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NEUTRAL FUNCTIONAL DIFFERENTIAL EQUATIONS OF
SECOND-ORDER WITH INFINITE DELAYS

RUNPING YE, GUOWEI ZHANG

Abstract. This work shows the existence of mild solutions to neutral func-

tional differential equations of second-order with infinite delay. The Hausdorff

measure of noncompactness and fixed point theorem are used, without assum-
ing compactness on the associated family of operators.

1. Introduction

Differential equations with delays are often more realistic to describe natural
phenomena than those without delays, and neutral differential equations arise in
many areas of applied mathematics. These two reasons may explain, why they have
received much attention in the previous decades. Among the published works, we
have [1, 4, 5, 12, 13, 14, 16, 21] and references therein. Existence and stability have
been studied by Hale [9, 10], Travis and Webb [19], and Webb [20]. second-order
differential equations and integrodifferential equations in Banach spaces have been
studied in [2, 11] and [15], respectively.

In this article, we investigate the existence of mild solutions for the neutral
functional differential equation

d

dt
(x′(t) + g(t, xt)) = Ax(t) + f(t, xt), t ∈ J = [0, b], (1.1)

x0 = ϕ ∈ B, x′(0) = z ∈ X . (1.2)

We also consider the second order problem

d

dt
(x′(t) + g(t, xt, x

′(t))) = Ax(t) + f(t, xt, x
′(t)), t ∈ J = [0, b], (1.3)

x0 = ϕ ∈ B, x′(0) = z ∈ X, (1.4)

where A is the infinitesimal generator of a strongly continuous cosine family {C(t) :
t ∈ R} of bounded linear operators on a Banach space X. In both cases, the history
xt : (−∞, 0] → X,xt(θ) = x(t+ θ), belongs to some abstract phase space B defined
axiomatically; g, f are appropriate functions.
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In this paper, we prove the existence of mild solution of the initial value problems
(1.1)-(1.2) and (1.3)-(1.4) under the conditions under assumptions on Hausdorff’s
measure of noncompactness.

2. Preliminaries

Now we introduce some definitions, notation and preliminary facts which are
used throughout this paper.

We say that a family {C(t) : t ∈ R} of operators in B(X) is a strongly continuous
cosine family if

(i) C(0) = I (I is the identity operator in X);
(ii) C(t+ s) + C(t− s) = 2C(t)C(s) for all s, t ∈ R;
(iii) The map t→ C(t)x is strongly continuous for each x ∈ X.
The strongly continuous sine family {S(t) : t ∈ R}, associated to the given

strongly continuous cosine family {C(t) : t ∈ R}, is defined by

S(t)x =
∫ t

0

C(s)xds, x ∈ X, t ∈ R.

For more details on strongly continuous cosine and sine families, we refer the reader
to the books by Goldstein [7] and Fattorini [6].

The operator A is the infinitesimal generator of a strongly continuous cosine
function of bounded linear operators, (C(t))t∈R, on X and S(t) is the sine function
associated with (C(t))t∈R. We designate by N , Ñ certain constants such that
‖C(t)‖ ≤ N and ‖S(t)‖ ≤ Ñ for every t ∈ J . We refer the reader to [6] for the
necessary concepts about cosine functions. Next we only mention a few results and
notations needed to establish our results. As usual we denote by D(A) the domain
of A endowed with the graph norm ‖x‖A = ‖x‖+ ‖Ax‖, x ∈ D(A).

In this work we employ an axiomatic definition of the phase space B which is
similar to that introduced by Hale and Kato [10] and it is appropriate to treat
retarded differential equations with infinite delay.

Definition 2.1 ([10]). Let B be a linear space of functions mapping (−∞, 0] into
X endowed with a seminorm ‖ · ‖B and that satisfies the following cinditions:

(A) If x : (−∞, σ+b] → X, b > 0, such that xσ ∈ B and x|[σ,σ+b] ∈ C([σ, σ+b] :
X), then for every t ∈ [σ, σ + b) the following conditions hold:
(i) xt is in B,
(ii) ‖x(t)‖ ≤ H‖xt‖B,
(iii) ‖xt‖B ≤ K(t− σ) sup{‖x(s)‖ : σ ≤ s ≤ t}+M(t+ σ)‖xσ‖B,
where H > 0 is a constant; K,M : [0,∞) → [1,∞), K is continuous, M is
locally bounded and H,K,M are independent of x(·).

(A1) For the function x(·) in (A), xt is a B-valued continuous function on [σ, σ+
b).

(B) The space B is complete.

Definition 2.2 ([3]). The Hausdorff’s measure of noncompactness is defined as
χY (B) = inf{r > 0, B can be covered by finite number of balls with radius r}. for
bounded set B in any Banach space Y .

Lemma 2.3 ([3]). Let Y be a real Banach space and B,C ⊆ Y be bounded, the
following properties are satisfied:
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(1) B is pre-compact if and only if χY (B) = 0;
(2) χY (B) = χY (B) = χY (convB), where B and convB are the closure and

the convex hull of B respectively;
(3) χY (B) ≤ χY (C) when B ⊆ C;
(4) χY (B + C) ≤ χY (B) + χY (C) where B + C = {x+ y : x ∈ B, y ∈ C};
(5) χY (B ∪ C) ≤ max {χY (B), χY (C)};
(6) χY (λB) = |λ|χY (B) for any λ ∈ R;
(7) If the map Q : D(Q) ⊆ Y → Z is Lipschitz continuous with constant k,

then χZ(QB) ≤ kχY (B) for any bounded subset B ⊆ D(Q), where Z is a
Banach space;

(8) If {Wn}+∞
n=1 is a decreasing sequence of bounded closed nonempty subsets of

Y and limn→∞ χY (Wn) = 0, then ∩+∞
n=1Wn is nonempty and compact in Y .

Definition 2.4 ([3]). The map Q : W ⊆ Y → Y is said to be a χY − contraction
if Q is bounded continuous and there exists a positive constant k < 1 such that
χY (Q(C)) ≤ kχY (C)) for any bounded closed subset C ⊆W , where Y is a Banach
space.

Lemma 2.5 (Darbo-Sadovskii [3]). If W ⊆ Y is bounded closed and convex, the
map Q : W → W is a χY − contraction, then the map Q has at least one fixed
point in W .

In this paper we denote χ the Hausdorff’s measure of noncompactness of X, χC

the Hausdorff’s measure of noncompactness of C([0, b];X) and χC1 the Hausdorff’s
measure of noncompactness of C1([0, b];X). To discuss the existence results we
need the following auxiliary results.

Lemma 2.6 ([3]).
(1) If W ⊂ C([a, b];X) is bounded, then χ(W (t)) ≤ χC(W ), for t ∈ [a, b],

where W (t) = {u(t) : u ∈W} ⊆ X;
(2) If W is equicontinuous on [a, b], then χ(W (t)) is continuous for t ∈ [a, b],

and
χC(W ) = sup {χ(W (t)), t ∈ [a, b]};

(3) If W ⊂ C([a, b];X) is bounded and equicontinuous, then χ(W (t)) is contin-
uous for t ∈ [a, b], and

χ(
∫ t

a

W (s)ds) ≤
∫ t

a

χW (s)ds

for all t ∈ [a, b], where
∫ t

a
W (s)ds = {

∫ t

a
x(s)ds : x ∈W}.

The following lemmas are easy to prove.

Lemma 2.7. If the semigroup S(t) is equicontinuous and η ∈ L([0, b]; R+), then the
set {

∫ t

0
S(t− s)u(s)ds, ‖u(s)‖ ≤ η(s) for a.e. s ∈ [0, b]} is equicontinuous for t ∈

[0, b].

Lemma 2.8 ([8]). Let W ⊂ C1(J ;X) be bounded and W ′ be equicontinuous, then

χC1(W ) = max {χC(W ), χC(W ′)} = max {max
t∈J

χC(W (t)),max
t∈J

χC(W ′(t))},

where W ′ = {u′ : u ∈W}, J = [a, b].
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3. Main results

Now we define the mild solution for the initial value problem(1.1)-(1.2).

Definition 3.1. A function x : (−∞, b] → X is a mild solution of the initial value
problem (1.1)-(1.2), if x0 = ϕ, x(·)|J ∈ C(J ;X) and for t ∈ J ,

x(t) = C(t)ϕ(0)+S(t)(z+ g(0, ϕ))−
∫ t

0

C(t− s)g(s, xs)ds+
∫ t

0

S(t− s)f(s, xs)ds.

For (1.1)-(1.2), we assume the following hypotheses:
(H1f) f : J × B → X satisfies the following two conditions:

(1) For each x : (−∞, b] → X, x0 ∈ B and x|J ∈ C(J ;X), the function
t → f(t, xt) is strongly measurable and f(t, ·) is continuous for a.e.
t ∈ J ;

(2) There exist an integrable function α : J → [0,+∞) and a monotone
continuous nondecreasing function Ω : [0,+∞) → (0,+∞), such that
‖f(t, v)‖ ≤ α(t)Ω(‖v‖B), for all t ∈ J, v ∈ B;

(3) There exists an integrable function η : J → [0,+∞), such that

χ(S(s)f(t,D)) ≤ η(t) sup
−∞≤θ≤0

χ(D(θ)) for a.e. s, t ∈ J,

where D(θ) = {v(θ) : v ∈ D}.
(H1g) The function g(·) is continuous and g(t, ·) satisfies a Lipschitz condition;

that is, there exists a positive constant Lg, such that

‖g(t, v1)− g(t, v2)‖ ≤ Lg‖v1 − v2‖B, (t, vi) ∈ J × B, i = 1, 2.

(H1) (1) Kb(NbLg + Ñ
∫ b

0
α(s)ds lim supτ→∞

Ω(τ)
τ ) < 1

(2) KbNLgb+
∫ b

0
η(s)ds < 1.

In this section, y : (−∞, b] → X is the function defined by y0 = ϕ and y(t) =
C(t)ϕ(0) + S(t)(z + g(0, ϕ)) on J . Clearly, ‖yt‖B ≤ Kb‖y‖b +Mb‖ϕ‖B, where

Kb = sup
0≤t≤b

K(t), Mb = sup
0≤t≤b

M(t), ‖y‖b = sup
0≤t≤b

‖y(t)‖.

Now we are in position to estate our main results.

Theorem 3.2. If the hypotheses (H1f), (H1g), (H1) are satisfied, then the initial
value problem (1.1)-(1.2) has at least one mild solution.

Proof. Let S(b) be the space S(b) = {x : (−∞, b] → X | x0 = 0, x|J ∈ C(J ;X)}
endowed with supremum norm ‖ · ‖b . Let Γ : S(b) → S(b) be the map defined by

(Γx)(t) =


0, t ∈ (−∞, 0],
−

∫ t

0
C(t− s)g(s, xs + ys)ds

+
∫ t

0
S(t− s)f(s, xs + ys)ds, t ∈ J.

(3.1)

It is easy to see that ‖xt + yt‖B ≤ Kb‖y‖b + Mb‖ϕ‖B + Kb‖x‖t, where ‖x‖t =
sup0≤s≤t ‖x(s)‖. Thus, Γ is well defined and with values in S(b). In addition, from
the axioms of phase space, the Lebesgue dominated convergence theorem and the
conditions (H1f) (H1g), we can show that Γ is continuous.
Step 1. There exists k > 0 such that Γ(Bk) ⊂ Bk, whereBk = {x ∈ S(b) : ‖x‖b ≤ k}.
In fact, if we assume that the assertion is false, then for k > 0 there exist xk ∈ Bk
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and tk ∈ I such that k < ‖Γxk(tk)‖. This yields

k < ‖Γxk(tk)‖

≤ N

∫ tk

0

(Lg‖xks + ys‖B + ‖g(s, 0)‖)ds+ Ñ

∫ tk

0

α(s)Ω(‖xks + ys‖B)ds

≤ N

∫ b

0

Lg(Kb‖y‖b +Mb‖ϕ‖B +Kbk + ‖g(s, 0)‖)ds

+ Ñ

∫ b

0

α(s)dsΩ(Kb‖y‖b +Mb‖ϕ‖B +Kbk)

which implies

1 < KbNbLg + Ñ

∫ b

0

α(s)ds lim sup
k→∞

Ω(Kb‖y‖b +Mb‖ϕ‖B +Kbk)
k

≤ Kb(NbLg + Ñ

∫ b

0

α(s)ds lim sup
τ→∞

Ω(τ)
τ

) < 1,

which is a contradiction.
Step 2. Next, we show that Γ is χ− contraction. To clarify this, we decompose Γ
in the form Γ = Γ1 + Γ2, for t ≥ 0, where

Γ1x(t) = −
∫ t

0

C(t− s)g(s, xs + ys)ds,

Γ2x(t) =
∫ t

0

S(t− s)f(s, xs + ys)ds.

First, we show the Γ1 is Lipschitz continuous. For arbitrary x1, x2 ∈ Bk, from
Definition 2.1 and hypotheses, we obtain

‖Γ1x1(t)− Γ1x2(t)‖ ≤ ‖
∫ t

0

C(t− s)(g(s, x1s + ys)− g(s, x2s + ys))ds‖

≤ NLgb‖x1t − x2t‖B ≤ KbNLgb‖x1t − x2t‖b;

that is, ‖Γ1x1(t)−Γ1x2(t)‖b ≤ KbNLgb‖x1t − x2t‖b; hence, Γ1 is Lipschitz contin-
uous, with Lipschitz constant L′ = KbNLgb.

Next, taking W ⊂ Γ(Bk). Obviously, S(t) is equicontinuous. From Lemma 2.7,
W is equicontinuous. As χC(W ) = sup {χ(W (t)), t ∈ J}, we have

χ(Γ2W (t)) = χ(
∫ t

0

S(t− s)f(s,Ws + ys)ds)

≤
∫ t

0

η(s) sup
−∞<θ≤0

χ(W (s+ θ) + y(s+ η))ds

≤
∫ t

0

η(s) sup
0≤τ≤s

χW (τ)ds

≤ χC(W )
∫ t

0

η(s)ds,

for each bounded set W ∈ C(J ;X). Since

χC(ΓW ) = χC(Γ1W + Γ2W )

≤ χC(Γ1W ) + χC(Γ2W )
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≤ (L′ +
∫ t

0

η(s)ds))χC(W ) ≤ χC(W ),

the function Γ is χ-contraction. In view of Lemma 2.5, Darbo-Sadovskii fixed point
theorem, we conclude that Γ has at least one fixed point in W . Let x be a fixed
of Γ on S(b), then z = x + y is a mild solution of (1.1)-(1.2). So we deduce the
existence of a mild solution of (1.1)-(1.2). �

For (1.3)-(1.4), it is possible to establish similar results as those given in the first
part of this section. Furthermore, we denote by C1 the space of smooth functions
in the sense above described endowed with the norm ‖u‖1 = ‖u‖+ ‖u′‖.

Now we define the mild solution for the initial value problem (1.3)-(1.4).

Definition 3.3. A function x : (−∞, b] → X is a mild solution of the initial value
problem (1.3)-(1.4) if x0 = ϕ, x(·)|J ∈ C1(J ;X) and for t ∈ J ,

x(t) = C(t)ϕ(0) + S(t)(z + g(0, ϕ, z))−
∫ t

0

C(t− s)g(s, xs, x
′(t))ds

+
∫ t

0

S(t− s)f(s, xs, x
′(t))ds.

For (1.3)-(1.4), we assume the following hypotheses:

(H2f) f : J × B ×X → X satisfies the following conditions:
(1) For each x : (−∞, b] → X, x0 = ϕ ∈ B and x|J ∈ C1, the function

t→ f(t, xt, x
′(t)) is strongly measurable and f(t, ·, ·) is continuous for

a.e. t ∈ J ;
(2) There exist an integrable function α : J → [0,+∞) and a monotone

continuous nondecreasing function Ω : [0,+∞) → (0,+∞), such that

‖f(t, v, w)‖ ≤ α(t)Ω(‖v‖B + ‖w‖), t ∈ J, (v, w) ∈ B ×X;

(3) There exist integrable functions ηi : J → [0,+∞), i = 1, 2, such that

χ(S(s)f(t,D1, D2)) ≤ η1(t) sup
−∞≤θ≤0

χ(D1(θ)),

χ(C(s)f(t,D1, D2)) ≤ η2(t) sup
−∞≤θ≤0

χ(D2(θ)) for a.e. s, t ∈ J,

where Di(θ) = {Di(θ) : v ∈ D}, i = 1, 2.
(H2g) There exists a positive constant Lg such that

‖g(t, v1, w1)− g(t, v2, w2)‖ ≤ Lg(‖v1 − v2‖B + ‖w1 − w2‖),

(t, vi, wi) ∈ J × B ×X, i = 1, 2.
(H2) (1) (Kb +1)(Lg(Nb+1+‖A‖Ñb)+(N+Ñ)

∫ b

0
α(s)ds lim supτ→∞

Ω(τ)
τ ) <

1;
(2) Lg(Nb+ 1 + ‖A‖Ñb)(Kb + 1) + max {

∫ b

0
η1(s)ds,

∫ b

0
η2(s)ds} < 1.

In this section, y : (−∞, b] → X is the function defined by y0 = ϕ and y(t) =
C(t)ϕ(0) + S(t)(z + g(0, ϕ, z)) on J . Clearly, ‖yt‖B ≤ Kb‖y‖b + Mb‖ϕ‖B, where
Kb = sup0≤t≤bK(t), Mb = sup0≤t≤bM(t), ‖y‖b = sup0≤t≤b ‖y(t)‖.

Theorem 3.4. If the hypotheses (H2f) (H2g), (H2) are satisfied, then the initial
value problem (1.3)-(1.4) has at least one mild solution.



EJDE-2010/36 NEUTRAL FUNCTIONAL DIFFERENTIAL EQUATION 7

Proof. Let S1(b) be the space

S1(b) = {x : (−∞, b] → X : x0 = 0, x|J ∈ C1(J ;X), x′(0) = −g(0, ϕ, z)}
endowed with supremum norm ‖ · ‖1b. Let Γ : S1(b) → S1(b) be the map defined
by

(Γx)(t) =


0, t ∈ (−∞, 0],
−

∫ t

0
C(t− s)g(s, xs + ys, x

′(s) + y′(s))ds
+

∫ t

0
S(t− s)f(s, xs + ys, x

′(s) + y′(s))ds, t ∈ J,
(3.2)

where y0 = ϕ and y(t) = C(t)ϕ(0) +S(t)(z+ g(0, ϕ, z)) on J . It is easy to see that

‖xt + yt‖B ≤ Kb‖y‖b +Mb‖ϕ‖B +Kb‖x‖t,

where ‖x‖t = sup0≤s≤t ‖x(s)‖. Thus, Γ is well defined and with values in S1(b),
and

(Γx)′(t) = −g(t, xt + yt, x
′(t) + y′(t))−

∫ t

0

AS(t− s)g(s, xs + ys, x
′(s) + y′(s))ds

+
∫ t

0

C(t− s)f(s, xs + ys, x
′(s) + y′(s))ds, t ∈ J.

In addition, from the axioms of phase space, the Lebesgue dominated convergence
theorem and the conditions (H2f), (H2g), we can show that Γ and Γ′ are continuous.
Step 1. There exists k > 0 such that Γ(Bk) ⊂ Bk := {x ∈ S1(b) : ‖x‖1b ≤ k}. In
fact, if we assume that the assertion are false, then for k > 0 there exist xk ∈ Bk

and tk ∈ J such that k < ‖Γxk(tk)‖1. This yields

k < ‖Γxk(tk)‖1

= ‖Γxk(tk)‖+ ‖(Γxk)′(tk)‖

≤ N

∫ tk

0

(Lg(‖xks + ys‖B + ‖x′k(s) + y′(t)‖) + ‖g(s, 0, 0)‖)ds

+
∫ tk

0

Ñα(s)Ω(‖xks + ys‖B + ‖x′k(s) + y′(t)‖)ds

+ Lg(‖xktk
+ ytk

‖B + ‖x′k(tk) + y′(tk)‖) + ‖g(tk, 0, 0)‖

+
∫ tk

0

‖A‖Ñ(Lg(‖xks + ys‖B + ‖x′k(s) + y′(s)‖) + ‖g(s, 0, 0)‖)ds

+
∫ tk

0

Nα(s)Ω(‖xks + ys‖B + ‖x′k(s) + y′(s)‖)ds

≤ bNLg(Kbk +Kb‖y‖b +Mb‖ϕ‖B + k + ‖y′‖b) +N

∫ b

0

‖g(s, 0, 0)‖ds

+ Ñ

∫ b

0

α(s)dsΩ(Kbk +Kb‖y‖b +Mb‖ϕ‖B + k + ‖y′‖b)

+ Lg(Kbk +Kb‖y‖b +Mb‖ϕ‖B + k + ‖y′‖b) + ‖g(tk, 0, 0)‖

+ b‖A‖ÑLg(Kbk +Kb‖y‖b +Mb‖ϕ‖B + k + ‖y′‖b) + ‖A‖Ñ
∫ b

0

‖g(s, 0, 0)‖ds

+N

∫ b

0

α(s)dsΩ(Kbk +Kb‖y‖b +Mb‖ϕ‖B + k + ‖y′‖b),
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which implies

1 < Lg(Kb + 1)(Nb+ 1 + ‖A‖Ñb)

+ (N + Ñ)
∫ b

0

α(s)ds lim sup
k→∞

Ω(Kbk +Kb‖y‖b +Mb‖ϕ‖B + k + ‖y′‖b)
k

)

≤ (Kb + 1)(Lg(Nb+ 1 + ‖A‖Ñb) + (N + Ñ)
∫ b

0

α(s)ds lim sup
τ→∞

Ω(τ)
τ

) < 1,

which is a contradiction.
Step 2. Next we show that Γ is χ − contraction. To clarify this, we decompose Γ
in the form Γ = Γ1 + Γ2, for t ≥ 0, where

Γ1x(t) = −
∫ t

0

C(t− s)g(s, xs + ys, x
′(s) + y′(s))ds,

Γ2x(t) =
∫ t

0

S(t− s)f(s, xs + ys, x
′(s) + y′(s))ds.

First, we show the Γ1 is Lipschitz continuous. For arbitrary x1, x2 ∈ Bk, from
Definition 2.1 and hypotheses conditions, we obtain

‖Γ1x1(t)− Γ1x2(t)‖1

≤ ‖Γ1x1(t)− Γ1x2(t)‖+ ‖(Γ1x1)′(t)− (Γ1x2)′(t)‖

≤ ‖
∫ t

0

C(t− s)(g(s, x1s + ys, x
′
1(s) + y′(s))− g(s, x2s + ys, x

′
2(s) + y′(s)))ds‖

+ ‖g(t, x1t + yt, x
′
1(t) + y′(t))− g(t, x2t + yt, x

′
2(t) + y′(t))‖

+ ‖
∫ t

0

AS(t− s)(g(s, x1s + ys, x
′
1(s) + y′(s))− g(s, x2s + ys, x

′
2(s) + y′(s)))ds‖

≤ N

∫ t

0

Lg(‖x1s − x2s‖B + ‖x′1(s)− x′2(s)‖)ds

+ Lg(‖x1t − x2t‖B + ‖x′1(t)− x′2(t)‖)

+ ‖A‖Ñ
∫ t

0

Lg(‖x1s − x2s‖B + ‖x′1(s)− x′2(s)‖)ds

≤ N

∫ t

0

Lg(K(s) sup
0≤τ≤s

‖x1(τ)− x2(τ)‖+ ‖x′1(s)− x′2(s)‖)ds

+ Lg(K(t) sup
0≤τ≤t

‖x1(τ)− x2(τ)‖+ ‖x′1(t)− x′2(t)‖)

+ ‖A‖Ñ
∫ t

0

Lg(K(s) sup
0≤τ≤s

‖x1(τ)− x2(τ)‖+ ‖x′1(s)− x′2(s)‖)ds

≤ Lg(Nb+ 1 + ‖A‖Ñb) sup
0≤τ≤t

(K(t)‖x1(τ)− x2(τ)‖+ ‖x′1(t)− x′2(t)‖)

≤ Lg(Nb+ 1 + ‖A‖Ñb)(Kb + 1)‖x1 − x2‖1;

that is,

‖Γ1x1(t)− Γ1x2(t)‖1b ≤ Lg(Nb+ 1 + ‖A‖Ñb)(Kb + 1)‖x1 − x2‖1b.

Hence, Γ1 is Lipschitz continuous with Lipschitz constant L′ = Lg(Nb + 1 +
‖A‖Ñb)(Kb + 1).
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Next, taking W ⊂ Γ(Bk). Obviously, S(t) is equicontinuous. From Lemma 2.7,
W is equicontinuous and χC(W ) = sup {χ(W (t)), t ∈ [a, b]}, we have

χC1(Γ2W (t))

= χC1(
∫ t

0

S(t− s)f(s,Ws + ys,W
′(s) + y′(s))ds)

= max
{

max
t∈J

χC(
∫ t

0

S(t− s)f(s,Ws + ys,W
′(s) + y′(s)))

}
ds),

max
t∈J

χC(
∫ t

0

C(t− s)f(s,Ws + ys,W
′(s) + y′(s))ds)}

≤ max {max
t∈J

∫ t

0

η1(s) sup
−∞<θ≤0

χC(W (s+ θ) + y(s+ θ))ds),

max
t∈J

∫ t

0

η2(s) sup
−∞<θ≤0

χC(W ′(s+ θ) + y′(s+ θ))ds)}

≤ max {
∫ t

0

η1(s) sup
0≤τ≤s

χC(W (τ))ds,
∫ t

0

η2(s) sup
0≤τ≤s

χC(W ′(τ))ds}

≤ max {
∫ b

0

η1(s)ds,
∫ b

0

η2(s)ds}max { sup
0≤τ≤b

χC(W (τ)), sup
0≤τ≤b

χC(W ′(τ))}

≤ max {
∫ b

0

η1(s)ds,
∫ b

0

η2(s)ds}max {χC(W ), χC(W ′)}

≤ max {
∫ b

0

η1(s)ds,
∫ b

0

η2(s)ds}χC1(W ),

for each bounded set W ∈ C1(J ;X). Since

χC1(ΓW ) = χC1(Γ1W + Γ2W ) ≤ χC1(Γ1W ) + χC1(Γ2W )

≤ (Lg(Nb+ 1 + ‖A‖Ñb) + max {
∫ b

0

η1(s)ds,
∫ b

0

η2(s)ds})χC1(W ).

The function Γ is χ-contraction. In view of Lemma 2.5, we conclude that Γ has
at least one fixed point in W . Let x be a fixed of Γ on S1(b), then z = x + y
is a mild solution of (1.3)-(1.4). So we deduce the existence of a mild solution of
(1.3)-(1.4). �

4. Examples

4.1. The phase space Cr × L2(h,X). Let h(·) : (−∞,−r] → R be a positive
Lebesgue integrable function and B := Cr × L2(h;X), r ≥ 0, be the space formed
of all classes of functions ϕ : (−∞, 0] → X such that ϕ|[−r,0] ∈ C([−r, 0], X), φ(·) is
Lebesgue-measurable on (−∞,−r] and h|ϕ|2 is Lebesgue integrable on (−∞,−r].
The seminorm in ‖ · ‖B is defined by

‖ϕ‖B := sup
θ∈[−r,0]

|ϕ(θ)|+ (
∫ −r

−∞
h(θ)|ϕ(θ)|2dθ)1/2.

Assume that h(·) satisfies [17, conditions (g-6) and (g-7)], function G is locally
bounded on (−∞, 0]. Proceeding as in the proof of [17, Theorem 1.3.8] it follows
that B is a phase space which satisfies the axioms (A) and (B). Moreover, when
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r = 0 this space coincides with X × L2(h,X) and the parameter H = 1, as in [17,
Theorem 1.3.8]; M(t) = G(−t)1/2 and K(t) = 1 + (

∫ 0

−t
h(τ)dτ)1/2, for t ≥ 0 (see

[17]).
Let X = L2([0, π]) and let A be the operator Af = f ′′ with domain

D(A) := {f ∈ L2([0, π]) : f ′′ ∈ L2([0, π]), f(0) = f(π) = 0}.
It is well known that A is the infinitesimal generator of a C0-semigroup and of
a strongly continuous cosine function on X, which will be denoted by (C(t))t∈R.
Moreover, A has discrete spectrum, the eigenvalues are −n2, n ∈ N , with corre-
sponding normalized eigenvectors zn(ξ) := ( 2

π )1/2 sin(nξ) and the following prop-
erties hold:

(a) {zn : n ∈ N} is an orthonormal basis of X.
(b) For f ∈ X, (−A)−1/2f =

∑∞
n=1

1
n 〈f, zn〉zn and ‖(−A)−1/2‖ = 1.

(c) For f ∈ X, C(t)f =
∑∞

n=1 cos(nt)〈f, zn〉zn. Moreover, it follow from this
expression that S(t)ϕ =

∑∞
n=1

sin(nt)
n 〈ϕ, zn〉zn, that S(t) is compact for

t > 0 and that ‖C(t)‖ = 1 and ‖S(t)‖ = 1 for every t ∈ R.
(d) If Φ denotes the group of translations on X defined by Φ(t)x(ξ) = x̃(ξ+ t),

where x̃ is the extension of x with period 2π, then C(t) = 1
2 (Φ(t)+Φ(−t));

A = B2 where B is the infinitesimal generator of the group Φ and E =
{x ∈ H1(0, π) : x(0) = x(π) = 0, see [6] for details.

In the next applications, B will be the phase space X × L2(h,X).

4.2. A second order neutral equation. Now we discuss the existence of solu-
tions for the second order neutral differential equation

∂

∂t
(
∂u(t, ξ)
∂t

+
∫ t

−∞

∫ π

0

b(t− s, η, ξ)u(s, η)dηds)

=
∂2u(t, ξ)
∂ξ2

+
∫ t

−∞
F (t, t− s, ξ, u(s, ξ))ds, t ∈ [0, a], ξ ∈ [0, π],

(4.1)

u(t, 0) = u(t, π) = 0, t ∈ [0, a], (4.2)

u(τ, ξ) = ϕ(τ, ξ), τ ≤ 0, 0 ≤ ξ ≤ π, (4.3)

where ϕ ∈ X × L2(h;X), and

(a) The functions b(s, η, ξ), ∂b(s,η,ξ)
∂ξ are measurable, b(s, η, π) = b(s, η, 0) = 0

and

Lg := max {(
∫ π

0

∫ 0

−∞

∫ π

0

1
h(s)

(
∂ib(s, η, ξ)

∂ξi
)2dηdsdξ)1/2 : i = 0, 1} <∞;

(b) The function F : R4 → R is continuous and there is continuous function
µ : R2 → R such that ∫ 0

−∞

µ(t, s)2

h(s)
ds <∞

and |F (t, s, ξ, x)| ≤ µ(t, s)|x|, (t, s, ξ, x) ∈ R4;
Assuming that conditions (a),(b) are satisfied, problem (4.1)-(4.3) can be mod-

elled as the abstract Cauchy problem (1.1)-(1.2) by defining

g(t, ψ)(ξ) :=
∫ 0

−∞

∫ π

0

b(s, ν, ξ)ψ(s, ν)dνds, (4.4)
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f(t, ψ)(ξ) :=
∫ 0

−∞
F (t, s, ξ, ψ(s, ξ))ds. (4.5)

Moreover, ‖f(t, ψ)‖ ≤ d(t)‖ψ‖B for every t ∈ [0, a], where d(t) := (
∫ 0

−∞
µ(t,s)2

h(s) ds)1/2

is a Lebesgue integrable function.
The next result is a consequence of Theorem 3.2.

Proposition 4.1. Let the previous conditions be satisfied. If

(1 + (
∫ 0

−a

h(τ)dτ)1/2)(aLg +
∫ a

0

d(t)dt) < 1,

then there exists a mild solution of (4.1)-(4.3).
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