POSITIVE SOLUTIONS FOR SECOND-ORDER SINGULAR THREE-POINT BOUNDARY-VALUE PROBLEMS WITH SIGN-CHANGING NONLINEARITIES

CAISHENG JI, BAOQIANG YAN

Abstract

In this article, we study the existence and uniqueness of the positive solution for a second-order singular three-point boundary-value problem with sign-changing nonlinearities. Our main tool is a fixed-point theorem.

1. Introduction

In this article, we consider the second-order boundary-value problem

$$
\begin{gather*}
x^{\prime \prime}(t)+f(t, x(t))=0, \quad 0<t<1, \tag{1.1}\\
x(0)=0, \quad x(1)=\alpha x(\eta), \quad 0<\eta<1, \quad 0<\alpha<1 . \tag{1.2}
\end{gather*}
$$

The singularity may appear at $t=0, x=0$ and the function f may be superlinear at $x=\infty$ and change sign.

Webb [6] employed the fixed-point index for compact maps to investigate the existence of at least one positive solution for the second-order boundary-value problem

$$
\begin{gather*}
x^{\prime \prime}(t)+g(t) f(x(t))=0, \quad 0<t<1, \\
x(0)=0, \quad x(1)=\alpha x(\eta) \tag{1.3}
\end{gather*}
$$

where $0<\eta<1,0<\alpha \eta<1$, and $f_{0}=\limsup _{x \rightarrow 0} \frac{f(x)}{x}, f_{\infty}=\liminf _{x \rightarrow \infty} \frac{f(x)}{x}$ exist and $g(t)>0$. Moreover, when $g(t)$ is a sign-changing function in $[0,1]$ and f is nondecreasing and without any singular points, using the fixed point theorem of strict-set-contractions, Bing Liu [3] established the existence of at least two positive solutions for (1.3). When $g(t)>0$ and f is a given sign-changing function without any singular points and any monotonicity, using the increasing operator theory and approximation process, Xian $\mathrm{Xu}[8$ showed at least three solutions for the three-point boundary-value problem (1.3).

In addition, the existence of solutions of nonlinear multi-point boundary-value problems have been studied by many other authors; the readers are referred to [3, 4, 9, 10] and the references therein.

[^0]Motivated by [2, 12], the purpose of this article is to examine the existence and the uniqueness of the positive solution of (1.1)-(1.2) under the assumption that f may be singular at $t=0, x=0$ and be superlinear at $x=\infty$ and change sign. There are only a few papers considering (1.1)- (1.2) under this assumptions. We try to fill this gap in the literature with this paper.

In this article, we use the following assumptions:
(H1) $f(t, x) \in C((0,1] \times(0,+\infty),(-\infty,+\infty))$,
(H2) $k(t), a(t), b(t) \in C((0,1],(0,+\infty)), t k(t) \in L(0,1]$,
(H3) there exist $F(x) \in C((0,+\infty),(0,+\infty)), G(x) \in C([0,+\infty),[0,+\infty))$ such that $f(t, x) \leq k(t)(F(x)+G(x))$.
(S1) $f(t, x) \geq a(t)$ hold for $0<x<b(t), x \in C[0,1]$,
(S2) $F(x)$ is decreasing in $(0,+\infty)$,
(S3) there exist $R>1$, such that $\int_{1}^{R} \frac{d y}{F(y)} \cdot\left(1+\frac{\bar{G}(R)}{F(R)}\right)^{-1}>\int_{0}^{1} s k(s) d s$, where $\bar{G}(R)=\max _{s \in[0, R]} G(s)$.
This paper is organized as follows. In Section 2, we give some preliminaries. In Section 3, we obtain the existence of at least one positive solution for 1.1 - 1.2 , and show an application of our results.

2. Preliminaries

Lemma 2.1 ([1]). Let E be a Banach space, $R>0$, $B_{R}=\{x \in E:\|x\| \leq R\}$, $F: B_{R} \rightarrow E$ be a completely continuous operator. If $x \neq \lambda F(x)$ for any $x \in E$ with $\|x\|=R$ and $0<\lambda<1$, then F has a fixed point in B_{R}.

Let $n>\left[\frac{1}{\eta}+1\right]$ be a natural number, $d_{n}=\min \left\{b(t): t \in\left[\frac{1}{n}, 1\right]\right\}, b_{n}=$ $\min \left\{d_{n}, \frac{1}{n}\right\}, C_{n}=\left\{x: x \in C\left[\frac{1}{n}, 1\right]\right\}$ with norm $\|x\|=\max \left\{|x(t)|, \frac{1}{n} \leq t \leq 1\right\}$. It is easy to see that $\left(C_{n},\|\cdot\|\right)$ is a Banach space.

Inspired by [12], we define T_{n} as

$$
\left(T_{n} x\right)(t)=b_{n}+\int_{\frac{1}{n}}^{1} G_{\frac{1}{n}, 1}(t, s) f\left(s, \max \left\{b_{n}, x(s)\right\}\right) d s, \quad x \in C_{n}, t \in\left[\frac{1}{n}, 1\right]
$$

where

$$
\begin{gathered}
G_{\frac{1}{n}, 1}(t, s)= \begin{cases}G_{1}(t, s), & \frac{1}{n}<\eta \leq s \\
G_{2}(t, s), & \frac{1}{n} \leq s \leq \eta\end{cases} \\
G_{1}(t, s)=\left\{\begin{array}{ll}
\frac{1}{1-\alpha \eta-(1-\alpha) \frac{1}{n}}(1-s)\left(t-\frac{1}{n}\right), & \frac{1}{n} \leq t \leq s \leq 1, \\
1-\alpha \eta-(1-\alpha) \frac{1}{n}
\end{array} \alpha(t-s)\left(\eta-\frac{1}{n}\right)-(t-1)\left(s-\frac{1}{n}\right)\right], \quad \eta \leq s \leq t \leq 1,
\end{gathered}, \begin{array}{ll}
\frac{(1-\alpha \eta)\left(t-\frac{1}{n}\right)-s(1-\alpha)\left(t-\frac{1}{n}\right)}{1-\alpha \eta-(1-\alpha) \frac{1}{n}}, & \frac{1}{n} \leq t \leq s \leq 1, \\
\frac{(1-\alpha \eta)\left(s-\frac{1}{n}\right)-t(1-\alpha)\left(s-\frac{1}{n}\right)}{1-\alpha \eta-(1-\alpha) \frac{1}{n}}, & \frac{1}{n} \leq s \leq t \leq 1,
\end{array}
$$

and $G_{\frac{1}{n}, 1}(t, s)$ is Green's function to the boundary-value problem

$$
\begin{gathered}
x^{\prime \prime}(t)=0, \quad \frac{1}{n}<t<1 \\
x\left(\frac{1}{n}\right)=0, \quad x(1)=\alpha x(\eta), \quad 0<\alpha<1, \quad 0<\eta<1
\end{gathered}
$$

By a standard argument we have the following result; see for example [7].

Lemma 2.2. The operator T_{n} is completely continuous from C_{n} to C_{n}.
Lemma 2.3. There exist $x_{n} \in C_{n}, b_{n} \leq x_{n}(t) \leq R$ for $t \in\left[\frac{1}{n}, 1\right]$ such that

$$
\begin{equation*}
x_{n}(t)=b_{n}+\int_{\frac{1}{n}}^{1} G_{\frac{1}{n}, 1}(t, s) f\left(s, x_{n}(s)\right) d s, \quad t \in\left[\frac{1}{n}, 1\right] . \tag{2.1}
\end{equation*}
$$

Proof. We prove that

$$
\begin{equation*}
x(t) \neq \lambda\left(T_{n} x\right)(t)=\lambda b_{n}+\lambda \int_{\frac{1}{n}}^{1} G_{\frac{1}{n}, 1}(t, s) f\left(s, \max \left\{b_{n}, x(s)\right\}\right) d s, \quad t \in\left[\frac{1}{n}, 1\right] \tag{2.2}
\end{equation*}
$$

for any $\|x\|=R$ and $\lambda \in(0,1)$. In fact, if 2.2 is not true, there exist $x \in C_{n}$ with $\|x\|=R$ and $0<\lambda<1$ such that

$$
\begin{equation*}
x(t)=\lambda\left(T_{n} x\right)(t)=\lambda b_{n}+\lambda \int_{\frac{1}{n}}^{1} G_{\frac{1}{n}, 1}(t, s) f\left(s, \max \left\{b_{n}, x(s)\right\}\right) d s, \quad t \in\left[\frac{1}{n}, 1\right] . \tag{2.3}
\end{equation*}
$$

It is easy to see that $x\left(\frac{1}{n}\right)=\lambda b_{n}, x(1)-\alpha x(\eta)=(1-\alpha) \lambda b_{n}$.
We first claim that $x(t) \geq \lambda b_{n}$ for any $t \in\left[\frac{1}{n}, 1\right]$. In fact if $x(\eta)<\lambda b_{n}$, we have $x(1)=\lambda b_{n}+\alpha x(\eta)-\alpha \lambda b_{n}<\lambda b_{n}$ and $x(\eta)<x(1)$. Since $x\left(\frac{1}{n}\right)=\lambda b_{n}>x(1)$, we can get a point $t_{1} \in\left(\frac{1}{n}, \eta\right)$ such that $x\left(t_{1}\right)=x(1)$. Let $\gamma=\sup \left\{t_{1}: t_{1} \in\left(\frac{1}{n}, \eta\right), x\left(t_{1}\right)=\right.$ $x(1)\}$. It follows that $x(\gamma)=x(1)$ and $x(t)<x(\gamma)=x(1), t \in(\gamma, \eta)$. Since $x(\eta)<x(1)<\lambda b_{n}$, we have two cases:
Case (1). There exist $t_{1}^{\prime} \in(\eta, 1)$ such that $x(1) \leq x\left(t_{1}^{\prime}\right)$. and
Case (2). $x(t)<x(1)$ for all $t \in(\eta, 1)$.
In case (1), we may get a point $t_{2} \in\left(\eta, t_{1}^{\prime}\right)$ such that $x\left(t_{2}\right)=x(1)$. Setting $\beta=\inf \left\{t_{2}: t_{2} \in(\eta, 1), x\left(t_{2}\right)=x(1)\right\}$, we get $x(\beta)=x(1)$ and $x(t)<x(\beta)=$ $x(1), t \in(\eta, \beta)$. In case (2), setting $\beta=1$, we also get $x(\beta)=x(1)$ and $x(t)<$ $x(\beta)=x(1), t \in(\eta, \beta)$. Hence, there exist an interval $[\gamma, \beta] \subseteq\left(\frac{1}{n}, 1\right](\gamma<\beta)$ such that

$$
\begin{equation*}
x(\gamma)=x(\beta)<\lambda b_{n}, x(t)<x(\gamma), x(t)<x(\beta), \quad t \in(\gamma, \beta) . \tag{2.4}
\end{equation*}
$$

By (2.3) and (S1), we have $x^{\prime \prime}(t)=-\lambda f\left(t, b_{n}\right)<0, t \in[\gamma, \beta]$ and $x(t)$ is concave down on $[\gamma, \beta]$, which contradicts (2.4). Hence $x(\eta) \geq \lambda b_{n}$, and then $x(1) \geq$ $\lambda b_{n}, x(1) \leq x(\eta)$. If there exist $t_{2}^{\prime} \in\left(\frac{1}{n}, \eta\right)$ such that $x\left(t_{2}^{\prime}\right)<\lambda b_{n}$, a similar argument as before yields an interval $\left[\gamma^{\prime}, \beta^{\prime}\right] \subseteq\left[\frac{1}{n}, \eta\right]\left(\gamma^{\prime}<\beta^{\prime}\right)$, such that

$$
\begin{equation*}
x(t)<x\left(\gamma^{\prime}\right), \quad x(t)<x\left(\beta^{\prime}\right), \quad t \in\left(\gamma^{\prime}, \beta^{\prime}\right), \quad x\left(\gamma^{\prime}\right) \leq \lambda b_{n}, \quad x\left(\beta^{\prime}\right) \leq \lambda b_{n} \tag{2.5}
\end{equation*}
$$

It follows from (2.3) and (S1) that $x^{\prime \prime}(t)=-\lambda f\left(t, b_{n}\right)<0, t \in\left[\gamma^{\prime}, \beta^{\prime}\right]$ and $x(t)$ is concave down on $\left[\gamma^{\prime}, \beta^{\prime}\right]$, which contradicts 2.5]. So we have $x(t) \geq \lambda b_{n}, t \in\left[\frac{1}{n}, \eta\right]$. By the same argument used for $t \in\left[\frac{1}{n}, \eta\right]$, we can easily show that $x(t) \geq \lambda b_{n}, t \in$ $[\eta, 1]$.

Next we claim that: for any $z \in\left(\frac{1}{n}, 1\right)$, if $b_{n}<x(z)<R$, we have

$$
\begin{equation*}
\int_{b_{n}}^{x(z)} \frac{d x}{F(x)} \leq\left(1+\frac{\bar{G}(R)}{F(R)}\right) \int_{0}^{z} \int_{t}^{1} k(s) d s d t \tag{2.6}
\end{equation*}
$$

Since $x\left(\frac{1}{n}\right)=\lambda b_{n}<R, x(1) \leq x(\eta)$, there exist $t^{*} \in\left(\frac{1}{n}, 1\right)$ such that $x\left(t^{*}\right)=R$, $x^{\prime}\left(t^{*}\right)=0$. Setting $t^{\prime}=\inf \left\{t^{*}: t^{*} \in\left(\frac{1}{n}, 1\right), x^{\prime}\left(t^{*}\right)=0, x\left(t^{*}\right)=\|x\|=R\right\}$, we obtain $t^{\prime} \in\left(\frac{1}{n}, 1\right), x^{\prime}\left(t^{\prime}\right)=0, x\left(t^{\prime}\right)=\|x\|=R$. Obviously there exist $t^{\prime \prime} \in\left(\frac{1}{n}, t^{\prime}\right)$ such that $x\left(t^{\prime \prime}\right)=b_{n}$. Furthermore we get a countable set $\left\{t_{i}\right\}$ of $\left(\frac{1}{n}, 1\right)$ such that
(1) $t^{\prime \prime}=t_{1}<t_{2} \leq t_{3}<t_{4} \leq t_{5}<\ldots \leq t_{2 m-1}<t_{2 m} \leq \ldots<1, t_{2 m} \rightarrow t^{\prime}$,
(2) $x\left(t_{1}\right)=b_{n}, x\left(t_{2 i}\right)=x\left(t_{2 i+1}\right), x^{\prime}\left(t_{2 i}\right)=0, i=1,2,3 \ldots$,
(3) $x(t)$ is strictly increasing in $\left[t_{2 i-1}, t_{2 i}\right], i=1,2,3 \ldots$ (if $x(t)$ is strictly increasing in $\left[t^{\prime \prime}, t^{\prime}\right]$, put $m=1$; i.e, $\left.\left[t_{1}, t_{2}\right]=\left[t^{\prime \prime}, t^{\prime}\right]\right)$.
Differentiating (2.3) and using the assumptions, we obtain easily

$$
\begin{align*}
-x^{\prime \prime}(t) & =\lambda f(t, x(t)) \leq \lambda k(t)(F(x(t))+G(x(t))) \\
& =\lambda k(t) F(x(t))\left(1+\frac{G(x(t))}{F(x(t))}\right) \\
& <k(t) F(x(t))\left(1+\frac{\bar{G}(R)}{F(x(t))}\right) \tag{2.7}\\
& \leq k(t) F(x(t))\left(1+\frac{\bar{G}(R)}{F(R)}\right), \quad t \in\left[t_{2 i-1}, t_{2 i}\right), i=1,2,3 \ldots
\end{align*}
$$

Integrating 2.7) from t to $t_{2 i}$, we have by the decreasing property of $F(x)$,

$$
\begin{align*}
-\int_{t}^{t_{2 i}} x^{\prime \prime}(s) d s & \leq\left(1+\frac{\bar{G}(R)}{F(R)}\right) \int_{t}^{t_{2 i}} k(s) F(x(s)) d s \\
& \leq F(x(t))\left(1+\frac{\bar{G}(R)}{F(R)}\right) \int_{t}^{t_{2 i}} k(s) d s \tag{2.8}
\end{align*}
$$

for $t \in\left[t_{2 i-1}, t_{2 i}\right), i=1,2,3 \ldots$; that is to say

$$
\begin{equation*}
x^{\prime}(t) \leq F(x(t))\left(1+\frac{\bar{G}(R)}{F(R)}\right) \int_{t}^{t_{2 i}} k(s) d s, \quad t \in\left[t_{2 i-1}, t_{2 i}\right), i=1,2,3 \ldots \tag{2.9}
\end{equation*}
$$

It follows from 2.9 that

$$
\begin{equation*}
\frac{x^{\prime}(t)}{F(x(t))} \leq\left(1+\frac{\bar{G}(R)}{F(R)}\right) \int_{t}^{t_{2 i}} k(s) d s \leq\left(1+\frac{\bar{G}(R)}{F(R)}\right) \int_{t}^{1} k(s) d s \tag{2.10}
\end{equation*}
$$

for $t \in\left[t_{2 i-1}, t_{2 i}\right), i=1,2,3 \ldots$
On the other hand, we can choose i_{0} and $z^{\prime} \in\left(\frac{1}{n}, 1\right), z^{\prime} \leq z$ such that $z^{\prime} \in$ $\left[t_{2 i_{0}-1}, t_{2 i_{0}}\right)$ and $x\left(z^{\prime}\right)=x(z)$. Integrating (2.10) from $t_{2 i-1}$ to $t_{2 i}, i=1,2,3 \ldots i_{0}-1$ and from $t_{2 i_{0}-1}$ to z^{\prime}, we have

$$
\begin{equation*}
\int_{x\left(t_{2 i-1}\right)}^{x\left(t_{2 i}\right)} \frac{d x}{F(x)} \leq\left(1+\frac{\bar{G}(R)}{F(R)}\right) \int_{t_{2 i-1}}^{t_{2 i}} \int_{t}^{1} k(s) d s d t, \quad i=1,2,3 \ldots i_{0}-1 \tag{2.11}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{x\left(t_{2 i_{0}-1}\right)}^{x\left(z^{\prime}\right)} \frac{d x}{F(x)} \leq\left(1+\frac{\bar{G}(R)}{F(R)}\right) \int_{t_{2 i_{0}-1}}^{z^{\prime}} \int_{t}^{1} k(s) d s d t \tag{2.12}
\end{equation*}
$$

Summing 2.11 from 1 to $i_{0}-1$, we have by 2.12 and $x\left(t_{2 i}\right)=x\left(t_{2 i+1}\right)$, that

$$
\int_{b_{n}}^{x\left(z^{\prime}\right)} \frac{d x}{F(x)} \leq\left(1+\frac{\bar{G}(R)}{F(R)}\right) \int_{0}^{z^{\prime}} \int_{t}^{1} k(s) d s d t \leq\left(1+\frac{\bar{G}(R)}{F(R)}\right) \int_{0}^{z} \int_{t}^{1} k(s) d s d t
$$

Since $x(z)=x\left(z^{\prime}\right)$,

$$
\int_{b_{n}}^{x(z)} \frac{d x}{F(x)} \leq\left(1+\frac{\bar{G}(R)}{F(R)}\right) \int_{0}^{z} \int_{t}^{1} k(s) d s d t
$$

i.e, (2.6) holds. Letting $z \rightarrow t^{\prime}$ in 2.6), we have

$$
\begin{align*}
\int_{b_{n}}^{R} \frac{d x}{F(x)} & \leq\left(1+\frac{\bar{G}(R)}{F(R)}\right) \int_{0}^{t^{\prime}} \int_{t}^{1} k(s) d s d t \\
& \leq\left(1+\frac{\bar{G}(R)}{F(R)}\right) \int_{0}^{1} \int_{t}^{1} k(s) d s d t \tag{2.13}\\
& =\left(1+\frac{\bar{G}(R)}{F(R)}\right) \int_{0}^{1} s k(s) d s
\end{align*}
$$

The inequality above contradicts $\int_{1}^{R} \frac{d x}{F(x)}>\left(1+\frac{\bar{G}(R)}{F(R)}\right) \int_{0}^{1} s k(s) d s$. Hence 2.2 holds.

It follows from Lemma 2.1 and 2.2 that T_{n} has a fixed point x_{n} in C_{n}. Using x_{n} and 1 in the place of x and λ in 2.2 , we obtain easily $b_{n} \leq x_{n}(t) \leq R, t \in\left[\frac{1}{n}, 1\right]$. The proof is complete.

Lemma 2.4. For a fixed $h \in\left(0, \min \left\{\frac{1}{2}, \eta\right\}\right)$, suppose $m_{n, h}=\min \left\{x_{n}(t), t \in[h, 1]\right\}$. Then $m_{h}=\inf \left\{m_{n, h}\right\}>0$.

Proof. Since $x_{n}(t) \geq b_{n}>0$, we get $m_{h} \geq 0$. For any fixed natural numbers n $\left(n>\left[\frac{1}{\eta}\right]+1\right)$, let $t_{n} \in[h, 1]$ such that $x_{n}\left(t_{n}\right)=\min \left\{x_{n}(t), t \in[h, 1]\right\}$. If $m_{h}=0$, there exist a countable set $\left\{n_{i}\right\}$ such that

$$
\begin{equation*}
\lim _{n_{i} \rightarrow+\infty} x_{n_{i}}\left(t_{n_{i}}\right)=0 . \tag{2.14}
\end{equation*}
$$

So there exist N such that $x_{n_{i}}\left(t_{n_{i}}\right) \leq \min \left\{b(t), t \in\left[\frac{h}{2}, 1\right]\right\}, n_{i}>N$. Then we have two cases.

Case 1. There exist $n_{k} \in\left\{n_{i}\right\}, n_{k}>N$ and $t_{n_{k}}^{*} \in\left[\frac{h}{2}, h\right]$ such that $x_{n_{k}}\left(t_{n_{k}}^{*}\right) \geq$ $x_{n_{k}}\left(t_{n_{k}}\right)$. By the same argument in Lemma 2.3. we can get $t_{n_{k}}^{\prime}, t_{n_{k}}^{\prime \prime} \in\left[\frac{h}{2}, 1\right], t_{n_{k}}^{\prime}<$ $t_{n_{k}}^{\prime \prime}$ such that

$$
\begin{gather*}
x_{n_{k}}(t) \leq \min \left\{b(t), t \in\left[\frac{h}{2}, 1\right]\right\}, \quad t \in\left[t_{n_{k}}^{\prime}, t_{n_{k}}^{\prime \prime}\right], \\
x_{n_{k}}(t) \leq x_{n_{k}}\left(t_{n_{k}}^{\prime}\right), x_{n_{k}}(t) \leq x_{n_{k}}\left(t_{n_{k}}^{\prime \prime}\right), \quad t \in\left(t_{n_{k}}^{\prime}, t_{n_{k}}^{\prime \prime}\right), \tag{2.15}\\
x_{n_{k}}^{\prime \prime}(t)=-f\left(t, x_{n_{k}}(t)\right)<0, \quad t \in\left(t_{n_{k}}^{\prime}, t_{n_{k}}^{\prime \prime}\right) . \tag{2.16}
\end{gather*}
$$

Inequality 2.15 shows that $x_{n_{k}}(t)$ is concave down in $\left[t_{n_{k}}^{\prime}, t_{n_{k}}^{\prime \prime}\right]$, which contradicts (2.16).

Case 2. $x_{n_{i}}(t)<x_{n_{i}}\left(t_{n_{i}}\right), t \in\left[\frac{h}{2}, h\right]$ for any $n_{i} \in\left\{n_{i}\right\}, n_{i}>N$. And so we have

$$
\begin{equation*}
\lim _{n_{i} \rightarrow+\infty} x_{n_{i}}(t)=0, \quad t \in\left[\frac{h}{2}, h\right] \tag{2.17}
\end{equation*}
$$

On the other hand for any $t \in\left[\frac{h}{2}, h\right]$,

$$
\begin{align*}
x_{n_{i}}(t)= & \frac{2}{h} \int_{\frac{h}{2}}^{t}\left(t-\frac{h}{2}\right)(h-s) f\left(s, x_{n_{i}}(s)\right) d s \\
& +\frac{2}{h} \int_{t}^{h}\left(s-\frac{h}{2}\right)(h-t) f\left(s, x_{n_{i}}(s)\right) d s+x_{n_{i}}\left(\frac{h}{2}\right)+x_{n_{i}}(h) \tag{2.18}\\
\geq & \frac{2}{h}\left[\int_{\frac{h}{2}}^{t}\left(t-\frac{h}{2}\right)(h-s) a(s) d s+\int_{t}^{h}\left(s-\frac{h}{2}\right)(h-t) a(s) d s\right]>0
\end{align*}
$$

which contradicts 2.17 . The proof is complete.

3. Main Result

Theorem 3.1. If (S1)-(S3) hold, the three-point boundary-value problem (1.1)(1.2) has at least one positive solution.

Proof. For any natural numbers $n \geq\left[\frac{1}{\eta}+1\right]$, it follows from Lemma 2.3 that there exist $x_{n} \in C_{n}, b_{n} \leq x_{n} \leq R$ satisfying (2.1). Now we divide the proof into three steps.

Step 1. There exist a convergent subsequence of $\left\{x_{n}\right\}$ in $(0,1]$. For a natural number $k \geq \max \left\{3,\left[\frac{1}{\eta}\right]+1\right\}$, it follows from Lemma 2.4 that $0<m_{\frac{1}{k}} \leq x_{n}(t) \leq R$, $t \in\left[\frac{1}{k}, 1\right]$ for any natural numbers $n \geq\left[\frac{1}{\eta}+1\right]$; i.e., $\left\{x_{n}\right\}$ is uniformly bounded in $\left[\frac{1}{k}, 1\right]$. Since x_{n} also satisfies

$$
\begin{aligned}
x_{n}(t)= & -\int_{\frac{1}{k}}^{t}(t-s) f\left(s, x_{n}(s)\right) d s \\
& +\frac{t-\frac{1}{k}}{1-\alpha \eta-\frac{1}{k}(1-\alpha)}\left[\int_{\frac{1}{k}}^{1}(1-s) f\left(s, x_{n}(s)\right) d s-\alpha \int_{\frac{1}{k}}^{\eta}(\eta-s) f\left(s, x_{n}(s)\right) d s\right] \\
& +x_{n}\left(\frac{1}{k}\right)+\frac{\left(t-\frac{1}{k}\right)(1-\alpha)}{1-\alpha \eta-\frac{1}{k}(1-\alpha)}\left(b_{n}-x_{n}\left(\frac{1}{k}\right)\right), \quad t \in\left[\frac{1}{k}, 1\right]
\end{aligned}
$$

we have

$$
\begin{aligned}
x_{n}^{\prime}(t)= & -\int_{\frac{1}{k}}^{t} f\left(s, x_{n}(s)\right) d s+\frac{\int_{\frac{1}{k}}^{1}(1-s) f\left(s, x_{n}(s)\right) d s-\alpha \int_{\frac{1}{k}}^{\eta}(\eta-s) f\left(s, x_{n}(s)\right) d s}{1-\alpha \eta-\frac{1}{k}(1-\alpha)} \\
& +\frac{(1-\alpha)\left(b_{n}-x_{n}(t)\right)}{1-\alpha \eta-\frac{1}{k}(1-\alpha)}, \quad t \in\left[\frac{1}{k}, 1\right] .
\end{aligned}
$$

Obviously

$$
\begin{equation*}
\left|x_{n}^{\prime}(t)\right| \leq \frac{3-\eta}{1-\eta} \max \left\{|f(t, x(t))|:(t, x) \in\left[\frac{1}{k}, 1\right] \times\left[m_{\frac{1}{k}}, R\right]\right\}+\frac{2 R}{1-\eta} \tag{3.1}
\end{equation*}
$$

for $t \in\left[\frac{1}{k}, 1\right]$. It follows from inequality (3.1) that $\left\{x_{n}\right\}$ is equicontinuous in $\left[\frac{1}{k}, 1\right]$. The Ascoli-Arzela theorem guarantees that there exists a subsequence of $\left\{x_{n}(t)\right\}$ which converges uniformly on $\left[\frac{1}{k}, 1\right]$. We may choose the diagonal sequence $\left\{x_{k}^{(k)}(t)\right\}$ (see more details in [13) which converges everywhere in (0,1$]$ and it is easy to verify that $\left\{x_{k}^{(k)}(t)\right\}$ converges uniformly on any interval $[c, d] \subseteq(0,1]$. Without loss of generality, let $\left\{x_{k}^{(k)}(t)\right\}$ be $\left\{x_{n}(t)\right\}$ in the rest. Putting $x(t)=\lim _{n \rightarrow+\infty} x_{n}(t), t \in$ $(0,1]$, we have $x(t)$ is continuous in $(0,1]$ and $x(t) \geq m_{h}>0, t \in(0,1]$ by Lemma 2.4.

Step 2. $x(t)$ satisfies 1.1). Fixed $t \in(0,1]$, we may choose $h \in\left(0, \min \left\{\frac{1}{2}, \eta\right\}\right)$ such that $t \in(h, 1]$ and

$$
\begin{align*}
x_{n}(t)= & -\int_{h}^{t}(t-s) f\left(s, x_{n}(s)\right) d s \\
& +\frac{t-h}{1-\alpha \eta-h(1-\alpha)}\left[\int_{h}^{1}(1-s) f\left(s, x_{n}(s)\right) d s-\alpha \int_{h}^{\eta}(\eta-s) f\left(s, x_{n}(s)\right) d s\right] \\
& +x_{n}(h)+\frac{(t-h)(1-\alpha)}{1-\alpha \eta-h(1-\alpha)}\left(b_{n}-x_{n}(h)\right), \quad t \in(h, 1] \tag{3.2}
\end{align*}
$$

Letting $n \rightarrow+\infty$ in (3.2), we have

$$
\begin{align*}
x(t)= & -\int_{h}^{t}(t-s) f(s, x(s)) d s+\frac{t-h}{1-\alpha \eta-h(1-\alpha)} \\
& \times\left[\int_{h}^{1}(1-s) f(s, x(s)) d s-\alpha \int_{h}^{\eta}(\eta-s) f(s, x(s)) d s\right] \tag{3.3}\\
& +x(h)+\frac{(t-h)(1-\alpha)}{1-\alpha \eta-h(1-\alpha)}(-x(h)), \quad t \in(h, 1] .
\end{align*}
$$

Differentiating (3.3), we get the desired result.
Step 3. $x(t)$ satisfies (1.2). Let

$$
t_{n}=\inf \left\{t: x_{n}(t)=\left\|x_{n}\right\|, x_{n}^{\prime}(t)=0, t \in\left[\frac{1}{n}, 1\right]\right\}
$$

where $\left\|x_{n}\right\|=\max _{\frac{1}{n} \leq t \leq 1} x_{n}(t) \leq R$. Then

$$
t_{n} \in\left[\frac{1}{n}, 1\right], \quad x_{n}\left(t_{n}\right)=\left\|x_{n}\right\|, \quad x_{n}^{\prime}\left(t_{n}\right)=0
$$

Using $x_{n}(t), 1$ and t_{n} in place of $x(t), \lambda$ and t^{\prime} in Lemma 2.3 , we obtain easily by (2.13)

$$
\begin{equation*}
\int_{b_{n}}^{\left\|x_{n}\right\|} \frac{d x}{F(x)} \leq\left(1+\frac{\bar{G}(R)}{F(R)}\right) \int_{0}^{t_{n}} \int_{t}^{1} k(s) d s d t \tag{3.4}
\end{equation*}
$$

It follows from (3.4) and Lemma 2.4 that $0<a=\inf \left\{t_{n}\right\} \leq 1$. Fixed $z \in(0, a)$, then $b_{n}<x_{n}(z)<\left\|x_{n}\right\| \leq R$. By Lemma 2.3 we easily get

$$
\begin{equation*}
\int_{b_{n}}^{x_{n}(z)} \frac{d x}{F(x)} \leq\left(1+\frac{\bar{G}(R)}{F(R)}\right) \int_{0}^{z} \int_{t}^{1} k(s) d s d t, \quad z \in(0, a) \tag{3.5}
\end{equation*}
$$

Letting $n \rightarrow+\infty$ in 3.5 and noticing $b_{n} \rightarrow 0$, we have

$$
\begin{equation*}
\int_{0}^{x(z)} \frac{d x}{F(x)} \leq\left(1+\frac{\bar{G}(R)}{F(R)}\right) \int_{0}^{z} \int_{t}^{1} k(s) d s d t, \quad z \in(0, a) \tag{3.6}
\end{equation*}
$$

It follows from 3.6 that $x(0)=\lim _{z \rightarrow 0^{+}} x(z)=0$. Using 1 in place of λ in 2.3, we obtain easily

$$
\begin{equation*}
x_{n}(1)=\alpha x_{n}(\eta)+(1-\alpha) b_{n} \tag{3.7}
\end{equation*}
$$

Letting $n \rightarrow+\infty$, we have $x(1)=\alpha x(\eta)$. This complete the proof.
When $G(x) \equiv 0$ in (H3), it is easy to see that the assumption (S3) is satisfied by the decreasing property of $F(x)$. Then under the assumption $G(x) \equiv 0$ we get the following corollaries to Theorem 3.1.

Corollary 3.2. Suppose (S1), (S2) hold. Then (1.1)-(1.2) has at least one positive solution

Corollary 3.3. Suppose the assumptions of Corollary 3.2 hold. If further $f(t, \cdot)$ is non-increasing in $(0,+\infty)$ for each $t \in(0,1)$, the solution of 1.1$)-1.2$ is unique.

Proof. Suppose $x_{1}(t)$ and $x_{2}(t)$ are two solutions of 1.1$)-(1.2)$. We need to prove that $x_{1}(t) \equiv x_{2}(t), t \in[0,1]$. Let $z(t)=x_{1}(t)-x_{2}(t), t \in[0,1]$. It follows that $z(0)=0, z(1)=\alpha z(\eta)$. We first show that $x_{1}(\eta)=x_{2}(\eta)$, which implies that $x_{1}(1)=x_{2}(1)$. In fact, if it is not true, without loss of generality, we can suppose $x_{1}(\eta)>x_{2}(\eta)$. That is to say $z(\eta)>0,0<z(1)=\alpha z(\eta)<z(\eta)$. Setting $t_{1}=\max \{t \in(0, \eta), z(t)=z(1)\}$ and $t_{2}=\min \{t \in(\eta, 1), z(t)=z(1)\}$, we get

$$
z\left(t_{1}\right)=z\left(t_{2}\right)=z(1), \quad z(t)=x_{1}(t)-x_{2}(t)>z(1)>0, \quad t \in\left(t_{1}, t_{2}\right)
$$

Letting $s(t)=z(t)-z(1)$, we have that $s\left(t_{1}\right)=s\left(t_{2}\right)=0$ and $s(t)>0, t \in\left(t_{1}, t_{2}\right)$. It follows from (1.1) and the monotonicity of $f(t, \cdot)$ that $s^{\prime \prime}(t)=z^{\prime \prime}(t) \geq 0, t \in\left(t_{1}, t_{2}\right)$. An elementary form of the maximum principle implies $s(t) \leq 0$ for all $t \in\left(t_{1}, t_{2}\right)$ and hence a contradiction. Then, $x_{1}(\eta)=x_{2}(\eta)$, which also yields that $x_{1}(1)=x_{2}(1)$. That is to say $z(0)=z(\eta)=z(1)=0$.

We next claim that $x_{1}(t)=x_{2}(t), t \in(0, \eta)$. In fact, if it is not true, without loss of generality, we can get $x_{1}\left(t_{0}\right)>x_{2}\left(t_{0}\right)$ for some $t_{0} \in(0, \eta)$. Let $t_{3}=$ $\max \left\{t \in\left(0, t_{0}\right), z(t)=0\right\}, t_{4}=\min \left\{t \in\left(t_{0}, \eta\right), z(t)=0\right\}($ note $\left.z(\eta)=0)\right)$. Then $z\left(t_{3}\right)=z\left(t_{4}\right)=0$ and $z(t)>0, t \in\left(t_{3}, t_{4}\right)$. Let $s_{1}(t)=z_{1}(t)-z_{2}(t), t \in\left[t_{3}, t_{4}\right]$. Then $s_{1}(t)>0$ for all $t \in\left[t_{3}, t_{4}\right]$. On the other hand, the monotonicity of $f(t, \cdot)$ implies that $s_{1}^{\prime \prime}(t) \geq 0, t \in\left(t_{3}, t_{4}\right)$. An elementary form of the maximum principle implies $s_{1}(t) \leq 0$ for all $t \in\left(t_{3}, t_{4}\right)$ and hence a contradiction.

The same argument yields that $x_{1}(t)=x_{2}(t), t \in(\eta, 1)$. Hence we get $x_{1}(t)=$ $x_{2}(t), t \in[0,1]$. Thus the result is proved.

Example. Consider the second order singular three-point boundary-value problem

$$
\begin{gather*}
x^{\prime \prime}(t)+\frac{1}{4}\left(x^{2}(t)+\frac{1}{x^{2}(t)}-\frac{x^{3}(t)}{t^{5}}-\frac{1}{t^{2}}\right)=0, \quad 0<t<1 \tag{3.8}\\
x(0)=0, \quad x(1)=\frac{1}{3} x\left(\frac{1}{4}\right) \tag{3.9}
\end{gather*}
$$

Set $\alpha=\frac{1}{3}, \eta=\frac{1}{4}$,

$$
\begin{gathered}
f(t, x)=\frac{1}{4}\left(x^{2}+\frac{1}{x^{2}}-\frac{x^{3}}{t^{5}}-\frac{1}{t^{2}}\right), \quad k(t)=\frac{1}{4}, \quad F(x)=\frac{1}{x^{2}} \\
G(x)=x^{2}, \quad a(t)=\frac{1}{4 t^{2}}, \quad b(t)=\frac{t}{2}
\end{gathered}
$$

It is easy to prove that $f(t, x) \leq k(t)(F(x)+G(x))$ and (S1)-(S3) hold. By Theorem 3.1, the three-point boundary-value problem $\sqrt{3.8})-(3.9)$ has at least one positive solution. Moreover, if $f(t, x)=\frac{1}{x^{2}(t)}-\frac{x^{3}(t)}{t^{5}}$ in 3.8, the three-point boundaryvalue problem (3.8)-(3.9) has only one positive solution by Corollaries 3.2 and 3.3 .

References

[1] K. Deimling; Nonlinear Functional Analysis, Spinger-Verlag, New York, (1985).
[2] Patrick Habets, Fabio Zanolin Upper and lower solutions for a generalized Emden-Fowler equation, Journal of mathematical analysis and applications 181, 684-700, (1994).
[3] Bing Liu Positive solutions of second-order three-point boundary-value problems with change of sign in Banach spaces, Nonlinear Analysis 64, (2006), 1336-1355.
[4] Ruyun Ma, Donal O'Regan Nodal solutions for second-order m-point boundary-value problems with nonlinearities across several eigenvalues, Nonlinear Analysis 64, (2006), 1562-1577.
[5] Yongping Sun Optimal existence criteria for symmetric positive solutions to a three-point boundary-value problem, Nonlinear Analysis 66, (2007), 1051-1063.
[6] J. R. L. Webb Positive solutions of some three point boundary-value problems via fixed point index theory, Nonlinear Analysis 47, (2001), 4319-4332.
[7] J. R. L. Webb Remarks on positive solutions of some three point boundary-value problems, Proceedings of the fourth international conference on dynamical systems and differential equations, May 24-27, (2002), Wilimington, NC, USA.
[8] Xian Xu Three solutions for three-point boundary-value problems, Nonlinear Analysis 63, (2005), 1053-1066.
[9] Xian Xu Multiple sign-changing solutions for some m-point boundary-value problems, Electronic Journal of Differential Equations, Vol. 2004, No. 89, pp. 1-14. ISSN: 1072-6691.
[10] Xian Xu, Jingxian Sun On sign-changing solution for some three-point boundary-value problems, Nonlinear Analysis 59, (2004), 491-505.
[11] Xian Xu, Donal O'Regan, Sun Jingxian Multiplicity results for three-point boundary-value problems with a non-well-ordered upper and lower solution condition, Mathematical and Computer Modelling 45, (2007), 189-200.
[12] G. C. Yang Positive solutions of singular Dirichlet Boundary value problems with signchanging nonlinearities, Computers and Mathematics with Applications 51, (2006), 14631470.
[13] G. C. Yang Positive solutions of some second order nonlinear singular differential equations, Computers Math. Applic. 45(4/5), 605-614, (2003).

Caisheng Ji
Department of Mathematics, Shandong Normal University, Jinan 250014, China
E-mail address: jicaisheng@163.com
Baoqiang Yan
Department of Mathematics, Shandong Normal University, Jinan 250014, China
E-mail address: yanbqen@yahoo.com

[^0]: 2000 Mathematics Subject Classification. 34B10, 34B15.
 Key words and phrases. Singular three-point boundary-value problem; sign-changing;
 nonlinearity; positive solution; fixed point.
 (C) 2010 Texas State University - San Marcos.

 Submitted July 30, 2009. Published March 14, 2010.
 Supported by grants 10871120 from the fund of National Natural Science, J07WH08 from the Shandong Education Committee, and Y2008A06 from the Shandong Natural Science.

