exists A* > 0 such that
(T-1) has two nonnegative solutions uy € Ny and vy € Ny since Ny NNy =0. O
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