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STOCHASTIC STABILITY OF COHEN-GROSSBERG NEURAL
NETWORKS WITH UNBOUNDED DISTRIBUTED DELAYS

PING CHEN, CHUANGXIA HUANG, XIAOLIN LIANG

Abstract. In this article, we consider a model that describes the dynam-
ics of Cohen-Grossberg neural networks with unbounded distributed delays,

whose state variable are governed by stochastic non-linear integro-differential

equations. Without assuming the smoothness, monotonicity and bounded-
ness of the activation functions, by constructing suitable Lyapunov functional,

employing the semi-martingale convergence theorem and some inequality, we

obtain some sufficient criteria to check the almost exponential stability of net-
works.

1. Introduction

Cohen-Grossberg neural networks (CGNN) were first introduced by Cohen and
Grossberg [10] in 1983 and soon the class of networks have been the subject of ex-
tensive investigation because of their many important applications, such as patter
recognition, associative memory and combinatorial optimization, etc. Especially,
CGNN with delays have attracted many scientific and technical works due to their
applications for solving a number of problems in various scientific disciplines, such
application heavily depend on the dynamic behave of networks [29], thus, the anal-
ysis of the dynamical behaviors such as stability is a necessary step for practical
design of neural networks. To date, many important results on the stability have
been reported in the literature, see e.g [2, 3, 4, 6, 12, 14, 18, 19, 23, 24, 26, 27] and
reference therein. We refer to Cao and Liang [3] for the mathematical model of
CGNN that consists of n (n > 1) interconnected neighboring cells whose dynamical
behavior are described by

dxi(t)
dt

= −hi(xi(t))[ci(xi(t))−
n∑

j=1

aijfj(xj(t))−
n∑

j=1

bijfj(xj(t− τij))], (1.1)

where i = 1, 2 . . . , n; xi(t) denotes the state variable associated with the ith neuron
at time t; hi(·) represents an amplification function; ci(·) is an appropriately be-
haved function; A = (aij)n×n and B = (bij)n×n weight the strength of the jth unit
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on the ith unit at time t; fj(·) denotes a non-linear output function, τij corresponds
to the time delay required in processing and transmitting a signal from the jth cell
to the ith cell.

In formulating the network model (1.1), the delays are assumed to be discrete,
however, just as is pointed out in [5], constant fixed delays in the models of delayed
feedback systems serve as a good approximation in simple circuits consisting of a
small number of cells, but neural networks usually have a spatial extent due to the
presence of the presence of an amount of parallel pathways with variety of axon
sizes and lengths. Therefore, there will be a distribution of conduction velocities
along these pathways and it is of significant importance to consider continuously
distributed delays to the neural networks (see [7, 9, 22, 30]). Then model (1.1) can
be modified as a system of integro-differential equations of the from

dxi(t)
dt

= −hi(xi(t))[ci(xi(t))−
n∑

j=1

aijfj(xj(t))−
n∑

j=1

bijfj(
∫ t

−∞
Kij(t− s)xj(s)ds)]

(1.2)
Which for convenience can be put in the form

dxi(t)
dt

= −hi(xi(t))[ci(xi(t))−
n∑

j=1

aijfj(xj(t))−
n∑

j=1

bijfj(
∫ +∞

0

Kij(s)xj(t−s)ds)]

(1.3)
With initial values given by xi(s) = φi(s) for s ∈ (−∞, 0], where each φi(·) is
bounded and continuous on (−∞, 0].

Just as is pointed out by Haykin [13], in real nervous systems and in the imple-
mentation of artificial neural networks, noise is unavoidable and should be taken
into consideration in modelling. Under the effect of the noise, the trajectory of
system becomes a stochastic process. Moreover, it was realized that CGNN could
be stabilized or destabilized by certain stochastic input [1, 20]. Therefore it is
of significant importance to consider stochastic effects to the stability of delayed
neural networks, and the existing literature on theoretical studies of stochastic
CGNN is predominantly concerned with constant fixed delay, time-varying de-
lays and bounded distributed delays [9, 11, 15, 16, 17, 21, 25, 28]. To the best
our knowledge, few authors discuss almost sure exponential stability of stochastic
Cohen-Grossberg neural networks with unbounded distributed delays.

Motivated by the above discussions, in this paper, we investigate almost sure ex-
ponential stability of stochastic Cohen-Grossberg neural networks with unbounded
distributed delays. By the following stochastic nonlinear integro-differential equa-
tions

dxi(t) = −hi(xi(t))[ci(xi(t))−
n∑

j=1

aijfj(xj(t))

−
n∑

j=1

bijfj(
∫ +∞

0

Kij(s)xj(t− s)ds)]dt +
n∑

j=1

σij(xj(t))dωj(t),

(1.4)

where t ≥ 0, σ(·) = (σij(·))n×n is the diffusion coefficient matrix ,and ω(t) =
(ω1(t), . . . , ωn(t))T is an n-dimensional Brownian motion defined on a complete
probability space (Ω,F ,P) with a natural filtration {Ft}t≥0.
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2. Preliminaries

Let C = C((−∞, 0], Rn) be the Banach space of continuous functions which map
into Rn with the topology of uniform convergence. For x(t) = (x1(t), . . . , xn(t))T in
Rn, we define ‖x(t)‖ = (

∑n
i=1 |xi(t)|2)1/2. For ϕ ∈ C, define ‖ϕ‖ = (

∑n
i=1 |ϕi|2)1/2,

where ‖ϕ‖ = sup−∞≤s≤0{‖ϕ(s)‖}.
System (1.4) can be rewritten in the vector form

dx(t) = −H(x(t))[C(x(t))−AF (x(t))

−BF (
∫ +∞

0

K(s)x(t− s)ds)]dt + σ(x(t))dω(t)
(2.1)

where x(t) = (x1(t), . . . , xn(t))T , H(x(t)) = diag(h1(x1(t)), . . . , hn(xn(t))),

A = (aij)n×n, B = (bij)n×n, C(x(t)) = (c1(x1(t)), . . . , cn(xn(t)))T ,

F (x(t)) = (f1(x1(t)), . . . , fn(xn(t)))T , K(s) = (kij(s))n×n,

σ(x(t)) = (σij(xj(t)))n×n.

The initial conditions for (2.1) are x(s) = ϕ(s),−∞ ≤ s ≤ 0, ϕ ∈ L2
F0

((−∞, 0], Rn),
here L2

F0
((−∞, 0], Rn) is Rn-valued stochastic process ϕ(s),−∞ ≤ s ≤ 0, ϕ(s) is

F0-measurable,
∫ 0

−∞E|ϕ(s)|2ds < ∞.
Let C2,1(Rn × R;R+) denote the family of all nonnegative functions V (x, t)

on Rn × R which are twice differentiable in x and once differentiable in t. If
V ∈ C2,1(Rn ×R;R+), define an operator LV associated with (2.1) as

LV (x, t) = Vt(x, t) + Vx(x, t){−H(x(t))[C(x(t))−AF (x(t))

−BF (
∫ +∞

0

K(s)x(t− s)ds)]}dt +
1
2

trace[σT Vxx(x, t)σ]

where Vt(x, t) = ∂V (x,t)
∂t ,

Vx(x, t) =
(

∂V (x, t)
∂x1

, . . . ,
∂V (x, t)

∂xn

)
, Vxx(x, t) =

(
∂2V (x, t)
∂xi∂xj

)
n×n

.

To establish the main results of the model given in (2.1), some of the following
assumptions will apply:

(H1) Each function hi(x) is bounded, positive and locally Lipschitz continuous;
thus, there exist two positive constants hi and hi, such that 0 < hi ≤
hi(x) ≤ hi < +∞ for all x ∈ R and i = 1, 2, . . . , n.

(H2) each i = 1, 2, . . . , n, there exist constant αi > 0, such that xi(t)ci(xi(t)) ≥
αix

2
i (t);

(H3) Both fj(·) and σij(·) are globally Lipschitz, and there exist positive con-
stants βj , Lij , i, j = 1, 2, . . . , n, such that

|fj(u)− fj(v)| ≤ βj |u− v| : |σij(u)− σij(v)| ≤ Lij |u− v|,
for any u, v ∈ R. we also assure that fj(0) = σij(0) = 0.

(H4) The delay kernels Kij , i, j,= 1, 2, . . . , n are real-valued nonnegative piece-
wise continuous defined on [0,+∞) and satisfy∫ +∞

0

Kij(s)ds = 1 and

∫ +∞

0

Kij(s)eµsds < +∞

for some positive constant µ.
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We notice that the activation functions fj(·) do not have to be differentiable and
monotonically increasing, which including some kinds of typical functions widely
used for CGNN designs.This implies that (2.1) has a unique global solution on t ≥ 0
for the initial conditions [1]. Clearly, (2.1) admits an equilibrium solution x(t) = 0.

Definition 2.1 ([20]). The trivial solution of (2.1) is said to be almost surely
exponentially stable if for almost all sample paths of the solution x(t), we have

lim sup
t→∞

1
t

log ‖x(t)‖ < 0.

Lemma 2.2 (Semi-martingale convergence theorem [20]). Let A(t) and U(t) be
two continuous adapted increasing process on t ≥ 0 with M(0) = 0 a.s. Let ξ be a
nonnegative F0-measurable random variable. Define

X(t) = ξ + A(t)− U(t) + M(t), for t ≥ 0,

If X(t) is nonnegative, then

{ lim
t→∞

A(t) < ∞} ⊂ { lim
t→∞

X(t) < ∞} ∩ { lim
t→∞

U(t) < ∞} a.s.,

where B ⊂ D a.s. means P (S ∩Dc) = 0. In particular, If

lim
t→∞

U(t) < ∞ a.s.,

then for almost all ω ∈ Ω

lim
t→∞

X(t) < ∞ and lim
t→∞

U(t) < ∞,

that is both X(t) and U(t) converge to finite random variables.

3. Main Results

Theorem 3.1. Under assumptions (H1)–(H4), if there exist a set of positive con-
stants qi, qij , pij , rij , q

∗
ij , p

∗
ij , r

∗
ij such that for i = 1, 2, . . . , n,

2hiαiqi −
n∑

j=1

[qih
2pij

i |aij |2qij β
2rij

j + qjh
2−2pji

j |aji|2−2qjiβ
2−2rji

i

+ qih
2p∗ij

i |bij |2q∗ij β
2r∗ij

j + qjh
2−2p∗ji

j |bji|2−2q∗jiβ
2−2r∗ji

i + qjL
2
ji] > 0,

(3.1)

then the trivial solution of system (2.1) is almost surely exponentially stable.

Proof. From assumption (H4), we can choose a constant 0 < λ < µ, such that∫ +∞

0

Kji(s)eλsds ≤
∫ +∞

0

Kji(s)eµsds (3.2)

and for i = 1, 2, . . . , n,

2hiαiqi − λqi −
n∑

j=1

[qih
2pij

i |aij |2qij β
2rij

j + qjh
2−2pji

j |aji|2−2qjiβ
2−2rji

i

+ qih
2p∗ij

i |bij |2q∗ij β
2r∗ij

j + qjh
2−2p∗ji

j |bji|2−2q∗jiβ
2−2r∗ji

i

∫ +∞

0

Kji(s)eλsds + qjL
2
ji] > 0,

(3.3)
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Consider the Lyapunov functional

V (x(t), t) = eλt
n∑

i=1

qix
2
i (t) +

n∑
i=1

n∑
j=1

qih
2−2p∗ij

i |bij |2−2q∗ij β
2−2r∗ij

j

×
∫ +∞

0

[
Kij(s)eλs

∫ t

t−s

eλζx2
j (ζ)dζ

]
ds.

(3.4)

Then the operator LV (x, t) associated with system (2.1) has the form

LV (x(t), t)

= λeλt
n∑

i=1

qix
2
i (t)

+
n∑

i=1

n∑
j=1

qih
2−2p∗ij

i |bij |2−2q∗ij β
2−2r∗ij

j

∫ +∞

0

[Kij(s)eλs(eλtx2
j (t)

− eλ(t−s)x2
j (t− s))]ds + 2eλt

n∑
i=1

qixi(t){−hi(xi(t))[ci(xi(t))

−
n∑

j=1

aijfj(xj(t))−
n∑

j=1

bijfj(
∫ +∞

0

Kijxj(t− s)ds)]}

+ eλt
n∑

i=1

n∑
j=1

qiσ
2
ij(xj(t))

≤ λeλt
n∑

i=1

qix
2
i (t)

+ eλt
n∑

i=1

n∑
j=1

qjh
2−2p∗ji

j |bji|2−2q∗jiβ
2−2r∗ji

i x2
i (t)

∫ +∞

0

Kji(s)eλsds

− eλt
n∑

i=1

n∑
j=1

qih
2−2p∗ij

i |bij |2−2q∗ij β
2−2r∗ij

j

∫ +∞

0

Kij(s)x2
j (t− s)ds

− 2eλt
n∑

i=1

qihi|xi(t)|2αi + 2eλt
n∑

i=1

qi[
n∑

j=1

hi|aij |βj |xj(t)||xi(t)|

+
n∑

j=1

hi|bij |βj(
∫ +∞

0

Kij(s)xj(t− s)xi(t)ds)]

+ eλt
n∑

i=1

n∑
j=1

qjσ
2
ji(xi(t))

≤ λeλt
n∑

i=1

qix
2
i (t)

+ eλt
n∑

i=1

n∑
j=1

qjh
2−2p∗ji

j |bji|2−2q∗jiβ
2−2r∗ji

i x2
i (t)

∫ +∞

0

Kji(s)eλsds
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− eλt
n∑

i=1

n∑
j=1

qih
2−2p∗ij

i |bij |2−2q∗ij β
2−2r∗ij

j

∫ +∞

0

Kij(s)x2
j (t− s)ds

− 2eλt
n∑

i=1

qihi|xi(t)|2αi

+ 2eλt
n∑

i=1

n∑
j=1

qih
pij

i |aij |qij β
rij

j |xi(t)|h
1−pij

i |aij |1−qij β
1−rij

j |xj(t)|

+ 2eλt
n∑

i=1

n∑
j=1

qih
p∗ij

i |bij |q
∗
ij β

r∗ij

j h
1−p∗ij

i |bij |1−q∗ij β
1−r∗ij

j

∫ +∞

0

Kij(s)xj(t− s)xi(t)ds

+ eλt
n∑

i=1

n∑
j=1

qjL
2
ji(xi(t))2

≤ λeλt
n∑

i=1

qix
2
i (t)

+ eλt
n∑

i=1

n∑
j=1

qjh
2−2p∗ji

j |bji|2−2q∗jiβ
2−2r∗ji

i x2
i (t)

∫ +∞

0

Kji(s)eλsds

− eλt
n∑

i=1

n∑
j=1

qih
2−2p∗ij

i |bij |2−2q∗ij β
2−2r∗ij

j

∫ +∞

0

Kij(s)x2
j (t− s)ds

− 2eλt
n∑

i=1

qihi|xi(t)|2αi + eλt
n∑

i=1

n∑
j=1

qih
2pij

i |aij |2qij β
2rij

j |xi(t)|2

+ eλt
n∑

i=1

n∑
j=1

qjh
2−2pji

j |aji|2−2qjiβ
2−2rji

i |xj(t)|2

+ eλt
n∑

i=1

n∑
j=1

qih
2p∗ij

i |bij |2q∗ij β
2r∗ij

j |xi(t)|2

+ eλt
n∑

i=1

n∑
j=1

qih
2−2p∗ij

i |bij |2−2q∗ij β
2−2r∗ij

j

∫ +∞

0

Kij(s)x2
j (t− s)ds

+ eλt
n∑

i=1

n∑
j=1

qjL
2
ji(xi(t))2

= −eλt
n∑

i=1

|xi(t)|2(−λqi + 2hiαiqi −
n∑

j=1

qih
2pij

i |aij |2qij β
2rij

j

−
n∑

j=1

qjh
2−2pji

j |aji|2−2qjiβ
2−2rji

i −
n∑

j=1

qih
2p∗ij

i |bij |2q∗ij β
2r∗ij

j

−
n∑

j=1

qjh
2−2p∗ji

j |bji|2−2q∗jiβ
2−2r∗ji

i

∫ +∞

0

Kji(s)eλsds−
n∑

j=1

qjL
2
ji). (3.5)
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Using the Itô formula, for T > 0, from inequality (3.2), (3.3), (3.4) and (3.5), we
have

V (x(t), t)

≤
n∑

i=1

qix
2
i (0) +

n∑
i=1

n∑
j=1

qih
2−2p∗ij

i |bij |2−2q∗ij β
2−2r∗ij

j

×
∫ +∞

0

[Kij(s)eλs

∫ 0

−s

eλζx2
j (ζ)dζ]ds

−
∫ T

0

eλt
n∑

i=1

|xi(t)|2(−λqi + 2hiαiqi −
n∑

j=1

qih
2pij

i |aij |2qij β
2rij

j

−
n∑

j=1

qjh
2−2pji

j |aji|2−2qjiβ
2−2rji

i −
n∑

j=1

qih
2p∗ij

i |bij |2q∗ij β
2r∗ij

j

−
n∑

j=1

qjh
2−2p∗ji

j |bji|2−2q∗jiβ
2−2r∗ji

i

∫ +∞

0

Kji(s)eλsds−
n∑

j=1

qjL
2
ji)

+ 2
∫ T

0

eλt
n∑

i=1

n∑
j=1

qi|xi(t)σij(xi(t))|dωj(t)

≤
n∑

i=1

qi[1 +
n∑

j=1

qj

qi
h

2−2p∗ji

j |bji|2−2q∗jiβ
2−2r∗ji

i

∫ +∞

0

Kji(s)eλsds] sup
−∞≤s≤0

{x2
i (s)}

+ 2
∫ T

0

eλt
n∑

i=1

n∑
j=1

qi|xi(t)||σij(xj(t))|dωj(t).

(3.6)
Then right-hand side of (3.6) is a nonnegative martingale and Lemma 2.2 shows

lim
T→0

X(T ) < ∞ a.s.

where

X(T ) =
n∑

i=1

qi[1 +
n∑

j=1

qj

qi
h

2−2p∗ji

j |bji|2−2q∗jiβ
2−2r∗ji

i

∫ +∞

0

Kji(s)eλsds}

× sup
−∞≤s≤0

{x2
i (s)}+ 2

∫ T

0

eλt
n∑

i=1

n∑
j=1

qi|xi(t)||σij(xj(t))|dωj(t).

(3.7)

It follows by Lemma 2.2 that

lim
T→∞

eλt
n∑

i=1

qix
2
i (t) < ∞ a.s. (3.8)

which implies

lim
T→∞

eλt
n∑

i=1

x2
i (t) < ∞ a.s.; (3.9)

that is,

lim sup
T→∞

1
T

log ‖x(T )‖ ≤ −λ. (3.10)

This completes the proof. �
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Corollary 3.2. Under assumptions (H1)–(H4), if there exist a set of positive con-
stants qi such that

2hiαiqi−
n∑

j=1

[2qi + qjh
2

j |aji|2β2
i + qjh

2

j |bji|2β2
i + qjL

2
ji] > 0, i = 1, 2, . . . , n (3.11)

then the trivial solution of (2.1) is almost sure exponentially stable.

Corollary 3.3. Under assumptions (H1)–(H4), if the following inequality holds

2hiαi−
n∑

j=1

[(|aij |+ |bij |)hiβj +(|aji|+ |bji|)hjβi +L2
ji] > 0, i = 1, 2, . . . , n (3.12)

then the trivial solution of (2.1) is almost sure exponentially stable.

Proof. Choose qi = 1, qij = pij = rij = q∗ij = p∗ij = r∗ij = 1
2 for i, j = 1, 2, . . . , n in

inequality (3.1). By Theorem 3.1, the proof is complete. �

To the best of our knowledge, few authors have considered the almost sure ex-
ponential stability for stochastic CGNN with unbounded distributed delays. We
can find the recent papers [2, 3, 7, 14, 30] in this direction, however, all delays
in are discrete and the delay functions appearing in them are bounded, obviously,
those requirements are relaxed in this paper and as model (2.1) can be viewed as
a general case of interval-delayed recurrent neural networks and delayed Hopfiled
networks.

Remark 3.4. For system (2.1), when hi(xi(t)) = 1, then it turns out to be following
stochastic cellular neural networks with unbounded distributed delays

dx(t) = [−C(x(t)) + AF (x(t)) + BF (
∫ +∞

0

K(s)x(t− s)ds)]dt + σ(x(t))dω(t),

using Theorem 3.1, one can easy to get a set of similar corollary for checking the
almost sure exponential stability for the trivial solution of this system.

From the results in this paper, it is easy to see that our development results
are more general than those reported in [1, 29]. Moreover, we conclude the sta-
bility of system (2.1) is dependent of the magnitude of noise, and therefore, noisy
fluctuations should be regarded adequately.

4. Example

In this section, we present an example to demonstrate the correctness and ef-
fectiveness of the main results. Consider the stochastic Cohen-Grossberg neural
networks with unbounded distributed delays

dx1(t) = −(1 + sinx1(t))[10x1 −
2∑

j=1

a1jfj(xj(t))

−
2∑

j=1

b1jfj(
∫ +∞

0

K1j(s)xj(t− s)ds)]dt +
2∑

j=1

σ1j(xj(t))dωj(t),



EJDE-2010/42 STOCHASTIC STABILITY 9

dx2(t) = −(1 + cos x2(t))[4x2 −
2∑

j=1

a2jfj(xj(t))

−
2∑

j=1

b2jfj(
∫ +∞

0

K2j(s)xj(t− s)ds)]dt +
2∑

j=1

σ2j(xj(t))dωj(t).

(4.1)

This system satisfies all assumptions in this paper with f1(x) = tanhx, f2(x) =
1
2 (|x−1|− |x+1|), by taking a11 = a12 = a21 = a22 = 1, b11 = b12 = b21 = b22 = 1,
and q1 = 1, a1 = 18, a2 = 10, h1 = 1, h1 = 2, h2 = 3, h2 = 8, β1 = β2 = 1, Lij = 1,
i, j = 1, 2,

K(s) =
(

2e−2s 4e−4s

3e−3s 5e−5s

)
.

By simple a computation, one can easily show that

2h1α1 −
2∑

j=1

[(|a1j |+ |b1j |)h1βj + (|aj1|+ |bj1|)hjβ1 + L2
j1] = 6 > 0, (4.2)

and

2h2α2 −
2∑

j=1

[(|a2j |+ |b2j |)h2βj + (|aj2|+ |bj2|)hjβ2 + L2
j2] = 6 > 0. (4.3)

from Corollary 3.3 we know that (4.1) is almost surely exponentially stable.

Conclusions. In this paper, we have investigated a stochastic Cohen-Grossberg
neural networks with unbounded distributed delays, whose state variable are gov-
erned by stochastic non-linear integro-differential equations, which is more general
than the previous published papers. By constructing suitable Lyapunov functional,
employing the semi-martingale convergence theorem and some inequality, we obtain
some sufficient criteria ensuring the almost exponential stability of the networks,
and the stability of this system is dependent of the magnitude of noise. Further-
more, the derived conditions for stability of stochastic cellular neural networks with
unbounded distributed can be viewed as byproducts of our results.
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