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POSITIVE SOLUTIONS FOR SECOND-ORDER SINGULAR
THREE-POINT BOUNDARY-VALUE PROBLEMS WITH

SIGN-CHANGING NONLINEARITIES

CAISHENG JI, BAOQIANG YAN

Abstract. In this article, we study the existence and uniqueness of the pos-
itive solution for a second-order singular three-point boundary-value problem

with sign-changing nonlinearities. Our main tool is a fixed-point theorem.

1. Introduction

In this article, we consider the second-order boundary-value problem

x′′(t) + f(t, x(t)) = 0, 0 < t < 1, (1.1)

x(0) = 0, x(1) = αx(η), 0 < η < 1, 0 < α < 1. (1.2)

The singularity may appear at t = 0, x = 0 and the function f may be superlinear
at x = ∞ and change sign.

Webb [6] employed the fixed-point index for compact maps to investigate the ex-
istence of at least one positive solution for the second-order boundary-value problem

x′′(t) + g(t)f(x(t)) = 0, 0 < t < 1,

x(0) = 0, x(1) = αx(η),
(1.3)

where 0 < η < 1, 0 < αη < 1, and f0 = lim supx→0
f(x)

x , f∞ = lim infx→∞
f(x)

x
exist and g(t) > 0. Moreover, when g(t) is a sign-changing function in [0, 1] and f
is nondecreasing and without any singular points, using the fixed point theorem of
strict-set-contractions, Bing Liu [3] established the existence of at least two positive
solutions for (1.3). When g(t) > 0 and f is a given sign-changing function without
any singular points and any monotonicity, using the increasing operator theory
and approximation process, Xian Xu [8] showed at least three solutions for the
three-point boundary-value problem (1.3).

In addition, the existence of solutions of nonlinear multi-point boundary-value
problems have been studied by many other authors; the readers are referred to
[3, 4, 9, 10] and the references therein.
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Motivated by [2, 12], the purpose of this article is to examine the existence and
the uniqueness of the positive solution of (1.1)-(1.2) under the assumption that f
may be singular at t = 0, x = 0 and be superlinear at x = ∞ and change sign.
There are only a few papers considering (1.1)-(1.2) under this assumptions. We try
to fill this gap in the literature with this paper.

In this article, we use the following assumptions:
(H1) f(t, x) ∈ C((0, 1]× (0,+∞), (−∞,+∞)),
(H2) k(t), a(t), b(t) ∈ C((0, 1], (0,+∞)), tk(t) ∈ L(0, 1],
(H3) there exist F (x) ∈ C((0,+∞), (0,+∞)), G(x) ∈ C([0,+∞), [0,+∞)) such

that f(t, x) ≤ k(t)(F (x) + G(x)).
(S1) f(t, x) ≥ a(t) hold for 0 < x < b(t), x ∈ C[0, 1],
(S2) F (x) is decreasing in (0,+∞),
(S3) there exist R > 1, such that

∫ R

1
dy

F (y) · (1 + Ḡ(R)
F (R) )

−1 >
∫ 1

0
sk(s)ds, where

Ḡ(R) = maxs∈[0,R] G(s).
This paper is organized as follows. In Section 2, we give some preliminaries. In
Section 3, we obtain the existence of at least one positive solution for (1.1)-(1.2),
and show an application of our results.

2. Preliminaries

Lemma 2.1 ([1]). Let E be a Banach space, R > 0, BR = {x ∈ E : ‖x‖ ≤ R},
F : BR → E be a completely continuous operator. If x 6= λF (x) for any x ∈ E with
‖x‖ = R and 0 < λ < 1, then F has a fixed point in BR.

Let n > [ 1η + 1] be a natural number, dn = min{b(t) : t ∈ [ 1
n , 1]}, bn =

min{dn, 1
n}, Cn = {x : x ∈ C[ 1

n , 1]} with norm ‖x‖ = max{|x(t)|, 1
n ≤ t ≤ 1}.

It is easy to see that (Cn, ‖ · ‖) is a Banach space.
Inspired by [12], we define Tn as

(Tnx)(t) = bn +
∫ 1

1
n

G 1
n ,1(t, s)f(s,max{bn, x(s)})ds, x ∈ Cn, t ∈ [

1
n

, 1],

where

G 1
n ,1(t, s) =

{
G1(t, s), 1

n < η ≤ s,

G2(t, s), 1
n ≤ s ≤ η,

G1(t, s) =

{
1

1−αη−(1−α) 1
n

(1− s)(t− 1
n ), 1

n ≤ t ≤ s ≤ 1,

1
1−αη−(1−α) 1

n

[α(t− s)(η − 1
n )− (t− 1)(s− 1

n )], η ≤ s ≤ t ≤ 1,

G2(t, s) =


(1−αη)(t− 1

n )−s(1−α)(t− 1
n )

1−αη−(1−α) 1
n

, 1
n ≤ t ≤ s ≤ 1,

(1−αη)(s− 1
n )−t(1−α)(s− 1

n )

1−αη−(1−α) 1
n

, 1
n ≤ s ≤ t ≤ 1,

and G 1
n ,1(t, s) is Green’s function to the boundary-value problem

x′′(t) = 0,
1
n

< t < 1,

x(
1
n

) = 0, x(1) = αx(η), 0 < α < 1, 0 < η < 1.

By a standard argument we have the following result; see for example [7].
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Lemma 2.2. The operator Tn is completely continuous from Cn to Cn.

Lemma 2.3. There exist xn ∈ Cn, bn ≤ xn(t) ≤ R for t ∈ [ 1
n , 1] such that

xn(t) = bn +
∫ 1

1
n

G 1
n ,1(t, s)f(s, xn(s))ds, t ∈ [

1
n

, 1]. (2.1)

Proof. We prove that

x(t) 6= λ(Tnx)(t) = λbn + λ

∫ 1

1
n

G 1
n ,1(t, s)f(s,max{bn, x(s)})ds, t ∈ [

1
n

, 1], (2.2)

for any ‖x‖ = R and λ ∈ (0, 1). In fact, if (2.2) is not true, there exist x ∈ Cn with
‖x‖ = R and 0 < λ < 1 such that

x(t) = λ(Tnx)(t) = λbn + λ

∫ 1

1
n

G 1
n ,1(t, s)f(s,max{bn, x(s)})ds, t ∈ [

1
n

, 1]. (2.3)

It is easy to see that x( 1
n ) = λbn, x(1)− αx(η) = (1− α)λbn.

We first claim that x(t) ≥ λbn for any t ∈ [ 1
n , 1]. In fact if x(η) < λbn, we have

x(1) = λbn+αx(η)−αλbn < λbn and x(η) < x(1). Since x( 1
n ) = λbn > x(1), we can

get a point t1 ∈ ( 1
n , η) such that x(t1) = x(1). Let γ = sup{t1 : t1 ∈ ( 1

n , η), x(t1) =
x(1)}. It follows that x(γ) = x(1) and x(t) < x(γ) = x(1), t ∈ (γ, η). Since
x(η) < x(1) < λbn, we have two cases:
Case (1). There exist t′1 ∈ (η, 1) such that x(1) ≤ x(t′1). and
Case (2). x(t) < x(1) for all t ∈ (η, 1).

In case (1), we may get a point t2 ∈ (η, t′1) such that x(t2) = x(1). Setting
β = inf{t2 : t2 ∈ (η, 1), x(t2) = x(1)}, we get x(β) = x(1) and x(t) < x(β) =
x(1), t ∈ (η, β). In case (2), setting β = 1, we also get x(β) = x(1) and x(t) <
x(β) = x(1), t ∈ (η, β). Hence, there exist an interval [γ, β] ⊆ ( 1

n , 1](γ < β) such
that

x(γ) = x(β) < λbn, x(t) < x(γ), x(t) < x(β), t ∈ (γ, β). (2.4)
By (2.3) and (S1), we have x′′(t) = −λf(t, bn) < 0, t ∈ [γ, β] and x(t) is concave
down on [γ, β], which contradicts (2.4). Hence x(η) ≥ λbn, and then x(1) ≥
λbn, x(1) ≤ x(η). If there exist t

′

2 ∈ ( 1
n , η) such that x(t

′

2) < λbn, a similar argument
as before yields an interval [γ′, β′] ⊆ [ 1

n , η](γ′ < β′), such that

x(t) < x(γ′), x(t) < x(β′), t ∈ (γ′, β′), x(γ′) ≤ λbn, x(β′) ≤ λbn. (2.5)

It follows from (2.3) and (S1) that x′′(t) = −λf(t, bn) < 0, t ∈ [γ′, β′] and x(t) is
concave down on [γ′, β′], which contradicts (2.5). So we have x(t) ≥ λbn, t ∈ [ 1

n , η].
By the same argument used for t ∈ [ 1

n , η], we can easily show that x(t) ≥ λbn, t ∈
[η, 1].

Next we claim that: for any z ∈ ( 1
n , 1), if bn < x(z) < R, we have∫ x(z)

bn

dx

F (x)
≤

(
1 +

Ḡ(R)
F (R)

) ∫ z

0

∫ 1

t

k(s) ds dt. (2.6)

Since x( 1
n ) = λbn < R, x(1) ≤ x(η), there exist t∗ ∈ ( 1

n , 1) such that x(t∗) = R,
x′(t∗) = 0. Setting t′ = inf{t∗ : t∗ ∈ ( 1

n , 1), x′(t∗) = 0, x(t∗) = ‖x‖ = R}, we obtain
t′ ∈ ( 1

n , 1), x′(t′) = 0, x(t′) = ‖x‖ = R. Obviously there exist t′′ ∈ ( 1
n , t′) such that

x(t′′) = bn. Furthermore we get a countable set {ti} of ( 1
n , 1) such that

(1) t′′ = t1 < t2 ≤ t3 < t4 ≤ t5 < . . . ≤ t2m−1 < t2m ≤ . . . < 1, t2m → t′,



4 C. JI, B. YAN EJDE-2010/38

(2) x(t1) = bn, x(t2i) = x(t2i+1), x′(t2i) = 0, i = 1, 2, 3 . . .,
(3) x(t) is strictly increasing in [t2i−1, t2i], i = 1, 2, 3 . . . (if x(t) is strictly

increasing in [t′′, t′], put m = 1; i.e, [t1, t2] = [t′′, t′]).

Differentiating (2.3) and using the assumptions, we obtain easily

−x′′(t) = λf(t, x(t)) ≤ λk(t)(F (x(t)) + G(x(t)))

= λk(t)F (x(t))(1 +
G(x(t))
F (x(t))

)

< k(t)F (x(t))(1 +
Ḡ(R)

F (x(t))
)

≤ k(t)F (x(t))(1 +
Ḡ(R)
F (R)

), t ∈ [t2i−1, t2i), i = 1, 2, 3 . . . .

(2.7)

Integrating (2.7) from t to t2i, we have by the decreasing property of F (x),

−
∫ t2i

t

x′′(s)ds ≤ (1 +
Ḡ(R)
F (R)

)
∫ t2i

t

k(s)F (x(s))ds

≤ F (x(t))(1 +
Ḡ(R)
F (R)

)
∫ t2i

t

k(s)ds,

(2.8)

for t ∈ [t2i−1, t2i), i = 1, 2, 3 . . .; that is to say

x′(t) ≤ F (x(t))(1 +
Ḡ(R)
F (R)

)
∫ t2i

t

k(s)ds, t ∈ [t2i−1, t2i), i = 1, 2, 3 . . . . (2.9)

It follows from (2.9) that

x′(t)
F (x(t))

≤ (1 +
Ḡ(R)
F (R)

)
∫ t2i

t

k(s)ds ≤ (1 +
Ḡ(R)
F (R)

)
∫ 1

t

k(s)ds, (2.10)

for t ∈ [t2i−1, t2i), i = 1, 2, 3 . . ..
On the other hand, we can choose i0 and z′ ∈ ( 1

n , 1), z′ ≤ z such that z′ ∈
[t2i0−1, t2i0) and x(z′) = x(z). Integrating (2.10) from t2i−1 to t2i, i = 1, 2, 3...i0−1
and from t2i0−1 to z′, we have∫ x(t2i)

x(t2i−1)

dx

F (x)
≤ (1 +

Ḡ(R)
F (R)

)
∫ t2i

t2i−1

∫ 1

t

k(s) ds dt, i = 1, 2, 3 . . . i0 − 1, (2.11)

and ∫ x(z′)

x(t2i0−1)

dx

F (x)
≤ (1 +

Ḡ(R)
F (R)

)
∫ z′

t2i0−1

∫ 1

t

k(s) ds dt. (2.12)

Summing (2.11) from 1 to i0 − 1, we have by (2.12) and x(t2i) = x(t2i+1), that∫ x(z′)

bn

dx

F (x)
≤ (1 +

Ḡ(R)
F (R)

)
∫ z′

0

∫ 1

t

k(s) ds dt ≤ (1 +
Ḡ(R)
F (R)

)
∫ z

0

∫ 1

t

k(s) ds dt.

Since x(z) = x(z′), ∫ x(z)

bn

dx

F (x)
≤ (1 +

Ḡ(R)
F (R)

)
∫ z

0

∫ 1

t

k(s) ds dt;
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i.e, (2.6) holds. Letting z → t′ in (2.6), we have∫ R

bn

dx

F (x)
≤ (1 +

Ḡ(R)
F (R)

)
∫ t′

0

∫ 1

t

k(s) ds dt

≤ (1 +
Ḡ(R)
F (R)

)
∫ 1

0

∫ 1

t

k(s) ds dt

= (1 +
Ḡ(R)
F (R)

)
∫ 1

0

sk(s)ds.

(2.13)

The inequality above contradicts
∫ R

1
dx

F (x) > (1 + Ḡ(R)
F (R) )

∫ 1

0
sk(s)ds. Hence (2.2)

holds.
It follows from Lemma 2.1 and (2.2) that Tn has a fixed point xn in Cn. Using

xn and 1 in the place of x and λ in (2.2), we obtain easily bn ≤ xn(t) ≤ R, t ∈ [ 1
n , 1].

The proof is complete. �

Lemma 2.4. For a fixed h ∈ (0,min{ 1
2 , η}), suppose mn,h = min{xn(t), t ∈ [h, 1]}.

Then mh = inf{mn,h} > 0.

Proof. Since xn(t) ≥ bn > 0, we get mh ≥ 0. For any fixed natural numbers n
(n > [ 1η ] + 1), let tn ∈ [h, 1] such that xn(tn) = min{xn(t), t ∈ [h, 1]}. If mh = 0,
there exist a countable set {ni} such that

lim
ni→+∞

xni
(tni

) = 0. (2.14)

So there exist N such that xni(tni) ≤ min{b(t), t ∈ [h
2 , 1]}, ni > N . Then we have

two cases.
Case 1. There exist nk ∈ {ni}, nk > N and t∗nk

∈ [h
2 , h] such that xnk

(t∗nk
) ≥

xnk
(tnk

). By the same argument in Lemma 2.3, we can get t′nk
, t′′nk

∈ [h
2 , 1], t′nk

<
t′′nk

such that

xnk
(t) ≤ min{b(t), t ∈ [

h

2
, 1]}, t ∈ [t′nk

, t′′nk
],

xnk
(t) ≤ xnk

(t′nk
), xnk

(t) ≤ xnk
(t′′nk

), t ∈ (t′nk
, t′′nk

), (2.15)

x′′nk
(t) = −f(t, xnk

(t)) < 0, t ∈ (t′nk
, t′′nk

). (2.16)

Inequality (2.15) shows that xnk
(t) is concave down in [t′nk

, t′′nk
], which contradicts

(2.16).
Case 2. xni

(t) < xni
(tni

), t ∈ [h
2 , h] for any ni ∈ {ni}, ni > N . And so we have

lim
ni→+∞

xni
(t) = 0, t ∈ [

h

2
, h]. (2.17)

On the other hand for any t ∈ [h
2 , h],

xni(t) =
2
h

∫ t

h
2

(t− h

2
)(h− s)f(s, xni(s))ds

+
2
h

∫ h

t

(s− h

2
)(h− t)f(s, xni(s))ds + xni(

h

2
) + xni(h)

≥ 2
h

[
∫ t

h
2

(t− h

2
)(h− s)a(s)ds +

∫ h

t

(s− h

2
)(h− t)a(s)ds] > 0,

(2.18)
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which contradicts (2.17). The proof is complete. �

3. Main Result

Theorem 3.1. If (S1)–(S3) hold, the three-point boundary-value problem (1.1)-
(1.2) has at least one positive solution.

Proof. For any natural numbers n ≥ [ 1η + 1], it follows from Lemma 2.3 that there
exist xn ∈ Cn, bn ≤ xn ≤ R satisfying (2.1). Now we divide the proof into three
steps.

Step 1. There exist a convergent subsequence of {xn} in (0,1]. For a natural
number k ≥ max{3, [ 1η ] + 1}, it follows from Lemma 2.4 that 0 < m 1

k
≤ xn(t) ≤ R,

t ∈ [ 1
k , 1] for any natural numbers n ≥ [ 1η + 1]; i.e., {xn} is uniformly bounded in

[ 1
k , 1]. Since xn also satisfies

xn(t) = −
∫ t

1
k

(t− s)f(s, xn(s))ds

+
t− 1

k

1− αη − 1
k (1− α)

[
∫ 1

1
k

(1− s)f(s, xn(s))ds− α

∫ η

1
k

(η − s)f(s, xn(s))ds]

+ xn(
1
k

) +
(t− 1

k )(1− α)
1− αη − 1

k (1− α)
(bn − xn(

1
k

)), t ∈ [
1
k

, 1],

we have

x′n(t) = −
∫ t

1
k

f(s, xn(s))ds +

∫ 1
1
k
(1− s)f(s, xn(s))ds− α

∫ η
1
k
(η − s)f(s, xn(s))ds

1− αη − 1
k (1− α)

+
(1− α)(bn − xn(t))
1− αη − 1

k (1− α)
, t ∈ [

1
k

, 1].

Obviously

|x′n(t)| ≤ 3− η

1− η
max{|f(t, x(t))| : (t, x) ∈ [

1
k

, 1]× [m 1
k
, R]}+

2R

1− η
, (3.1)

for t ∈ [ 1
k , 1]. It follows from inequality (3.1) that {xn} is equicontinuous in [ 1

k , 1].
The Ascoli-Arzela theorem guarantees that there exists a subsequence of {xn(t)}
which converges uniformly on [ 1

k , 1]. We may choose the diagonal sequence {x(k)
k (t)}

(see more details in [13]) which converges everywhere in (0, 1] and it is easy to verify
that {x(k)

k (t)} converges uniformly on any interval [c, d] ⊆ (0, 1]. Without loss of
generality, let {x(k)

k (t)} be {xn(t)} in the rest. Putting x(t) = limn→+∞ xn(t), t ∈
(0, 1], we have x(t) is continuous in (0, 1] and x(t) ≥ mh > 0, t ∈ (0, 1] by Lemma
2.4.
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Step 2. x(t) satisfies (1.1). Fixed t ∈ (0, 1], we may choose h ∈ (0,min{ 1
2 , η})

such that t ∈ (h, 1] and

xn(t) = −
∫ t

h

(t− s)f(s, xn(s))ds

+
t− h

1− αη − h(1− α)
[
∫ 1

h

(1− s)f(s, xn(s))ds− α

∫ η

h

(η − s)f(s, xn(s))ds]

+ xn(h) +
(t− h)(1− α)

1− αη − h(1− α)
(bn − xn(h)), t ∈ (h, 1].

(3.2)
Letting n → +∞ in (3.2), we have

x(t) = −
∫ t

h

(t− s)f(s, x(s))ds +
t− h

1− αη − h(1− α)

×
[ ∫ 1

h

(1− s)f(s, x(s))ds− α

∫ η

h

(η − s)f(s, x(s))ds
]

+ x(h) +
(t− h)(1− α)

1− αη − h(1− α)
(−x(h)), t ∈ (h, 1].

(3.3)

Differentiating (3.3), we get the desired result.
Step 3. x(t) satisfies (1.2). Let

tn = inf{t : xn(t) = ‖xn‖, x′n(t) = 0, t ∈ [
1
n

, 1]},

where ‖xn‖ = max 1
n≤t≤1 xn(t) ≤ R. Then

tn ∈ [
1
n

, 1], xn(tn) = ‖xn‖, x′n(tn) = 0.

Using xn(t), 1 and tn in place of x(t), λ and t′ in Lemma 2.3, we obtain easily by
(2.13) ∫ ‖xn‖

bn

dx

F (x)
≤ (1 +

Ḡ(R)
F (R)

)
∫ tn

0

∫ 1

t

k(s) ds dt. (3.4)

It follows from (3.4) and Lemma 2.4 that 0 < a = inf{tn} ≤ 1. Fixed z ∈ (0, a),
then bn < xn(z) < ‖xn‖ ≤ R. By Lemma 2.3 we easily get∫ xn(z)

bn

dx

F (x)
≤ (1 +

Ḡ(R)
F (R)

)
∫ z

0

∫ 1

t

k(s) ds dt, z ∈ (0, a). (3.5)

Letting n → +∞ in (3.5) and noticing bn → 0, we have∫ x(z)

0

dx

F (x)
≤ (1 +

Ḡ(R)
F (R)

)
∫ z

0

∫ 1

t

k(s) ds dt, z ∈ (0, a). (3.6)

It follows from (3.6) that x(0) = limz→0+ x(z) = 0. Using 1 in place of λ in (2.3),
we obtain easily

xn(1) = αxn(η) + (1− α)bn. (3.7)
Letting n → +∞, we have x(1) = αx(η). This complete the proof. �

When G(x) ≡ 0 in (H3), it is easy to see that the assumption (S3) is satisfied by
the decreasing property of F (x). Then under the assumption G(x) ≡ 0 we get the
following corollaries to Theorem 3.1.
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Corollary 3.2. Suppose (S1), (S2) hold. Then (1.1)-(1.2) has at least one positive
solution

Corollary 3.3. Suppose the assumptions of Corollary 3.2 hold. If further f(t, ·) is
non-increasing in (0,+∞) for each t ∈ (0, 1), the solution of (1.1)-(1.2) is unique.

Proof. Suppose x1(t) and x2(t) are two solutions of (1.1)-(1.2). We need to prove
that x1(t) ≡ x2(t), t ∈ [0, 1]. Let z(t) = x1(t) − x2(t), t ∈ [0, 1]. It follows that
z(0) = 0, z(1) = αz(η). We first show that x1(η) = x2(η), which implies that
x1(1) = x2(1). In fact, if it is not true, without loss of generality, we can suppose
x1(η) > x2(η). That is to say z(η) > 0, 0 < z(1) = αz(η) < z(η). Setting
t1 = max{t ∈ (0, η), z(t) = z(1)} and t2 = min{t ∈ (η, 1), z(t) = z(1)}, we get

z(t1) = z(t2) = z(1), z(t) = x1(t)− x2(t) > z(1) > 0, t ∈ (t1, t2).

Letting s(t) = z(t)−z(1), we have that s(t1) = s(t2) = 0 and s(t) > 0, t ∈ (t1, t2). It
follows from (1.1) and the monotonicity of f(t, ·) that s′′(t) = z′′(t) ≥ 0, t ∈ (t1, t2).
An elementary form of the maximum principle implies s(t) ≤ 0 for all t ∈ (t1, t2) and
hence a contradiction. Then, x1(η) = x2(η), which also yields that x1(1) = x2(1).
That is to say z(0) = z(η) = z(1) = 0.

We next claim that x1(t) = x2(t), t ∈ (0, η). In fact, if it is not true, without
loss of generality, we can get x1(t0) > x2(t0) for some t0 ∈ (0, η). Let t3 =
max{t ∈ (0, t0), z(t) = 0}, t4 = min{t ∈ (t0, η), z(t) = 0}(note z(η) = 0)). Then
z(t3) = z(t4) = 0 and z(t) > 0, t ∈ (t3, t4). Let s1(t) = z1(t) − z2(t), t ∈ [t3, t4].
Then s1(t) > 0 for all t ∈ [t3, t4]. On the other hand, the monotonicity of f(t, ·)
implies that s′′1(t) ≥ 0, t ∈ (t3, t4). An elementary form of the maximum principle
implies s1(t) ≤ 0 for all t ∈ (t3, t4) and hence a contradiction.

The same argument yields that x1(t) = x2(t), t ∈ (η, 1). Hence we get x1(t) =
x2(t), t ∈ [0, 1]. Thus the result is proved. �

Example. Consider the second order singular three-point boundary-value problem

x′′(t) +
1
4
(x2(t) +

1
x2(t)

− x3(t)
t5

− 1
t2

) = 0, 0 < t < 1, (3.8)

x(0) = 0, x(1) =
1
3
x(

1
4
). (3.9)

Set α = 1
3 , η = 1

4 ,

f(t, x) =
1
4
(x2 +

1
x2

− x3

t5
− 1

t2
), k(t) =

1
4
, F (x) =

1
x2

,

G(x) = x2, a(t) =
1

4t2
, b(t) =

t

2
.

It is easy to prove that f(t, x) ≤ k(t)(F (x)+G(x)) and (S1)–(S3) hold. By Theorem
3.1, the three-point boundary-value problem (3.8)-(3.9) has at least one positive
solution. Moreover, if f(t, x) = 1

x2(t) −
x3(t)

t5 in (3.8), the three-point boundary-
value problem (3.8)-(3.9) has only one positive solution by Corollaries 3.2 and 3.3.
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