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SINGULAR ELLIPTIC EQUATIONS INVOLVING A CONCAVE
TERM AND CRITICAL CAFFARELLI-KOHN-NIRENBERG

EXPONENT WITH SIGN-CHANGING WEIGHT FUNCTIONS

MOHAMMED BOUCHEKIF, ATIKA MATALLAH

Abstract. In this article we establish the existence of at least two distinct
solutions to singular elliptic equations involving a concave term and critical

Caffarelli-Kohn-Nirenberg exponent with sign-changing weight functions.

1. Introduction

This article shows the existence of at least two solutions to the problem

−div
( ∇u

|x|2a

)
− µ

u

|x|2(a+1)
= λh(x)

|u|q−2u

|x|c
+ k(x)

|u|2∗−2u

|x|2∗b
in Ω\{0}

u = 0 on ∂ Ω
(1.1)

where Ω ⊂ RN is an open bounded domain, N ≥ 3, 0 ∈ Ω, a < (N − 2)/2,
a ≤ b < a + 1, 1 < q < 2, c ≤ q(a + 1) + N(1− q/2), 2∗ := 2N/(N − 2 + 2(b− a))
is the critical Caffarelli-Kohn-Nirenberg exponent, µ < µ̄a := (N − 2(a + 1))2/4, λ
is a positive parameter and h, k are continuous functions which change sign in Ω̄.

It is clear that degeneracy and singularity occur in problem (1.1). In these
situations, the classical methods fail to be applied directly so that the existence
results may become a delicate matter that is closely related to some phenomena due
to the degenerate (or singular) character of the differential equation. The starting
point of the variational approach to these problems is the following Caffarelli-Kohn-
Nirenberg inequality in [6]: there is a positive constant Ca,b such that( ∫

RN

|x|−2∗b|u|2∗dx
)1/2∗

≤ Ca,b

( ∫
RN

|x|−2a|∇u|2dx
)1/2

∀u ∈ C∞
0 (Ω), (1.2)

where −∞ < a < (N − 2)/2, a ≤ b < a + 1, 2∗ = 2N/(N − 2 + 2(b− a)). For sharp
constants and extremal functions, see [7,9]. In (1.2), as b = a + 1, then 2∗ = 2 and
we have the following weighted Hardy inequality [9]:∫

RN

|x|−2(a+1)u2dx ≤ 1
µ̄a

∫
RN

|x|−2a|∇u|2dx for all u ∈ C∞
0 (Ω). (1.3)
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We introduce a weighted Sobolev space D1,2
a (Ω) which is the completion of the

space C∞
0 (Ω) with respect to the norm

‖u‖0,a =
( ∫

Ω

|x|−2a|∇u|2dx
)1/2

.

Define Hµ as the completion of the space C∞
0 (Ω) with respect to the norm

‖u‖µ,a :=
( ∫

Ω

(
|x|−2a|∇u|2 − µ|x|−2(a+1)u2

)
dx

)1/2

for −∞ < µ < µ̄a.

By weighted Hardy inequality ‖ · ‖µ,a is equivalent to ‖ · ‖0,a; i.e.,(
1− 1

µ̄a
max(µ, 0)

)1/2

‖u‖0,a ≤ ‖u‖µ,a ≤
(
1− 1

m̄ua
min(µ, 0)

)1/2

‖u‖0,a,

for all u ∈ Hµ. From the boundedness of Ω and the standard approximation
arguments, it is easy to see that (1.2) hold for any u ∈ Hµ in the sense( ∫

Ω

|x|−c|u|pdx
)1/p

≤ C(
∫

Ω

|x|−2a|∇u|2dx)1/2, (1.4)

for 1 ≤ p ≤ 2N/(N − 2), c ≤ p(a + 1) + N(1− p/2), and in [15] if p < 2N/(N − 2)
the embedding Hµ ↪→ Lp(Ω, |x|−c) is compact, where Lp(Ω, |x|−c) is the weighted
Lp space with norm

|u|p,c =
( ∫

Ω

|x|−c|u|pdx
)1/p

.

We start by giving a brief historic point of view. It is known that the number of
nontrivial solutions of problem (1.1) is affected by the concave and convex terms.
This study has been the focus of a great deal of research in recent years.

The case h ≡ 1 and k ≡ 1 has been studied extensively by many authors, we
refer the reader to [1], [2], [8], [14] and the references therein. In [1] Ambrosetti
et al. studied the problem (1.1) for µ = 0, a = b = c = 0, 2∗ = 2∗ = 2N/(N − 2)
replaced by p, where 1 < p ≤ 2∗. They establish the existence of Λ0 > 0 such that
(Pλ,0) for λ fixed in (0,Λ0) has at least two positive solutions by using sub-super
method and the Mountain Pass Theorem, problem (1.1) for λ = Λ0 has also a
positive solution and no positive solution for λ > Λ0. When µ > 0, a = b = c = 0,
Chen [8] studied the asymptotic behavior of solutions to problem (1.1) by using
the Moser’s iteration. By applying the Ekeland Variational Principle he obtained a
first positive solution, and by the Mountain Pass Theorem he proved the existence
of a second positive solution. Recently, Bouchekif and Matallah [2] extended the
results of [8] to problem (Pλ,µ) with a = c = 0, 0 ≤ b < 1, they established the
existence of two positive solutions under some sufficient conditions for λ and µ. Lin
[14] considered a more general problem (1.1) with 0 ≤ a < (N−2)/2, a ≤ b < a+1,
c = 0, 1 < q < 2 and µ > 0.

For the case h 6≡ 1 or k 6≡ 1, we refer the reader to [3, 12, 17, 18] and the references
therein. Tarantello [17] studied the problem (1.1) for µ = 0, a = b = c = 0,
q = λ = 1, k ≡ 1 and h not necessarily equals to 1, satisfying some conditions.
Recently, problem (1.1) in Ω = RN with q = 1 has considered in [3].

Wu [18] showed the existence of multiple positive solutions for problem (1.1)
with a = b = c = 0, 1 < q < 2, k ≡ 1, h is a continuous function which changes sign
in Ω̄. In [12], Hsu and Lin established the existence of multiple nontrivial solutions
to problem (1.1) with a = b = c = 0, 1 < q < 2, h and k are smooth functions
which change sign in Ω̄.



EJDE-2010/32 ELLIPTIC EQUATIONS WITH A CONCAVE TERM 3

The operator Lµ,au := −div(|x|−2a∇u) − µ|x|−2(a+1)u has been the subject of
many papers, we quote, among others [11] for a = 0 and µ < µ̄0, and [10] or [16]
for general case i.e −∞ < a < (N − 2)/2 and µ < µ̄a.

Xuan et al. [16] proved that under the conditions

N ≥ 3, a < (N − 2)/2, 0 <
√

µ̄a −
√

µ̄a − µ + a < (N − 2)/2,

a ≤ b < a + 1, µ < µ̄a − b2,

for ε > 0, the function

uε(x) = C0ε
2

2∗−2

(
ε

2
√

µ̄a−µ√
µ̄a−µ−b |x|

2∗−2
2 (

√
µ̄a−

√
µ̄a−µ)+|x|

2∗−2
2 (

√
µ̄a+

√
µ̄a−µ)

)− 2
2∗−2

(1.5)

with a suitable positive constant C0, is a weak solution of

−div
(
|x|−2a∇u

)
− µ|x|−2(a+1)u = |x|−2∗b|u|2∗−2u in RN\{0}.

Furthermore,∫
RN

|x|−2a|∇uε|2dx− µ

∫
RN

|x|−2(a+1)u2
εdx =

∫
RN

|x|−2∗b|uε|2∗dx = Aa,b,µ, (1.6)

where Aa,b,µ is the best constant,

Aa,b,µ = inf
u∈Hµ\{0}

Ea,b,µ(u) = Ea,b,µ(uε), (1.7)

with

Ea,b,µ(u) :=

∫
RN |x|−2a|∇u|2dx− µ

∫
RN |x|−2(a+1)u2dx

(
∫

RN |x|−2∗b|u|2∗dx)2/2∗
.

Also in [13] and [14], they proved that for 0 ≤ a < (N − 2)/2, a ≤ b < a + 1,
0 ≤ µ < µ̄a, the function defined for ε > 0 as

vε(x) = (2.2∗ε2(µ̄a − µ))
1

2∗−2

(
ε2|x|

(2∗−2)(
√

µ̄a−
√

µ̄a−µ)
2 + |x|

2∗−2
2 (

√
µ̄a+

√
µ̄a−µ)

)− 2
2∗−2

(1.8)
is a weak solution of

−div(|x|−2a∇u)− µ|x|−2(a+1)u = |x|−2∗b|u|2∗−2u in RN\{0},
and satisfies∫

RN

|x|−2a|∇vε|2dx− µ

∫
RN

|x|−2(a+1)v2
εdx =

∫
RN

|x|−2∗b|vε|2∗dx = Ba,b,µ, (1.9)

where Ba,b,µ is the best constant,

Ba,b,µ := inf
u∈Hµ\{0}

Ea,b,µ(u) = Ea,b,µ(vε). (1.10)

A natural question that arises in concert applications is to see what happens
if these elliptic (degenerate or non-degenerate) problems are affected by a certain
singular perturbations. In our work we prove the existence of at least two dis-
tinct nonnegative critical points of energy functional associated to problem (1.1)
by splitting the Nehari manifold (see for example Tarantello [17] or Brown and
Zhang [5]).

In this work we consider the following assumptions:
(H) h is a continuous function defined in Ω̄ and there exist h0 and ρ0 positive

such that h(x) ≥ h0 for all x ∈ B(0, 2ρ0), where B(a, r) is a ball centered
at a with radius r;
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(K) k is a continuous function defined in Ω̄ and satisfies k(0) = maxx∈Ω̄ k(x) >
0, k(x) = k(0) + o(xβ) for x ∈ B(0, 2ρ0) with β > 2∗

√
µ̄a − µ;

and one of the following two assumptions
(A1) N > 2(|b|+ 1) and

(a, µ) ∈]− 1, 0[×]0, µ̄a − b2[∪[0, N−2
2 [×]a(a−N + 2), µ̄a − b2[,

(A2) N ≥ 3, (a, µ) ∈ [0, N−2
2 [×[0, µ̄a[.

Following the method introduced in [17, 12], we obtain the following existence
result.

Theorem 1.1. Suppose that a < (N − 2)/2, a ≤ b < a + 1, 1 < q < 2, c ≤
q(a + 1) + N(1 − q/2), (H), (K) hold and (A1) or (A2) are satisfy. Then there
exists Λ∗ > 0 such that for λ ∈ (0,Λ∗) problem (1.1) has at least two nonnegative
solutions in Hµ.

This paper is organized as follows. In section 2 we give some preliminaries.
Section 3 is devoted to the proof of Theorem 1.1.

2. Preliminary results

We start by giving the following definitions.
Let E be a Banach space and a functional I ∈ C1(E, R). We say that (un) is a

Palais Smale sequence at level l ((PS)l in short) if I(un) → l and I ′(un) → 0 in
E′ (dual of E) as n → ∞. We say also that I satisfies the Palais Smale condition
at level l if any (PS)l sequence has a subsequence converging strongly in E.

Define

wε :=

{
uε if (a, µ) ∈]− 1, 0[×]0, µ̄a − b2[∪[0, N−2

2 [×]a(a−N + 2), µ̄a − b2[,
vε if (a, µ) ∈ [0, N−2

2 [×[0, µ̄a[,
(2.1)

and
Sa,b,µ :={

Aa,b,µ if (a, µ) ∈]− 1, 0[×]0, µ̄a − b2[∪[0, N−2
2 [×]a(a−N + 2), µ̄a − b2[,

Ba,b,µ if (a, µ) ∈ [0, N−2
2 [×[0, µ̄a[, .

(2.2)

Since our approach is variational, we define the functional Iλ,µ as

Iλ,µ(u) =
1
2
‖u‖2

µ,a −
λ

q

∫
Ω

h(x)|x|−c|u|qdx− 1
2∗

∫
Ω

k(x)|x|−2∗b|u|2∗dx,

for u ∈ Hµ. By (1.2) and (1.4) we can guarantee that Iλ,µ is well defined in Hµ

and Iλ,µ ∈ C1(Hµ, R).
u ∈ Hµ is said to be a weak solution of (1.1) if it satisfies∫

Ω

(|x|−2a∇u∇v−µ|x|−2(a+1)uv−λh(x)|x|−c|u|q−2uv−k(x)|x|−2∗b|u|2∗−2uv)dx = 0

for all v ∈ Hµ. By the standard elliptic regularity argument, we have that u ∈
C2(Ω\{0}).

In many problems as (1.1), Iλ,µ is not bounded below on Hµ but is bounded
below on an appropriate subset of Hµ and a minimizer in this set (if it exists) may
give rise to solutions of the corresponding differential equation.
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A good candidate for an appropriate subset of Hµ is the so called Nehari manifold

Nλ = {u ∈ Hµ\{0}, 〈I ′λ,µ(u), u〉 = 0}.
It is useful to understand Nλ in terms of the stationary points of mappings of

the form
Ψu(t) = Iλ,µ(tu), t > 0,

and so
Ψ′

u(t) = 〈I ′λ,µ(tu), u〉 =
1
t
〈I ′λ,µ(tu), tu〉.

An immediate consequence is the following proposition.

Proposition 2.1. Let u ∈ Hµ\{0} and t > 0. Then tu ∈ Nλ if and only if
Ψ′

u(t) = 0.

Let u be a local minimizer of Iλ,µ, then Ψu has a local minimum at t = 1. So it is
natural to split Nλ into three subsets N+

λ , N−
λ and N 0

λ corresponding respectively
to local minimums, local maximums and points of inflexion.

We define

N+
λ =

{
u ∈ Nλ : (2− q)‖u‖2

µ,a − (2∗ − q)
∫

Ω

k(x)
|u|2∗
|x|2∗b

dx > 0
}

= {u ∈ Nλ : (2− 2∗)‖u‖2
µ,a + (2∗ − q)λ

∫
Ω

h(x)
|u|q

|x|c
dx > 0}.

Note that N−
λ and N 0

λ similarly by replacing > by < and = respectively.

cλ := inf
u∈Nλ

Iλ,µ(u); c+
λ := inf

u∈N+
λ

Iλ,µ(u); c−λ := inf
u∈N−

λ

Iλ,µ(u). (2.3)

The following lemma shows that minimizers on Nλ are critical points for Iλ,µ.

Lemma 2.2. Assume that u is a local minimizer for Iλ,µ on Nλ and that u /∈ N 0
λ .

Then I ′λ,µ(u) = 0.

The proof of the above lemma is essentially the same as that of [5, Theorem 2.3].

Lemma 2.3. Let

Λ1 :=
( 2− q

2∗ − q

) 2−q
2∗−q

( 2∗ − 2
(2∗ − q)C1

)
|h+|−1

∞ |k+|∞(Sa,b,µ)
N(2−q)

4(a+1−b) ,

where η+(x) = max(η(x), 0), and |η+|∞ = supx∈Ω ess|η+(x)|. Then N 0
λ = ∅ for all

λ ∈ (0,Λ1).

Proof. Suppose that N 0
λ 6= ∅. Then for u ∈ N 0

λ , we have

‖u‖2
µ,a =

2∗ − q

2− q

∫
Ω

k(x)
|u|2∗
|x|2∗b

dx,

‖u‖2
µ,a = λ

2∗ − q

2∗ − 2

∫
Ω

h(x)
|u|q

|x|c
dx.

Moreover by (H), (K), Caffarelli-Kohn-Nirenberg and Hölder inequalities, we obtain

‖u‖2
µ,a ≥

( 2− q

(2∗ − 2)|k+|∞
(Sa,b,µ)2∗/2

)2/(2∗−2)

,

‖u‖2
µ,a ≤

(
λ

2∗ − q

2∗ − 2
(Sa,b,µ)−q/2C1|h+|∞

)2/(2−q)

.

Thus λ ≥ Λ1. From this, we can conclude that N 0
λ = ∅ if λ ∈ (0,Λ1). �
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Thus we conclude that Nλ = N+
λ ∪N−

λ for all λ ∈ (0,Λ1).

Lemma 2.4. Let c+
λ , c−λ defined in (2.1). Then there exists δ0 > 0 such that

c+
λ < 0 ∀λ ∈ (0,Λ1) and c−λ > δ0 ∀λ ∈ (0,

q

2
Λ1).

Proof. Let u ∈ N+
λ . Then∫

Ω

k(x)
|u|2∗
|x|2∗b

dx <
2− q

2∗ − q
‖u‖2

µ,a,

which implies

c+
λ ≤ Iλ,µ(u)

=
(1
2
− 1

q

)
‖u‖2

µ,a +
(1
q
− 1

2∗

) ∫
Ω

k(x)
|u|2∗
|x|2∗b

dx

< − (2− q)(2∗ − 2)
2.2∗q

‖u‖2
µ,a < 0.

Let u ∈ N−
λ . Then

2− q

2∗ − q
‖u‖2

µ,a <

∫
Ω

k(x)
|u|2∗
|x|2∗b

dx.

Moreover by (H), (K) and Caffarelli-Kohn-Nirenberg inequality, we have∫
Ω

k(x)
|u|2∗
|x|2∗b

dx ≤ (Sa,b,µ)−2∗/2‖u‖2∗
µ,a|k+|∞.

This implies

‖u‖µ,a >
( 2− q

(2∗ − 2)|k+|∞
)1/(2∗−2)(Sa,b,µ)2∗/(2(2∗−2)).

On the other hand,

Iλ,µ(u) ≥ ‖u‖q
µ,a

((1
2
− 1

2∗

)
‖u‖2−q

µ,a − λ
2∗ − q

2∗q
(Sa,b,µ)−q/2C1|h+|∞

)
Thus, if λ ∈ (0, q

2Λ1) we get Iλ,µ(u) ≥ δ0, where

δ0 :=
(

2−q
(2∗−2)|k+|∞

) q
2∗−2

(Sa,b,µ)
2∗q

2(2∗−2)

((1
2
− 1

2∗

)
(Sa,b,µ)

2∗(2−q)
2(2∗−2)

(
2−q

(2∗−q)|k+|∞

) 2−q
2∗−2

− λ 2∗−q
2∗−2 (Sa,b,µ)−q/2C1|h+|∞

)
.

�

As in [18, Proposition 9], we have the following result.

Lemma 2.5. (i) If λ ∈ (0,Λ1), then there exists a (PS)cλ
sequence (un) ⊂ Nλ

for Iλ,µ.
(ii) If λ ∈ (0, q

2Λ1), then there exists a (PS)c−λ
sequence (un) ⊂ N−

λ for Iλ,µ.

We define

K+ :=
{
u ∈ Nλ :

∫
Ω

k(x)
|u|2∗
|x|2∗b

dx > 0
}
, K−

0 :=
{
u ∈ Nλ :

∫
Ω

k(x)
|u|2∗
|x|2∗b

dx ≤ 0
}
,

H+ := {u ∈ Nλ :
∫

Ω

h(x)
|u|q

|x|c
dx > 0}, H−

0 := {u ∈ Nλ :
∫

Ω

h(x)
|u|q

|x|c
dx ≤ 0},
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and

tmax = tmax(u) :=
( 2− q

2∗ − 2
)1/(2∗−2)‖u‖2/(2∗−2)

µ,a

( ∫
Ω

k(x)
|u|2∗
|x|2∗b

dx
)−1/(2∗−2)

,

for u ∈ K+. Then we have the following result.

Proposition 2.6. For λ ∈ (0,Λ1) we have
(1) If u ∈ K+∩H−

0 then there exists unique t+ > tmax such that t+u ∈ N−
λ and

Iλ,µ(t+u) ≥ Iλ,µ(tu) for t ≥ tmax;

(2) If u ∈ K+ ∩H+, then there exist unique t−, t+ such that 0 < t− < tmax <
t+, t−u ∈ N+

λ , t+u ∈ N−
λ and

Iλ,µ(t+u) ≥ Iλ,µ(tu) for t ≥ t− and Iλ,µ(t−u) ≤ Iλ,µ(tu) for t ∈ [0, t+].

(3) If u ∈ K− ∩H−, then does not exist t > 0 such that tu ∈ Nλ.
(4) If u ∈ K−

0 ∩H+, then there exists unique 0 < t− < +∞ such that t−u ∈ N+
λ

and
Iλ,µ(t−u) = inf

t≥0
Iλ,µ(tu).

Proof. For u ∈ Hµ, we have

Ψu(t) = Iλ,µ(tu) =
t2

2
‖u‖2

µ,a − λ
tq

q

∫
Ω

h(x)
|u|q

|x|c
dx− t2∗

2∗

∫
Ω

k(x)
|u|2∗
|x|2∗b

dx

and

Ψ′
u(t) = tq−1

(
ϕu(t)− λ

∫
Ω

h(x)
|u|q

|x|c
)
,

where

ϕu(t) = t2−q‖u‖2
µ,a − t2∗−q

∫
Ω

k(x)
|u|2∗
|x|2∗b

.

Easy computations show that ϕu is concave and achieves its maximum at

tmax :=
( 2− q

2∗ − 2
)1/(2∗−2)‖u‖2/(2∗−2)

µ,a

( ∫
Ω

k(x)
|u|2∗
|x|2∗b

dx
)−1/(2∗−2)

for u ∈ K+; that is,

Ψ(tmax) = Ca,b,q,N‖u‖(2∗−q)/(2∗−2)
µ,a

( ∫
Ω

k(x)
|u|2∗
|x|2∗b

dx
)(q−2)/(2∗−2)

,

where

Ca,b,q,N =
2∗ + q − 4

2∗ − 2
(

2− q

2∗ − 2
)(2−q)/(2∗−2).

Then we can get the conclusion of our proposition easily. �

3. Proof of Theorem 1.1

Existence of a local minimum for Iλ,µ on N+
λ . We want to prove that Iλ,µ

can achieve a local minimizer on N+
λ .

Proposition 3.1. Let λ ∈ (0,Λ1), then Iλ,µ has a minimizer uλ in N+
λ such that

Iλ,µ(uλ) = c+
λ < 0.
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Proof. By Lemma 2.5, there exists a minimizing sequence (un) ⊂ Nλ such that

Iλ,µ(un) → cλ and I ′λ,µ(un) → 0 in H−1
µ (dual of Hµ).

Since

Iλ,µ(un) =
(1
2
− 1

2∗

)
‖un‖2

µ,a − λ(
1
q
− 1

2∗
)
∫

Ω

h(x)
|un|q

|x|c
,

by Caffarelli-Kohn-Nirenberg inequality, we have

cλ + ◦n(1) ≥
(1
2
− 1

2∗

)
‖un‖2

µ,a − λ
2∗ − q

2∗q
(Sa,b,µ)−q/2C1|h+|∞‖un‖q

µ,a,

where ◦n(1) denotes that ◦n(1) → 0 as n →∞.Thus (un) is bounded in Hµ, then
passing to a subsequence if necessary, we have the following convergence:

un ⇀ uλ in Hµ,

un ⇀ uλ in L2∗(Ω, |x|−2∗b),

un → uλ in Lq(Ω, |x|−c),
un → uλ a.e. in Ω.

Thus uλ ∈ Nλ is a weak solution of (1.1). As cλ < 0 and Iλ,µ(0) = 0, then
uλ 6≡ 0. Now we show that un → uλ in Hµ. Suppose otherwise, then ‖uλ‖µ <
lim infn→∞ ‖un‖µ, and we obtain

cλ ≤ Iλ,µ(uλ)

=
(1
2
− 1

2∗

)
‖uλ‖2

µ,a − λ
2∗ − q

2∗q

∫
Ω

h(x)
|uλ|q

|x|c

< lim inf
n→→∞

(
(
1
2
− 1

2∗
)‖un‖2

µ,a − λ
2∗ − q

2∗q

∫
Ω

h(x)
|un|q

|x|c
)

= cλ.

We obtain a contradiction. Consequently un → uλ strongly in Hµ. Moreover, we
have uλ ∈ N+

λ . If not uλ ∈ N−
λ , thus Ψ′

u(1) = 0 and Ψ′′
u(1) < 0, which implies that

Iλ,µ(uλ) > 0, contradiction. �

Existence of a local minimum for Iλ,µ on N−
λ . To prove the existence of a

second nonnegative solution we need the following results.

Lemma 3.2. Let (un) is a (PS)l sequence with un ⇀ u in Hµ. Then there exists
positive constant C̃ := C(a, b, N, q, |h+|∞, Sa,b,µ) such that

I ′λ,µ(u) = 0 and Iλ,µ(u) ≥ −C̃λ2/(2−q).

Proof. It is easy to prove that I ′λ,µ(u) = 0, which implies that 〈I ′λ,µ(u), u〉 = 0, and

Iλ,µ(u)− 1
2∗
〈I
′

λ,µ(u), u〉 = (
1
2
− 1

2∗
)‖u‖2

µ,a − λ(
1
q
− 1

2∗
)
∫

Ω

h(x)
|u|q

|x|c
dx.

By Caffarelli-Kohn-Nirenberg, Hölder and Young inequalities we find that

Iλ,µ(u) ≥ (
1
2
− 1

2∗
)‖u‖2

µ,a − λ
2∗ − q

2∗q
(Sa,b,µ)−q/2C1|h+|∞‖u‖q

µ,a.

There exists C̃ such that

(
1
2
− 1

2∗
)t2 − λ

2∗ − q

2∗q
(Sa,b,µ)−q/2C1|h+|∞tq ≥ −C̃ λ2/(2−q) for all t ≥ 0.
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Then we conclude that Iλ,µ(u) ≥ −C̃ λ2/(2−q). �

Lemma 3.3. Let (un) in Hµ be such that

Iλ,µ(un) → l < l∗ := (
1
2
− 1

2∗
)|k+|∞(Sa,b,µ)2∗/(2∗−2) − C̃λ2/(2−q), (3.1)

I ′λ,µ(un) → 0 in H−1
µ . (3.2)

Then there exists a subsequence strongly convergent.

Proof. From (3.1) and (3.2) we deduce that (un) is bounded. Thus up a subse-
quence, we have the following convergence:

un ⇀ u in Hµ,

un ⇀ u in L2∗(Ω, |x|−2∗b),

un → u in Lq(Ω, |x|−c),
un → u a.e. in Ω.

Then u is a weak solution of problem (1.1).
Denote vn = un−u. As k is continuous on Ω, then the Brézis - Lieb [4] leads to∫

Ω

k(x)
|un|2∗
|x|2∗b

dx =
∫

Ω

k(x)
|vn|2∗
|x|2∗b

dx +
∫

RN

k(x)
|u|2∗
|x|2∗b

dx, (3.3)

and
‖un‖2

µ,a = ‖vn‖2
µ,a + ‖u‖2

µ,a + ◦n(1). (3.4)
Using the Lebesgue theorem, it follows that

lim
n→∞

∫
Ω

h(x)
|un|q

|x|c
dx =

∫
Ω

h(x)
|u|q

|x|c
dx. (3.5)

From (3.3), (3.4) and (3.5), we deduce that

Iλ,µ(un) = Iλ,µ(u) +
1
2
‖vn‖2

µ,a −
1
2∗

∫
Ω

k(x)
|vn|2∗
|x|2∗b

dx + ◦n(1),

and

〈I ′λ,µ(un), un〉 = 〈I ′λ,µ(u), u〉+ ‖vn‖2
µ,a −

∫
Ω

k(x)
|vn|2∗
|x|2∗b

dx + ◦n(1),

using the fact that vn ⇀ 0 in Hµ, we can assume that

‖vn‖2
µ,a → θ and

∫
Ω

k(x)
|vn|2∗
|x|2∗b

dx → θ ≥ 0.

By the definition of Sa,b,µ we have

‖vn‖2
µ,a ≥ Sa,b,µ

( ∫
Ω

|vn|2∗
|x|2∗b

dx
)2/2∗

,

and so θ ≥ |k+|∞Sa,b,µθ2/2∗ .
Assume θ 6= 0, then θ ≥ |k+|∞(Sa,b,µ)2∗/(2∗−2), and we get by Lemma 3.3 that

l = Iλ,µ(u) + (
1
2
− 1

2∗
)θ

≥ −C̃λ2/(2−q) + (
1
2
− 1

2∗
)|k+|∞(Sa,b,µ)2∗/(2∗−2) = l∗

which is a contradiction. So l = 0; i.e., un → u in Hµ. �
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In the following, we shall give some estimates for the extremal functions defined
in (2.1). Let Ψ(x) ∈ C∞

0 (Ω) such that 0 ≤ Ψ(x) ≤ 1, Ψ(x) = 1 for |x| ≤ ρ0,
Ψ(x) = 0 for |x| ≥ 2ρ0, where ρ0 is a small positive number. Set

ũ(x) =
(
|x|

2∗−2
2 (

√
µ̄a−

√
µ̄a−µ) + |x|

2∗−2
2 (

√
µ̄a+

√
µ̄a−µ)

)− 2
2∗−2

ṽε(x) =



Ψ(x)
(
ε

2
√

µ̄a−µ√
µ̄a−µ−b |x|

2∗−2
2 (

√
µ̄a−

√
µ̄a−µ) + |x|

2∗−2
2 (

√
µ̄a+

√
µ̄a−µ)

)− 2
2∗−2

if (A1) holds,

Ψ(x)
(
ε2|x|

2∗−2
2 (

√
µ̄a−

√
µ̄a−µ) + |x|

2∗−2
2 (

√
µ̄a+

√
µ̄a−µ)

)− 2
2∗−2

if (A2) holds.

By a straightforward computation, one finds∫
Ω

k(x)
|ṽε|2∗
|x|2∗b

dx = ε−
N−2(a+1−b)

2(a+1−b) |k+|∞
∫

Ω

|ũ|2∗
|x|2∗b

dx + O(ε),

where O(εζ) denotes |O(εζ)|/εζ ≤ C,

‖ṽε‖2
µ,a = ε−

N−2(a+1−b)
2(a+1−b) ‖ũ‖2

µ,a + O(1),

‖ṽε‖2
µ,a∫

Ω
k(x) |ṽε|2∗

|x|2∗b dx
= O(ε

N−2(a+1−b)
2(a+1−b) ).

Lemma 3.4. Let l∗be defined in Lemma 3.3, then there exists Λ4 > 0 such that for
all λ ∈ (0,Λ4) we have l∗ > 0 and sup

t≥0
Iλ,µ(tṽε) < l∗.

Proof. We consider the following two functions

f(t) = Iλ,µ(tṽε) =
t2

2
‖ṽε‖2

µ,a −
t2∗

2∗

∫
RN

k(x)
|ṽε|2∗
|x|2∗b

dx− λ
tq

q

∫
RN

h(x)
|ṽε|q

|x|c
dx,

and

f̃(t) =
t2

2
‖ṽε‖2

µ,a −
t2∗

2∗
|k+|∞

∫
RN

|ṽε|2∗
|x|2∗b

dx.

Let Λ2 > 0 be such that

(
1
2
− 1

2∗
)|k+|∞(Sa,b,µ)2∗/(2∗−2) − C̃λ2/(2−q) > 0 for all λ ∈ (0,Λ2).

Then

f(0) = 0 < (
1
2
− 1

2∗
)|k+|∞(Sa,b,µ)2∗/(2∗−2) − C̃λ2/(2−q) for all λ ∈ (0,Λ2).

By the continuity of f(t), there exists t1 > 0 small enough such that

f(t) < (
1
2
− 1

2∗
)|k+|∞(Sa,b,µ)2∗/(2∗−2) − C̃λ2/(2−q) for all t ∈ (0, t1).

On the other hand,

max
t≥0

f̃(t) = (
1
2
− 1

2∗
)|k+|∞(Sa,b,µ)2∗/(2∗−2) + O(ε

N−2(a+1−b)
2(a+1−b) ).
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Then

sup
t≥0

Iλ,µ(tṽε) < (
1
2
− 1

2∗
)|k+|∞(Sa,b,µ)2∗/(2∗−2) + O(ε

N−2(a+1−b)
2(a+1−b) )

− λ
tq1
q

h0

∫
B(0,ρ0)

|ṽε|q

|x|c
dx.

Let 0 < ε < ρ
(2∗−2)

√
µ̄a−µ

0 then∫
B(0,ρ0)

|ṽε|q

|x|c
dx

=
∫

B(0,ρ0)

|x|−c(ε
2
√

µ̄a−µ√
µ̄a−µ−b |x|

2∗−2
2 (

√
µ̄a−

√
µ̄a−µ) + |x|

2∗−2
2 (

√
µ̄a+

√
µ̄a−µ))−

2q
2∗−2 dx

≥ C2.

Now, taking ε = λ
2(2∗−2)
2∗−q we get λ < ρ

(2−q)
√

µ̄a−µ
0 and

sup
t≥0

Iλ,µ(tṽε) < (
1
2
− 1

2∗
)|k+|∞(Sa,b,µ)2∗/(2∗−2) + O(λ2/(2−q))− λ

tq1
q

h0C2.

Choosing Λ3 > 0 such that

O(λ2/(2−q))− λ
tq1
q

h0C2 < −C̃λ2/(2−q) for all λ ∈ (0,Λ3).

Then if we take Λ4 = min{Λ2,Λ3, ρ
(2−q)

√
µ̄a−µ

0 } we deduce that

sup
t≥0

Jλ(tṽε) < l∗ for all λ ∈ (0,Λ4).

�

Now, we prove that Iλ,µ can achieve a local minimizer on N−
λ .

Proposition 3.5. Let Λ∗ = min{qΛ1/2,Λ4}. Then for all λ ∈ (0,Λ∗), Iλ,µ has a
minimizer vλ in N−

λ such that Iλ,µ(vλ) = c−λ .

Proof. By Lemma 2.5, there exists a minimizing sequence (un) ⊂ N−
λ for all λ ∈

(0, qΛ1/2) such that Iλ,µ(un) → c−λ and I ′λ,µ(un) → 0 in H−1
µ . Since Iλ,µ is

coercive on N−
λ thus (un) bounded. Then, passing to a subsequence if necessary,

we have the following convergence:

un ⇀ vλ in Hµ,

un ⇀ vλ in L2∗(Ω, |x|−2∗b),

un → vλ in Lq(Ω, |x|−c),
un → vλ a.e. in Ω.

By Lemma 3.4, c−λ < l∗, thus from Lemma 3.3 we deduce that un → vλ in Hµ.
Then we conclude that Iλ,µ(vλ) = c−λ > 0. Similarly as the proof of Proposition
3.1, we conclude that Iλ,µ has a minimizer vλ in N−

λ for all λ ∈ (0,Λ∗) such that
Iλ,µ(vλ) = c−λ > 0. �

Proof of Theorem 1.1. By Propositions 2.6 and 3.5, there exists Λ∗ > 0 such that
(1.1) has two nonnegative solutions uλ ∈ N+

λ and vλ ∈ N−
λ since N+

λ ∩N−
λ = ∅. �
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