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EXISTENCE AND MULTIPLICITY OF SOLUTIONS FOR A
DIFFERENTIAL INCLUSION PROBLEM INVOLVING THE

p(x)-LAPLACIAN

GUOWEI DAI

Abstract. In this article we consider the differential inclusion

− div(|∇u|p(x)−2∇u) ∈ ∂F (x, u) in Ω,

u = 0 on ∂Ω

which involves the p(x)-Laplacian. By applying the nonsmooth Mountain

Pass Theorem, we obtain at least one nontrivial solution; and by applying the

symmetric Mountain Pass Theorem, we obtain k-pairs of nontrivial solutions

in W
1,p(x)
0 (Ω).

1. Introduction

Let Ω be bounded open subset of RN with a C1-boundary ∂Ω. We consider the
differential inclusion problem

−div(|∇u|p(x)−2∇u) ∈ ∂F (x, u) in Ω,

u = 0 on ∂Ω,
(1.1)

where p ∈ C(Ω) with 1 < p− := infΩ p(x) ≤ p+ := supΩ p(x) < +∞, F (x, u) is
measurable with respect to x (for every u ∈ R) and locally Lipschitz with respect
to u (for a.e. x ∈ Ω), and ∂F (x, u) is the Clarke sub-differential of F (x, ·).

The operator −div(|∇u|p(x)−2∇u) is said to be p(x)-Laplacian, and becomes
p-Laplacian when p(x) ≡ p (a constant). The p(x)-Laplacian possesses more com-
plicated properties than the p-Laplacian; for example, it is inhomogeneous. The
study of various mathematical problems with variable exponent growth condition
has been received considerable attention in recent years. These problems are in-
teresting in applications and raise many difficult mathematical problems. One of
the most studied models leading to problem of this type is the model of motion
of electro-rheological fluids, which are characterized by their ability to drastically
change the mechanical properties under the influence of an exterior electromag-
netic field [25, 27]. Problem with variable exponent growth conditions also appear
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in the mathematical modelling of stationary therm-rheological viscous flows of non-
Newtonian fluids and in the mathematical description of the processes filtration of
an ideal baro-tropic gas through a porous medium [1, 2]. Another field of applica-
tion of equations with variable exponent growth conditions is image processing [4].
The variable nonlinearity is used to outline the borders of the true image and to
eliminate possible noise. We refer the reader to [6, 21, 26, 28, 29] for an overview of
and references on this subject, and to [6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 20] for the
study of the p(x)-Laplacian equations and the corresponding variational problems.

Since many free boundary problems and obstacle problems may be reduced to
partial differential equations with discontinuous nonlinearities, the existence of mul-
tiple solutions for Dirichlet boundary value problems with discontinuous nonlinear-
ities has been widely investigated in recent years. In 1981, Chang [3] extended the
variational methods to a class of non-differentiable functionals, and directly applied
the variational methods for non-differentiable functionals to prove some existence
theorems for PDE with discontinuous nonlinearities. Later, in 2000, Kourogenis
and Papageorgiou [22] obtained some non-smooth critical point theories and ap-
plied these to nonlinear elliptic equations at resonance, involving the p-Laplacian
with discontinuous nonlinearities.

Problem (1.1) has been studied extensively when p(x) ≡ p (a constant); see
[22, 23]. If f is a Cáratheodory function and F (x, u) =

∫ u

0
f(x, t)dt, then problem

(1.1) becomes

−div(|∇u|p(x)−2∇u) = f(x, u) in Ω,

u = 0 on ∂Ω.
(1.2)

which has also been studied extensively; see [14, 16]. We emphasize that in our
approach, no continuity with respect to the second argument will be required on the
function f . So (1.2) need not have a solution. To avoid this situation, we consider
functions f(x, ·) which are locally essentially bounded and fills the discontinuity
gaps of f(x, ·), replacing f by an interval [f1, f2], where

f1(x, s) = lim
δ→0+

ess inf
|t−s|<δ

f(x, t),

f2(x, s) = lim
δ→0+

ess sup
|t−s|<δ

f(x, t).

It is well known that if F (x, u) =
∫ u

0
f(x, t)dt, then F becomes locally Lipschitz

and ∂F (x, u) = [f1(x, u), f2(x, u)] (see [24]). This fact motivates the formulation of
the differential inclusion problem (1.1).

This paper is organized as follows: In Section 2, we present some necessary pre-
liminary knowledge on variable exponent Sobolev spaces and generalized gradient
of locally Lipschitz function; In Section 3, we give the main results of this paper. In
Section 4; we use the nonsmooth Mountain Pass Theorem and symmetric Mountain
Pass Theorem to prove our main results.

2. Preliminaries

To discuss problem (1.1), we need some properties of W
1,p(x)
0 (Ω) (see [17]) and

of the generalized gradient of locally Lipschitz functions, which will be used later.
Denote by S(Ω) the set of all measurable real functions defined on Ω. Two functions
in S(Ω) are considered as the same element when they are equal almost everywhere.
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Let

Lp(x)(Ω) = {u ∈ S(Ω) :
∫

Ω

|u(x)|p(x)dx < +∞}

with the norm

|u|Lp(x)(Ω) = |u|p(x) = inf
{
λ > 0 :

∫
Ω

|u(x)
λ

|p(x)dx ≤ 1
}
,

and let
W 1,p(x)(Ω) = {u ∈ Lp(x)(Ω) : |∇u| ∈ Lp(x)(Ω)}

with the norm
‖u‖W 1,p(x)(Ω) = |u|Lp(x)(Ω) + |∇u|Lp(x)(Ω).

Denote by W
1,p(x)
0 (Ω) the closure of C∞

0 (Ω) in W 1,p(x)(Ω).

Proposition 2.1 ([17]). The spaces Lp(x)(Ω), W 1,p(x)(Ω) and W
1,p(x)
0 (Ω) are sep-

arable and reflexive Banach spaces.

Proposition 2.2 ([17]). Let ρ(u) =
∫
Ω
|u(x)|p(x)dx, for u ∈ Lp(x)(Ω). Then:

(1) For u 6= 0, |u|p(x) = λ implies ρ(u
λ ) = 1

(2) |u|p(x) < 1 (= 1; > 1) ⇔ ρ(u) < 1 (= 1; > 1)

(3) If |u|p(x) > 1, then |u|p
−

p(x) ≤ ρ(u) ≤ |u|p
+

p(x)

(4) If |u|p(x) < 1, then |u|p
+

p(x) ≤ ρ(u) ≤ |u|p
−

p(x)

(5) limk→+∞ |uk|p(x) = 0 if and only if limk→+∞ ρ(uk) = 0
(6) limk→+∞ |uk|p(x) = +∞ if and only if limk→+∞ ρ(uk) = +∞.

Proposition 2.3 ([17]). In W
1,p(x)
0 (Ω) the Poincaré inequality holds; that is, there

exists a positive constant C0 such that

|u|Lp(x)(Ω) ≤ C0|∇u|Lp(x)(Ω), ∀u ∈ W
1,p(x)
0 (Ω).

So |∇u|Lp(x)(Ω) is an equivalent norm in W
1,p(x)
0 (Ω). We will use the equivalent

norm in the following discussion and write ‖u‖ = |∇u|Lp(x)(Ω) for simplicity.

Proposition 2.4 ([17]). (1) Assume that the boundary of Ω possesses the cone
property and p ∈ C(Ω). If q ∈ C(Ω) and 1 ≤ q(x) ≤ p∗(x) for x ∈ Ω, then there
is a continuous embedding W 1,p(x)(Ω) ↪→ Lq(x)(Ω). When 1 ≤ q(x) < p∗(x), the
embedding is compact, where p∗(x) = Np(x)

N−p(x) if p(x) < N , p∗(x) = ∞ if p(x) ≥ N .
(2) If p1(x), p2(x) ∈ C(Ω), and 1 < p1(x) ≤ p2(x), then Lp2(x) ↪→ Lp1(x), and

the embedding is continuous.

Proposition 2.5 ([17]). The conjugate space of Lp(x)(Ω) is Lq(x)(Ω), where 1
q(x) +

1
p(x) = 1. For any u ∈ Lp(x)(Ω) and v ∈ Lq(x)(Ω), we have∣∣ ∫

Ω

uvdx
∣∣ ≤ ( 1

p−
+

1
q−

)
|u|p(x)|v|q(x).

Let (Y, ‖ · ‖) be a real Banach space and Y ∗ be its topological dual. A function
f : Y → R is called locally Lipschitz if each point u ∈ Y possesses a neighborhood
Ωu such that |f(u1)− f(u2)| ≤ L‖u1−u2‖ for all u1, u2 ∈ Ωu, for a constant L > 0
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depending on Ωu. The generalized directional derivative of f at the point u ∈ Y in
the direction v ∈ X is

f0(u, v) = lim sup
w→u,t→0

1
t
(f(w + tv)− f(w)).

The generalized gradient of f at u ∈ Y is

∂f(u) =
{
u∗ ∈ X∗ : 〈u∗, ϕ〉 ≤ f0(u;ϕ) for all ϕ ∈ Y

}
,

which is a non-empty, convex and w∗-compact subset of Y ∗, where 〈·, ·〉 is the
duality pairing between Y ∗ and Y . We say that u ∈ Y is a critical point of f if
0 ∈ ∂f(u). For further details, we refer the reader to Chang [3] or Clarke [5].

3. Main results

In this section we give two existence theorems for problem (1.1). For simplicity
we write X = W

1,p(x)
0 (Ω), denote by c, ci, l and M the general positive constant

(the exact value may change from line to line). The precise hypotheses are the
followings:

(HF) F : Ω × R → R is a Borel measurable locally Lipschitz function with
F (x, 0) = 0 for a.e. x ∈ Ω such that
(i) there exists a constant c > 0 such that for a.e. x ∈ Ω, all u ∈ R and

all ξ(u) ∈ ∂F (x, u)

|ξ(u)| ≤ c(1 + |u|α(x)−1),

where α ∈ C(Ω) and p+ < α− ≤ α(x) < p∗(x);
(ii) There exist M > 0, θ > p+ such that

0 < θF (x, u) ≤ 〈ξ, u〉, a.e. x ∈ Ω, all u ∈ X, |u| ≥ M, ξ ∈ ∂F (x, u); (3.1)

(iii) F (x, t) = o(|t|p+
), t → 0, uniformly for a.e. x ∈ Ω.

Because X be a reflexive and separable Banach space, there exist ei ∈ X and
e∗j ∈ X∗ such that

X = span{ei : i = 1, 2, . . .}, X∗ = span{e∗j : j = 1, 2, . . .},

〈ei, e
∗
j 〉 =

{
1, i = j,

0, i 6= j.

For convenience, we write Xi = span{ei}, Yk = ⊕k
i=1Xi, Zk = ⊕∞i=kXi. In the

following we need the nonsmooth version of Palais-Smale condition.

Definition 3.1. We say that I satisfies the nonsmooth (PS)c condition if any
sequence {un} ⊂ X such that I(un) → c and m(un) → 0, as n → +∞, has a
strongly convergent subsequence, where m(un) = inf{‖u∗‖X∗ : u∗ ∈ ∂I(un)}.

In what follows we write the (PS)c-condition as simply the PS-condition if it
holds for every level c ∈ R for the Palais-Smale condition at level c. Let

J(u) =
∫

Ω

1
p(x)

|∇u|p(x)dx, Ψ(u) =
∫

Ω

F (x, u)dx.
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By a solution of (1.1), we mean a function u ∈ X to which there corresponds a
mapping Ω 3 x → g(x) with g(x) ∈ ∂F (x, u) for a.e. x ∈ Ω having the property
that for every ϕ ∈ X, the function x → g(x)ϕ(x) ∈ L1(Ω) and∫

Ω

|∇u|p(x)−2∇u∇ϕdx =
∫

Ω

g(x)ϕ(x)dx.

By standard argument, we show that u ∈ X is a solution of (1.1) if and only if
0 ∈ I(u), where I(u) = J(u)−Ψ(u). Below we give a proposition that will be used
later.

Proposition 3.2 ([16]). The functional J : X → R is convex. The mapping
J ′ : X → X∗ is a strictly monotone, bounded homeomorphism, and is of (S+) type;
namely un ⇀ u and limn→∞(J ′(un, un − u) ≤ 0 implies un → u.

Theorem 3.3. If (HF) holds, then (1.1) has at least one nontrivial solution.

Theorem 3.4. If (HF) holds and F (x,−u) = F (x, u) for a.e. x ∈ Ω and all u ∈ R,
then (1.1) has at least k-pairs of nontrivial solutions.

To prove Theorems 3.3 and 3.4 we need the following generalizations of the
classical Mountain pass Theorem (see [3, 18, 22, 23]) and of the symmetric Mountain
pass Theorem [18, 19].

Lemma 3.5. If X is a reflexive Banach space, I : X → R is a locally Lipschitz
function which satisfies the nonsmooth (PS)c-condition, and for some r > 0 and
e1 ∈ X with ‖e1‖ > r, max{I(0), I(e1)} ≤ inf{I(u) : ‖u‖ = r}. Then I has a
nontrivial critical u ∈ X such that the critical value c = I(u) is characterized by
the following minimax principle

c = inf
γ∈Γ

max
t∈[0,1]

I(γ(t),

where Γ = {γ ∈ C([0, 1], X) : γ(0) = 0, γ(1) = e1}.

Lemma 3.6. If X is a reflexive Banach space and I : X → R is even locally
Lipschitz functional satisfying the nonsmooth (PS)c-condition and

(i) I(0) = 0;
(ii) there exists a subspace Y ⊆ X of finite codimension and number β, γ > 0,

such that inf{I(u) : u ∈ Y ∩ ∂Bγ(0)} ≥ β, where Bγ = {u ∈ X : ‖u‖ < γ}
and ∂Bγ = {u ∈ X : ‖u‖ = γ};

(iii) there is a finite dimensional subspace V of X with dimV > codimY , such
that I(v) → −∞ as ‖v‖ → +∞ for any v ∈ V .

Then I has at least dimV − codimY pairs of nontrivial critical points.

4. Proof main results

Let Ψ̂ denote its extension to Lα(x)(Ω). We know that Ψ̂ is locally Lipschitz on
Lα(x)(Ω). In fact, by Proposition 2.5, for u, v ∈ Lα(x)(Ω), we have

|Ψ̂(u)− Ψ̂(v)| ≤
(
C1|1|α′(x) + C2 max

w∈U
|wα(x)−1|α′(x)

)
|u− v|α(x), (4.1)

where U is an open neighborhood involving u and v, w in the open segment joining
u and v. However, since ρ(1) = |Ω|, by Proposition 2.2, we have

|1|α′(x) < ∞. (4.2)
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Meanwhile, since

ρ(wα(x)−1) =
∫

Ω

|wα(x)−1|α
′(x)dx

≤
∫

Ω

|w|α(x)dx

≤ 2α+
(
∫

Ω

|u|α(x)dx +
∫

Ω

|u|α(x)dx) < ∞,

by Proposition 2.2, we also have |wα(x)−1|α′(x) < ∞. Then, using Proposition 2.4
and [3, Theorem 2.2], we have that Ψ = Ψ̂|X is also locally Lipschitz, and ∂Ψ(u) ⊆∫
Ω

∂F (x, u)dx (see [24]), where Ψ̂|X stands for the restriction of Ψ̂ to X. The
interpretation of ∂Ψ(u) ⊆

∫
Ω

∂F (x, u)dx is as follows: For every ξ ∈ ∂Ψ(u) there
corresponds a mapping ξ(x) ∈ ∂F (x, u) for a.e. x ∈ Ω having the property that for
every ϕ ∈ X the function ξ(x)ϕ(x) ∈ L1(Ω) and 〈g, ϕ〉 =

∫
Ω

ξ(x)ϕ(x)dx (see [24]).
Therefore, I is a locally Lipschitz functional and we can use the nonsmooth critical
point theory.

Lemma 4.1. If hypotheses (i) and (ii) hold, then I satisfies the nonsmooth (PS)-
condition.

Proof. Let {un}n≥1 ⊆ X be a sequence such that |I(un)| ≤ c for all n ≥ 1 and
m(un) → 0 as n →∞. Then, from (ii), we have

c ≥ I(un) =
∫

Ω

|∇un|p(x)

p(x)
dx−

∫
Ω

F (x, u)dx

≥ ‖un‖p−

p+
−

∫
Ω

1
θ
〈ξ(un), un〉dx− c1

≥
( 1
p+

− 1
θ

)
‖un‖p− +

∫
Ω

1
θ
(‖un‖p− − 〈ξ(un), un〉)dx− c1

≥
( 1
p+

− 1
θ

)
‖un‖p− − 1

θ
‖ξ‖X∗‖un‖ − c1.

Hence {un}n≥1 ⊆ X is bounded.
Thus by passing to a subsequence if necessary, we may assume that un ⇀ u in

X as n →∞. We have

〈J ′(un), un − u〉 −
∫

Ω

ξn(x)(un − u)dx ≤ εn‖un − u‖

with εn ↓ 0, where ξn ∈ ∂Ψ(un). From Chang [3] we know that ξn ∈ Lα′(x)(Ω)
(α′(x) = α(x)

α(x)−1 ). Since X is embedded compactly in Lα(x)(Ω), we have that
un → u as n →∞ in Lα(x)(Ω). So using Proposition 2.5, we have∫

Ω

ξn(x)(un − u) dx → 0 as n →∞. (4.3)

Therefore we obtain lim supn→∞〈J ′(un), un − u〉 ≤ 0. But we know that J ′ is a
mapping of type (S+). Thus we have

un → u in X.

�
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Lemma 4.2. If hypotheses (i), (iii) hold, then there exist r > 0 and δ > 0 such
that I(u) ≥ δ > 0 for every u ∈ X and ‖u‖ = r.

Proof. Let ε > 0 be small enough such that εcp+

0 ≤ 1
2p+ , where c0 is the embedding

constant of X ↪→ Lp+
(Ω). From hypothesis (i) and (iii), we have

F (x, t) ≤ ε|t|p
+

+ c(ε)|t|α(x). (4.4)

Therefore, for every u ∈ X, we have

I(u) ≥ 1
p+
‖u‖p+

− εcp+

0 ‖u‖p+
− c(ε)‖u‖α−

≥ 1
2p+

‖u‖p+
− c(ε)‖u‖α− ,

when ‖u‖ ≤ 1. So we can find r > 0 small enough and δ > 0 such that I(u) ≥ δ > 0
for every u ∈ X and ‖u‖ = r. �

Lemma 4.3. If hypotheses (ii) holds, then there exists u1 ∈ X such that I(u1) ≤ 0.

Proof. From (ii), there exist M > 0, c2 > 0 such that (see [18, p. 298])

F (x, u) ≥ c2|u|θ

for all |u| > M and a.e. x ∈ Ω. Thus for 1 < t ∈ R, we have∫
Ω

F (x, tu)dx =
∫
{t|u|>M}

F (x, tu)dx +
∫
{t|u|≤M}

F (x, tu)dx

≥ c2t
θ

∫
{t|u|>M}

|u|θdx− c3.

Therefore, for t > 1, we have

I(tu) ≤ 1
p−

tp
+

∫
Ω

|∇u|p(x)dx− c2t
θ

∫
{t|u|>M}

|u|θdx + c3

=
1

p−
tp

+
∫

Ω

|∇u|p(x)dx− c2t
θ

∫
Ω

|u|θdx + c2t
θ

∫
{t|u|≤M}

|u|θdx + c3.

(4.5)

Noting that c2t
θ
∫
{t|u|≤M3} |u|

θ is bounded, it follows that

I(tu) → −∞ as t → +∞.

�

Proof of Theorem 3.3. Using Lemma 3.5 and Lemmas 4.1-4.3, we can find an u ∈ X
such that I(u) > 0 (hence u 6= 0) and 0 ∈ ∂I(u). Hence u ∈ X is a nontrivial
solution of (1.1). �

Proof of Theorem 3.4. Firstly, we can easily see that I is even functional on X. We
claim that I(u) → −∞ as ‖u‖ → +∞, for any u ∈ Yk. We assume ‖u‖ ≥ 1. From
(4.4), we have

I(u) ≤ 1
p−
‖u‖p+

− c4|u|θθ + c4

∫
{|u|≤M}

|u|θdx + c5.

Since Yk is finite dimensional, all norms of Yk are equivalent. For p+ < θ, we get
I(u) → −∞ as ‖u‖ → +∞. We can apply Lemma 3.6 with V = Yk and Y = X.
From Lemma 4.1 and Lemma 4.2, we get k-pairs of nontrivial critical points, which
are solutions of (1.1). �
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We remark that using the same method as in hte proof of Theorems 3.3 and 3.4,
we can obtain the same results for the corresponding differential inclusion problems
with Neumann boundary data.

As an example of a nonsmooth potential function F (x, u) satisfying (HF), we
have

F (x, u) =
1

p+
|u|p

+
+

1
α(x)

|u|α(x).

Then we can check that it satisfies all hypotheses of Theorem 3.3. Note that in this
case. ∂F (x, u) = |u|p+−1 sgn(u) + |u|α(x)−1 sgn(u), where

sgn(u) =


1, if u > 0,

[−1, 1] if u = 0,

−1 if u < 0.

Moreover, it is obvious that F (x,−u) = F (x, u). So F satisfies all the hypotheses
in Theorem 3.4.
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[21] P. Harjulehto and P. Hästö; An overview of variable exponent Lebesgue and Sobolev spaces,

Future Trends in Geometric Function Theory (D. Herron (ed.), RNC Work- shop), Jyväskylä,
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