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GROWTH OF SOLUTIONS TO LINEAR DIFFERENTIAL
EQUATIONS WITH ENTIRE COEFFICIENTS

OF SLOW GROWTH

CUI-YAN ZHANG, JIN TU

Abstract. In this article, we investigate the hyper order of solutions of higher-

order linear differential equations with entire coefficients of slow growth. We

assume that the lower order of the dominant coefficient in the high-order linear
equations is less than 1/2, and obtain some results which extend the results in

[6, 13, 14, 19].

1. Introduction and statement of results

We shall assume that readers are familiar with the fundamental results and the
standard notation of the Nevanlinna’s theory of meromorphic functions [10, 18].
We use σ(f) and µ(f) to denote the order and low order of meromorphic function
f(z) respectively. We use σ2(f) and µ2(f) to denote the hyper order and hyper
lower order of f(z), which are defined as [21]

σ2(f) = lim sup
r→∞

log log T (r, f)
log r

= lim sup
r→∞

log2 T (r, f)
log r

,

µ2(f) = lim inf
r→∞

log2 T (r, f)
log r

.

The hyper exponent of convergence of zeros and distinct zeros of f(z) are respec-
tively defined to be (see [5])

λ2(f) = lim sup
r→∞

log2 N(r, f)
log r

, λ2(f) = lim sup
r→∞

log2 N(r, f)
log r

.

It is easy to see that σ(f) = ∞ if σ2(f) > 0. We denote the linear measure of a
set E ⊂ [1,∞) by mE =

∫
E

dt and the logarithmic measure of E by mlE =
∫

E
dt
t .
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The upper and lower logarithmic density of E are defined by (see [3])

log dens(E) = lim sup
r→∞

ml(E ∩ [1, r])
log r

,

log dens(E) = lim inf
r→∞

ml(E ∩ [1, r])
log r

.

Nevanlinna’s value distribution theory has become a very useful tool in investi-
gating the growth of solutions of linear differential equations. By the definition of
hyper order, the growth of infinite order solutions of the differential equations can
be estimated more precisely. In recent years, many papers began to investigate the
hyper order of the infinite order solutions of the linear differential equations (see
e.g. [5, 6, 19]).

For the second order linear differential equation

f ′′ + A(z)f ′ + B(z)f = 0, (1.1)

where A(z), B(z) 6≡ 0 are entire functions, it is well known that every nonconstant
solution f of (1.1) has infinite order if σ(A) < σ(B) or A(z) is a polynomial and
B(z) is transcendental. Gundersen [9] proved the following result.

Theorem 1.1 ([9]). Let A(z) and B(z) be entire functions such that
(i) σ(B) < σ(A) < 1/2 or
(ii) A(z) is transcendental with σ(A) = 0 and σ(B) is a polynomial.

Then every nonconstant solution of (1.1) has infinite order.

In 1991, Hellerstein, Miles and Rossi improved Theorem 1.1 by proving the
following result.

Theorem 1.2 ([13]). If A(z) and B(z) are entire functions with σ(B) < σ(A) ≤ 1
2 ,

then any nonconstant solution of (1.1) has infinite order.

In 1992, Hellerstein, Miles and Rossi improved Theorem 1.2 and proved the
following result.

Theorem 1.3 ([14]). A0, . . . , Ak−1, F be entire functions. Suppose that there exists
an As (0 ≤ s ≤ k − 1) such that

b = max{σ(F ), σ(Aj)(j 6= s)} < σ(As) ≤
1
2
.

Then every solution of the equation

f (k) + Ak−1f
(k−1) + · · ·+ Asf

(s) + · · ·+ A0f = F (1.2)

is either a polynomial or an entire function of infinite order.

In 2000, Chen and Yang [6] gave a more precise estimate of the growth of the
solutions of (1.2) and its homogeneous differential equation and obtained the fol-
lowing results.

Theorem 1.4 ([6]). Let A0, . . . , Ak−1, F 6≡ 0 be entire functions, such that there
exists an As (0 ≤ s ≤ k − 1) satisfying

b = max{σ(F ), σ(Aj)(j 6= s)} < σ(As) < 1/2.

Then every transcendental solution of (1.2) satisfies σ2(f) = σ(As).
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Theorem 1.5 ([6]). Let Aj(z) (j = 1, . . . , k − 1) be entire functions such that
max{σ(Aj), j = 1, . . . , k − 1} < σ(A0) < ∞, then every nontrivial solution f of

f (k) + Ak−1f
(k−1) + · · ·+ Asf

(s) + · · ·+ A0f = 0 (1.3)

satisfies σ2(f) = σ(A0).

In 2008, Tu and Deng [19] investigated the growth of solutions of (1.3) and
obtained the following results.

Theorem 1.6 ([19]). Let Aj (j = 0, . . . , k − 1) be entire functions. Suppose that
there exists some s ∈ {1, . . . , k−1} such that max{σ(Aj) : j 6= 0, s} < σ(A0) ≤ 1/2
and that As(z) has a finite deficient value, then every solution f 6≡ 0 of (1.3)
satisfies σ(A0) ≤ σ2(f) ≤ σ(As).

Theorem 1.7 ([19]). Let Aj (j = 0, . . . , k − 1) be entire functions. Suppose that
there exists some s ∈ {1, . . . , k−1} such that max{σ(Aj) : j 6= 0, s} < σ(A0) < 1/2.
Suppose that As(z) is an entire function of genus q ≥ 1, and that all the zeros of
As(z) lie in the angular sector θ1 ≤ arg z ≤ θ2 satisfying

θ2 − θ1 ≤
π

q + 1
.

Then every solution f 6≡ 0 of (1.3) satisfies σ(A0) ≤ σ2(f) ≤ σ(As).

Most of the above theorems are related to the problem: Does every transcen-
dental solution of (1.1)-(1.3) have infinite order when the order of any one of
the middle coefficients is greater than others? From Theorems 1.1–1.4, we know
that the answer is affirmative when the fastest growing entire coefficient satis-
fies σ(As) ≤ 1/2 (s ∈ {1, . . . , k − 1}). It is mentioned that Theorem 1.2 and
Theorem 1.3 also hold under the hypothesis σ(B) < µ(A) ≤ 1/2 in (1.1) or
max{σ(F ), σ(Aj)(j 6= s)} < µ(As) ≤ 1/2 in (1.2) (see [13, 14]). However the
proof of the case σ(As) = 1

2 or µ(As) = 1/2 is more complicated. In the Theorem
1.8 below, we estimate the hyper order of the transcendental solutions of (1.1)-(1.3)
under the assumption that the lower order of the dominant coefficient in (1.1)-(1.3)
is less than 1/2.

Theorem 1.8. Let A0, . . . , Ak−1, F be entire functions such that there exists an
As (1 ≤ s ≤ k − 1) satisfying

b = max{σ(F ), σ(Aj)(j 6= s)} < µ(As) < 1/2.

Then every transcendental solution of (1.2) satisfies µ(As) ≤ σ2(f) ≤ σ(As). Fur-
thermore, if F 6≡ 0, then every transcendental solution of (1.2) satisfies

µ(As) ≤ λ2(f) = λ2(f) = σ2(f) ≤ σ(As).

Corollary 1.9. If s = 1, then every non-constant solution f of (1.2) satisfies
µ(A1) ≤ σ2(f) ≤ σ(A1). Furthermore, if F 6≡ 0, then every non-constant solution
f of (1.2) satisfies µ(A1) ≤ λ2(f) = λ2(f) = σ2(f) ≤ σ(A1).

Corollary 1.10. If A(z), B(z) are entire functions with σ(B) < µ(A) < 1/2, then
every solution f 6≡ 0 of (1.1) satisfies µ(A) ≤ σ2(f) ≤ σ(A).

Corollary 1.11. Under the hypotheses of Theorem 1.8, if ϕ(z) is a transcendental
entire function with σ(ϕ) < ∞, then every transcendental solution f of (1.2) or
(1.3) satisfies

µ(As) ≤ λ2(f − ϕ) = λ2(f − ϕ) = σ2(f) ≤ σ(As).
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Remark 1.12. Theorem 1.8 is an extension of Theorems 1.2–1.4. If µ(As) =
σ(As) < 1/2, by Theorem 1.4, we have that every transcendental solution of (1.2)
satisfies σ2(f) = µ(As) = σ(As), then Theorem 1.8 holds. Therefore, we only need
to prove that Theorem 1.8 holds in the case µ(As) < 1/2 and µ(As) < σ(As). In
Theorem 1.8, if s = 0, we remove the restriction µ(A0) < 1/2 and have the following
result.

Theorem 1.13. Let Aj (j = 0, . . . , k − 1) be entire functions satisfying

max{σ(Aj) : j 6= 0} < µ(A0) ≤ σ(A0) < ∞,

then every solution f 6≡ 0 of (1.3) satisfies µ(A0) = µ2(f) ≤ σ2(f) = σ(A0).

Corollary 1.14. Let Aj (j = 0, . . . , k − 1) be entire functions satisfying

max{σ(Aj) : j 6= 0} < µ(A0) = σ(A0) < ∞,

then every solution f 6≡ 0 of (1.3) satisfies µ2(f) = σ2(f) = σ(A0).

The following theorem studies the case when there are two dominant coefficients
in (1.3).

Theorem 1.15. Let Aj (j = 0, . . . , k − 1) be entire functions. Suppose that there
exists some s ∈ {1, . . . , k − 1} such that max{σ(Aj) : j 6= 0, s} < µ(A0) < 1/2 and
that As(z) has a finite deficient value, then every solution f 6≡ 0 of (1.3) satisfies
µ(A0) ≤ σ2(f) ≤ max{σ(A0), σ(As)}.

Corollary 1.16. Let Aj (j = 0, . . . , k − 1) be entire functions. Suppose that there
exists some s ∈ {1, . . . , k − 1} such that max{σ(Aj) : j 6= 0, s} < µ(A0) < 1/2.
Suppose that As(z) is an entire function of genus q ≥ 1, and that all the zeros of
As(z) lie in the angular sector θ1 ≤ arg z ≤ θ2 satisfying

θ2 − θ1 ≤
π

q + 1
.

Then every solution f 6≡ 0 of (1.3) satisfies µ(A0) ≤ σ2(f) ≤ max{σ(A0), σ(As)}.

Corollary 1.17. Let Aj (j = 0, . . . , k − 1) be entire functions. Suppose that there
exists some s ∈ {1, . . . , k − 1} such that max{σ(Aj) : j 6= 0, s} < µ(A0) < 1/2 and
As(z) = hs(z)easz, where σ(hs) < 1 and as 6= 0 is a complex number, then every
solution f 6≡ 0 of (1.3) satisfies µ(A0) ≤ σ2(f) ≤ max{σ(A0), 1}.

Remark 1.18. Theorem 1.13 extends Theorem 1.5. The meaning of Corollary 1.14
is that all solutions of (1.3) are regular growing when the dominant coefficient A0 is
regular growing. However, we can not give any information about µ2(f) in Theorem
1.8 and Theorem 1.15. Theorem 1.15 is a supplement to Theorems 1.8–1.13 and an
improvement of Theorem 1.6. Corollaries 1.16–1.17 are the immediate conclusions
of Theorem 1.15, since As(z) in Corollary 1.16 has zero as a finite deficient value
[17] and As(z) = hs(z)easz in Corollary 1.17 also has zero as a finite deficient value.
If As(z) in Theorem 1.15 has a finite deficient value, then σ(As) > 1/2 [19].

Open problems. Do Theorems 1.8 and 1.15 hold under the hypothesis µ(As) =
σ(As) = 1

2? Does Theorem 1.4 hold under the hypothesis σ(As) = 1
2?
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2. Lemmas for the proofs of main results

Lemma 2.1 ([8]). Let f(z) be a transcendental meromorphic function and α > 1
be a given constant, for any given ε > 0,

(i) there exist a set E1 ⊂ [1,∞) that has finite logarithmic measure and a con-
stant B > 0 that depends only on α and (m,n)(m,n ∈ {0, . . . , k} with m < n) such
that for all z satisfying |z| = r 6∈ [0, 1] ∪ E1, we have

| f
(n)(z)

f (m)(z)
| ≤ B

(T (αr, f)
r

(logα r) log T (αr, f)
)n−m

. (2.1)

(ii) there exist a set E1 ⊂ [0, 2π) that has linear measure zero and a constant
B > 0 that depends only on α and (m,n)(m,n ∈ {0, . . . , k} with m < n) such that
for all z = reiθ satisfying θ ∈ [0, 2π)\E and for sufficiently large |z| = r, (2.1)
holds.

Lemma 2.2 ([1]). Let f(z) be an entire function of σ(f) = σ < 1/2 and denote
A(r) = inf |z|=r log |f(z)|, B(r) = sup|z|=r log |f(z)|. If σ < α < 1, then

log dens{r : A(r) > (cos πα)B(r)} > 1− σ

α
. (2.2)

Lemma 2.3 ([2]). Let f(z) be entire with µ(f) = µ < 1/2 and µ < σ = σ(f). If
µ ≤ δ < min(σ, 1

2 ) and δ < α < 1/2, then

log dens{r : A(r) > (cos πα)B(r) > rδ} > C(σ, δ, α), (2.3)

where C(σ, δ, α) is a positive constant depending only on σ, δ and α.

Lemma 2.4 ([6]). Let f(z) be a transcendental entire function. Then there is a
set E2 ⊂ (1,+∞) having finite logarithmic measure such that when we take a point
z satisfying |z| = r 6∈ E2 and |f(z)| = M(r, f), we have

| f(z)
f (s)(z)

| ≤ 2rs, (s ∈ N). (2.4)

Lemma 2.5 ([11, 15]). Let f(z) be a transcendental entire function, and let z be
a point with |z| = r at which |f(z)| = M(r, f). Then for all |z| outside a set E3 of
r of finite logarithmic measure, we have

f (k)(z)
f(z)

=
(

νf (r)
z

)k

(1 + o(1)), (k ∈ N, r /∈ E3), (2.5)

where νf (r) is the central index of f .

Lemma 2.6 ([5, 20]). Let f(z) be an entire function of infinite order satisfying
σ2(f) = σ and µ2(f) = µ. Then

lim sup
r→∞

log2 νf (r)
log r

= σ, lim inf
r→∞

log2 νf (r)
log r

= µ, (2.6)

where νf (r) is the central index of f .

Lemma 2.7 ([18]). Let g : (0,+∞) → R,h : (0,+∞) → R be monotone increasing
functions such that

(i) g(r) ≤ h(r) outside of an exceptional set E4 of finite linear measure. Then,
for any α > 1, there exists r0 > 0 such that g(r) ≤ h(αr) for all r > r0.

(ii) g(r) ≤ h(r) outside of an exceptional set E4 of finite logarithmic measure.
Then, for any α > 1, there exists r0 > 0 such that g(r) ≤ h(rα) for all r > r0.
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Lemma 2.8. Let f(z) be an entire function with µ(f) < ∞. Then for any given
ε > 0, there exists a set E5 ⊂ (0,+∞) having infinite logarithmic measure such
that for all r ∈ E5, we have

M(r, f) < exp{rµ(f)+ε}. (2.7)

Proof. By the definition of lower order, there exists a sequence {rn}∞n=1 tending to
∞ satisfying (1 + 1

n )rn < rn+1 and

lim
n→∞

log2 M(rn, f)
log rn

= σ.

Then for any given ε > 0, there exists an n1 such that for n ≥ n1, we have

M(rn, f) ≤ exp{rµ(f)+ ε
2

n }. (2.8)

Let E5 =
⋃∞

n=n1
[( n

n+1 )rn, rn], then for any r ∈ E5, we have

M(r, f) ≤ M(rn, f) ≤ exp{rµ(f)+ ε
2

n } ≤ exp{[(1 +
1
n

)r]µ(f)+ ε
2 } ≤ exp{rµ(f)+ε}.

(2.9)
and mlE5 =

∑∞
n=n1

∫ rn
n

n+1 rn

dt
t =

∑∞
n=n1

log(1+ 1
n ) = ∞. The proof is complete. �

Lemma 2.9. Let Aj (j = 0, . . . , k − 1) be entire functions of finite order, then all
solutions of (1.3) satisfies µ2(f) ≤ max{µ(A0), σ(Aj) : j = 1, . . . , k − 1}.

Proof. From (1.3), we have

|f
(k)(z)
f(z)

| ≤ |Ak−1||
f (k−1)(z)

f(z)
|+ · · ·+ |As||

f (s)(z)
f(z)

|+ · · ·+ |A0|. (2.10)

By Lemma 2.5, there exists a set E3 ⊂ (1,+∞) having finite logarithmic measure
such that for all z satisfying |z| = r 6∈ E3 and |f(z)| = M(r, f), we have

|f
(j)(z)
f(z)

| =
(νf (r)

r

)j

(1 + o(1)) (j = 1, . . . , k − 1). (2.11)

Set max{µ(A0), σ(Aj) : j = 1, . . . , k − 1} = a, then for any given ε > 0 and for
sufficiently large r, we have

|Aj(z)| < exp{ra+ε} (j = 1, . . . , k − 1). (2.12)

By Lemma 2.8, for any given ε > 0, there exists a set E5 ⊂ (1,+∞) having infinite
logarithmic measure such that for all |z| = r ∈ E5, we have

|A0(z)| < exp{ra+ε}. (2.13)

Substituting (2.11)-(2.13) into (2.10), for any given ε > 0 and for sufficiently large
r ∈ E5\E3 and |f(z)| = M(r, f), we have(νf (r)

r

)k

|1 + o(1)| ≤ k exp{ra+ε}
(νf (r)

r

)k−1

|1 + o(1)|, (2.14)

then
νf (r) ≤ kr exp{ra+ε}. (2.15)

Then by Lemma 2.6 we have µ2(f) ≤ a. Thus, the proof is complete. �
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Lemma 2.10 ([7]). Let f(z) be a meromorphic function of finite order σ. For any
given ζ > 0 and l, 0 < l < 1/2, there exist a constant K(σ, ζ) and a set Eζ ⊂ [0,∞)
of lower logarithmic density greater than 1 − ζ such that for all r ∈ Eζ and for
every interval J of length l

r

∫
J

|f
′(reiθ)

f(reiθ)
|dθ < K(σ, ζ)

(
l log

1
l

)
T (r, f). (2.16)

Lemma 2.11 ([4, 12, 16]). Let Aj(z) (j = 0, . . . , k − 1) be entire functions with
σ(Aj) ≤ σ < ∞, if f(z) is a solution of (1.3), then σ2(f) ≤ σ.

2.1. Proof of Theorem 1.8. Assume that f(z) is a transcendental solution of
(1.2). From (1.2), we have

As =
F

f (s)
−

(f (k)

f (s)
+ · · ·+ As+1

f (s+1)

f (s)
+ As−1

f (s−1)

f (s)
+ · · ·+ A0

f

f (s)

)
=

F

f
· f

f (s)
−

{f (k)

f (s)
+ · · ·+ As+1

f (s+1)

f (s)

+
f

f (s)
·
(
As−1

f (s−1)

f
+ · · ·+ A0

)}
.

(2.17)

By Lemma 2.1(i), there exists a set E1 ⊂ (1,+∞) having finite logarithmic measure
such that for all z satisfying |z| = r /∈ [0, 1] ∪ E1, we have

|f
(j)(z)

f (s)(z)
| ≤ M · rα[T (2r, f)]2k, (j = s + 1, . . . , k), (2.18)

|f
(l)(z)
f(z)

| ≤ M · rα[T (2r, f)]2k, (l = 1, . . . , s− 1), (2.19)

where M > 0 and α > 0 are constants, not always the same at each occurrence.
Since 0 < µ(As) < 1/2, µ(As) < σ(As), we choose ε, δ such that

b + ε < µ(As) ≤ δ < min{σ(As),
1
2
}, (2.20)

where b = max{σ(F ), σ(Aj)(j 6= s)}. For sufficiently large r, we have

|Aj(z)| ≤ exp{rb+ε}, (j = 0, . . . , s− 1, s + 1, . . . , k − 1), (2.21)

|F (z)| ≤ exp{rb+ε}. (2.22)

Since M(r, f) > 1 for sufficiently large r, by (2.22), we have

|F (z)|
M(r, f)

≤ |F (z)| ≤ exp{rb+ε}. (2.23)

By Lemma 2.3 (µ(As) < σ(As)), there exists a set H1 ⊂ (1,+∞) having infinite
logarithmic measure such that for all z satisfying |z| = r ∈ H1, we have

|As(z)| > exp{rδ}. (2.24)

By Lemma 2.4, there is a set E2 ⊂ (1,+∞) of finite logarithmic measure such that
for a point z satisfying |z| = r /∈ [0, 1) ∪ E2 and |f(z)| = M(r, f), we have

| f(z)
f (s)(z)

| ≤ 2rs. (2.25)



8 C.-Y. ZHANG, J. TU EJDE-2010/43

By (2.17)-(2.19) and (2.21)-(2.25), for all z satisfying |z| = r ∈ H1−([0, 1]∪E1∪E2)
and |f(z)| = M(r, f), we have

exp{rδ} ≤ M · exp{rb+ε} · rα · [T (2r, f)]2k. (2.26)

Again by (2.20) and (2.26), we see that for a point z satisfying|z| = r ∈ H1 −
([0, 1] ∪ E1 ∪ E2) and |f(z)| = M(r, f), we have

exp{rδ(1 + o(1))} ≤ [T (2r, f)]2k. (2.27)

Since δ is arbitrarily close to µ(As), from (2.27), we obtain

lim sup
r→∞

log2 T (r, f)
log r

≥ µ(As). (2.28)

On the other hand, from Lemma 2.5, there is a set E3 ⊂ (1,+∞) having finite
logarithmic measure such that for all z satisfying |z| = r /∈ [0, 1] ∪ E3 and |f(z)| =
M(r, f), we have

f (j)(z)
f(z)

=
(νf (r)

z

)j

(1 + o(1)), (j = 1, . . . , k). (2.29)

For any given ε > 0 and for sufficiently large r, we have

|As(z)| ≤ exp{rσ(As)+ε}. (2.30)

Now we take a point z satisfying |z| = r /∈ [0, 1] ∪ E3 and |f(z)| = M(r, f) and
substitute (2.21)-(2.23),(2.29)-(2.30) into (1.2), then we obtain(νf (r)

|z|

)k

|1 + o(1)| ≤ (k + 1)
(νf (r)
|z|

)k−1

|1 + o(1)| exp{rσ(As)+ε}. (2.31)

This gives

lim sup
r→∞

log2 νf (r)
log r

≤ σ(As) + ε. (2.32)

Since ε is arbitrary, by Lemma 2.6 and (2.32), we have σ2(f) ≤ σ(As). Combining
this and (2.28), we obtain

µ(As) ≤ σ2(f) ≤ σ(As).

Assume that if f is a transcendental solution of (1.2), then σ(f) = ∞ by (2.28).
We next show that λ2(f) = λ2(f) = σ2(f) if F 6≡ 0. By (1.2), it is easy to see that
if f has a zero at z0 of order more than k, then F must has a zero at z0. Hence we
have

N(r,
1
f

) ≤ kN(r,
1
f

) + N(r,
1
F

). (2.33)

From (1.2), we have

1
f

=
1
F

(f (k)

f
+ Ak−1

f (k−1)

f
+ · · ·+ A0

)
. (2.34)

Hence

m(r,
1
f

) ≤
k∑

j=1

m(r,
f (j)

f
) +

k−1∑
j=0

m(r, Aj) + m(r,
1
F

). (2.35)

By (2.33) and (2.35), we obtain that

T (r, f) ≤ kN(r,
1
f

)+M(log(rT (r, f)))+T (r, F )+
k−1∑
j=0

T (r, Aj), (r /∈ E4), (2.36)
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where E4 ⊂ (0,+∞) is a set having finite linear measure. For sufficiently large r,
we have

M(log(rT (r, f))) ≤ 1
2
T (r, f), (2.37)

k−1∑
j=0

T (r, Aj) + T (r, F ) ≤ (k + 1)rσ(As)+ε. (2.38)

By (2.36)-(2.38), we have

T (r, f) ≤ 2kN(r,
1
f

) + 2(k + 1)rσ(As)+ε, (2.39)

hence σ2(f) ≤ λ2(f) by (2.39). Therefore, λ2(f) = λ2(f) = σ2(f). By µ(As) ≤
σ2(f) ≤ σ(As), we have µ(As) ≤ λ2(f) = λ2(f) = σ2(f) ≤ σ(As).

2.2. Proof of Corollaries. Using the similar proof in Theorem 1.8, we can easily
obtain the Corollaries 1.9–1.10.

Assume that f(z) is a transcendental solution of (1.2) or (1.3), then we have
µ(As) ≤ σ2(f) ≤ σ(As). Set g(z) = f(z) − ϕ, then we have σ2(g) = σ2(f), and
λ2(g) = λ2(f − ϕ). Substituting f = g + ϕ into (1.2) or (1.3), we obtain

g(k) + Ak−1g
(k−1) + · · ·+ A0g = F − (ϕ(k) + Ak−1ϕ

(k−1) + · · ·+ A0ϕ) (2.40)

or

g(k) + Ak−1g
(k−1) + · · ·+ A0g = −(ϕ(k) + Ak−1ϕ

(k−1) + · · ·+ A0ϕ). (2.41)

If F − (ϕ(k) + Ak−1ϕ
(k−1) + · · ·+ A0ϕ) ≡ 0 or ϕ(k) + Ak−1ϕ

(k−1) + · · ·+ A0ϕ ≡ 0,
by Theorem 1.8, we have σ(ϕ) = ∞. This is a contradiction. Therefore, ϕ(k) +
Ak−1ϕ

(k−1)+ · · ·+A0ϕ 6≡ 0 and F −(ϕ(k)+Ak−1ϕ
(k−1)+ · · ·+A0ϕ) 6≡ 0. Using the

similar proof in (2.33)-(2.39), we can easily obtain λ2(g) = λ2(g) = σ2(g), therefore
Corollary 1.11 holds.

3. Proof of Theorem 1.13

From Theorem 1.5, we know that every nontrivial solution f of (1.3) satisfies
σ2(f) = σ(A0). Then we only need to prove that every nontrivial solution f of
(1.3) satisfies µ2(f) = µ(A0). From (1.3), we have

−A0 =
f (k)

f
+ · · ·+ A1

f ′

f
. (3.1)

By this equality and the logarithmic derivative lemma, we have

m(r, A0) ≤
k∑

j=1

m

(
r,

f (k)

f

)
+

k−1∑
j=1

m(r, Aj) ≤ O{log rT (r, f)}+
k−1∑
j=1

m(r, Aj), (3.2)

where r 6∈ E7, E7 ⊂ (1,∞) is a set having finite linear measure, not necessarily
the same at each occurrence. Set max{σ(Aj) : j 6= 0} = c, then for any given
ε(0 < 2ε < µ(A0)− c) and for sufficiently large r, we have

m(r, A0) > rµ(A0)−ε, m(r, Aj) < rc+ε j 6= 0. (3.3)

Substituting (3.3) into (3.2), we have

rµ(A0)−ε ≤ O{log T (r, f)}+ krc+ε r 6∈ E7. (3.4)
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By (3.4) and Lemma 2.7(ii), we have µ2(f) ≥ µ(A0). On the other hand, by Lemma
2.9, we have µ2(f) ≤ µ(A0), therefore every nontrivial solution f of (1.3) satisfies
µ2(f) = µ(A0). Thus Theorem 1.13 hold.

4. Proof of Theorem 1.15

Suppose that As(z) has deficiency δ(a,As) = 2d > 0 at a ∈ C as stated in the
hypothesis. Then it follows from the definition of deficiency that for all sufficiently
large r, we have

m
(
r,

1
As − a

)
≥ dT (r, As).

Hence, for any sufficiently large r, there exists a point zr = reiθr such that

log |As(zr)− a| ≤ −dT (r, As). (4.1)

Assume first that As(z) has zero as a deficient value, that is, a = 0. By Lemma
2.10, for any given l(0 < l < 1/2) and for sufficiently small ζ > 0, there exists a set
Eζ ⊂ [0,∞) of lower logarithmic density greater than 1− ζ such that for all r ∈ Eζ

and for all θ ∈ [θr − l, θr + l], then we have

log |As(reiθ)| ≤ 0.

In fact, if we choose l sufficiently small in (2.16), we have

log |As(reiθ)| = log |As(reiθr )|+
∫ θ

θr

d

dt
log |As(reit)|dt

≤ −dT (r, As) + r

∫ θ

θr

|A
′
s(re

it)
As(reit)

||dt|

≤ (−d + ε1)T (r, As) ≤ 0,

where 0 < ε1 < d. In general, if As(z) has a finite deficient value a ∈ C, then we
can apply the same reasoning as above to the function As(z)− a since it has zero
as a deficient value. Hence, for sufficiently small ζ > 0 and for sufficiently small
l > 0, there exists a set Eζ ⊂ [1,∞) of lower logarithmic density greater than 1− ζ
such that for all r ∈ Eζ and for all θ ∈ [θr − l, θr + l], we have

log |As(reiθ)− a| ≤ 0.

Thus for these r and θ, we have

|As(reiθ)| ≤ |a|+ 1. (4.2)

Since 0 < µ(A0) < 1/2, we divide the proof into two cases: (i) 0 < µ(A0) =
σ(A0) < 1/2; (ii) 0 < µ(A0) < 1/2, µ(A0) < σ(A0).

Case (i): 0 < µ(A0) = σ(A0) < 1/2. By Lemma 2.2, there exists a set H1 ⊂
[1,∞) of lower logarithmic density greater than 0 such that for any given ε2 > 0
and for all r ∈ H1, we have

|A0(z)| > exp{rµ(A0)−ε2}. (4.3)

Let f 6≡ 0 be a solution of (1.3). From (1.3), we obtain

|A0(z)| ≤ |f
(k)(z)
f(z)

|+ · · ·+ |As(z)
f (s)(z)
f(z)

|+ · · ·+ |A1(z)
f ′(z)
f(z)

|. (4.4)
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By Lemma 2.1(ii), there exists a set E1 ⊂ [0, 2π) with linear measure zero such
that for all z = reiθ satisfying arg z = θ ∈ [0, 2π)\E1 and for all sufficiently large
r, we have

|f
(j)(reiθ)
f(reiθ)

| ≤ r[T (2r, f)]k, (j = 1, . . . , k). (4.5)

Furthermore, choosing ε2 small enough such that max{σ(Aj), j 6= 0, s} = β <
µ(A0)− 2ε2, then for sufficiently large r, we have

|Aj(z)| < exp{rβ+ε2}, (j 6= 0, s). (4.6)

Hence by (4.2)-(4.6), for all sufficiently large r ∈ Eζ

⋂
H1 and for all θ ∈ [θr −

l, θr + l]\E1, we have

exp{rµ(A0)−ε2} ≤ kr exp{rβ+ε2}[T (2r, f)]k. (4.7)

Since ε2 is arbitrarily small and β + ε2 < µ(A0) − ε2, by (4.7), we have σ2(f) ≥
µ(A0). On the other hand, by Lemma 2.11, σ2(f) ≤ σ(As) = max{σ(A0), σ(As)}.
Therefore, every solution f 6≡ 0 of (1.3) satisfies µ(A0) ≤ σ2(f) ≤ σ(As) =
max{σ(A0), σ(As)}.

Case (ii) 0 < µ(A0) < 1/2, µ(A0) < σ(A0). By Lemma 2.3, there exists a set
H2 ⊂ [1,∞) of upper logarithmic density greater than 0 such that for any given
δ(µ(A0) ≤ δ < min(σ, 1

2 )) and for all r ∈ H2, we have

|A0(z)| > exp{rδ}. (4.8)

Note that the set Eζ ∩H2 has a positive upper logarithmic density. In fact, without
loss of generality, set log dens(H2) = 2ζ > 0, we have

ζ ≤ log dens(H2) + log dens(Eζ)− log dens(Eζ ∪H2) ≤ log dens(Eζ ∩H2).

By the same reasoning, we know that the set Eζ ∩H1 in (4.7) also has a positive
upper logarithmic density. Hence from (4.4)-(4.6) and (4.8), for all sufficiently large
r in Eζ ∩H2 and for all θ ∈ [θr − l, θr + l]\E1, we have

exp{rδ} ≤ kr exp{rβ+ε2}[T (2r, f)]k, (4.9)

where 0 < ε2 < δ − β. By (4.9), we get σ2(f) ≥ δ, since δ is arbitrarily close
to µ(A0), we have σ2(f) ≥ µ(A0). On the other hand, by Lemma 2.11, we have
σ2(f) ≤ max{σ(A0), σ(As)}. Therefore, every solution f 6≡ 0 of (1.3) satisfies
µ(A0) ≤ σ2(f) ≤ max{σ(A0), σ(As)}.
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