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EXISTENCE AND MULTIPLICITY OF SOLUTIONS FOR A
DIFFERENTIAL INCLUSION PROBLEM INVOLVING THE
p(z)-LAPLACIAN

GUOWEI DAI

ABSTRACT. In this article we consider the differential inclusion
—div(|Vul|P®)~2Vu) € 9F(z,u) in Q,
u=0 on9dN
which involves the p(z)-Laplacian. By applying the nonsmooth Mountain

Pass Theorem, we obtain at least one nontrivial solution; and by applying the
symmetric Mountain Pass Theorem, we obtain k-pairs of nontrivial solutions

in WP ().

1. INTRODUCTION

Let © be bounded open subset of RY with a C''-boundary 9€2. We consider the
differential inclusion problem

— div(|VulP®=2Vu) € OF (z,u) in €,

1.1
u=0 on 0f, (L1)

where p € C(Q) with 1 < p~ = infop(z) < p* = sup, p(z) < 400, F(x,u) is
measurable with respect to x (for every u € R) and locally Lipschitz with respect
to u (for a.e. x € Q), and OF(z,u) is the Clarke sub-differential of F(x,-).

The operator — div(|Vu[P(®)=2Vu) is said to be p(z)-Laplacian, and becomes
p-Laplacian when p(z) = p (a constant). The p(z)-Laplacian possesses more com-
plicated properties than the p-Laplacian; for example, it is inhomogeneous. The
study of various mathematical problems with variable exponent growth condition
has been received considerable attention in recent years. These problems are in-
teresting in applications and raise many difficult mathematical problems. One of
the most studied models leading to problem of this type is the model of motion
of electro-rheological fluids, which are characterized by their ability to drastically
change the mechanical properties under the influence of an exterior electromag-
netic field [25] 27]. Problem with variable exponent growth conditions also appear
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in the mathematical modelling of stationary therm-rheological viscous flows of non-
Newtonian fluids and in the mathematical description of the processes filtration of
an ideal baro-tropic gas through a porous medium [1I, [2]. Another field of applica-
tion of equations with variable exponent growth conditions is image processing [4].
The variable nonlinearity is used to outline the borders of the true image and to
eliminate possible noise. We refer the reader to [0, 21}, 26} 28] 29] for an overview of
and references on this subject, and to [0} [7), [8, 9] 10} 12, 13}, 14, 15, 16} 17, [20] for the
study of the p(z)-Laplacian equations and the corresponding variational problems.

Since many free boundary problems and obstacle problems may be reduced to
partial differential equations with discontinuous nonlinearities, the existence of mul-
tiple solutions for Dirichlet boundary value problems with discontinuous nonlinear-
ities has been widely investigated in recent years. In 1981, Chang [3] extended the
variational methods to a class of non-differentiable functionals, and directly applied
the variational methods for non-differentiable functionals to prove some existence
theorems for PDE with discontinuous nonlinearities. Later, in 2000, Kourogenis
and Papageorgiou [22] obtained some non-smooth critical point theories and ap-
plied these to nonlinear elliptic equations at resonance, involving the p-Laplacian
with discontinuous nonlinearities.

Problem ) has been studied extensively when p(xz) = p (a constant); see
22, 23]. If f is a Cératheodory function and F'(z,u) fo (z,t)dt, then problem

becomes
— div(|Vu|P®2Vu) = f(z,u) inQ,

1.2
u=0 on 0f. (1.2)

which has also been studied extensively; see [14], [I6]. We emphasize that in our
approach, no continuity with respect to the second argument will be required on the
function f. So need not have a solution. To avoid this situation, we consider
functions f(x,-) which are locally essentially bounded and fills the discontinuity
gaps of f(z,-), replacing f by an interval [f1, f2], where

filz,s) = 11%1+ ﬁsssllrégf(x o),

fo(z,s) = hrn esssup f(x,t).
T t—s|<s

It is well known that if F(x,u) f f(x,t)dt, then F becomes locally Lipschitz
and OF (x,u) = [f1(x, u), f2(a: u)] (see [24]). This fact motivates the formulation of
the differential inclusion problem .

This paper is organized as follows: In Section 2, we present some necessary pre-
liminary knowledge on variable exponent Sobolev spaces and generalized gradient
of locally Lipschitz function; In Section 3, we give the main results of this paper. In
Section 4; we use the nonsmooth Mountain Pass Theorem and symmetric Mountain
Pass Theorem to prove our main results.

2. PRELIMINARIES

To discuss problem (L)), we need some properties of VVO1 P (‘r)(Q) (see [I7]) and
of the generalized gradient of locally Lipschitz functions, which will be used later.
Denote by S(£2) the set of all measurable real functions defined on Q. Two functions
in S(§2) are considered as the same element when they are equal almost everywhere.
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Let
LP@(Q) = {u € S(Q) : / lu(z)|P®dz < 400}
Q

with the norm

il pocor () = 1ty = inf {A > 0 /| ) p@ae <1,

and let
Wr@ (Q) = {u € L@ (Q) : |Vu| € LP@ ()
with the norm
[ullwre @) = [ulpee @) + [Vulpee )

Denote by Wol’p(m)(Q) the closure of C§°(2) in WP®)(Q).

Proposition 2.1 ([I7]). The spaces L™ (Q), W@ (Q) and W, "™ (Q) are sep-
arable and reflexive Banach spaces.
Proposition 2.2 ([I7]). Let p(u) = [, [u(z) \p(x)dx for u € LP®)(Q). Then:

(1) Foru #0, |ulpm) = A zmplzes p(y) =

2 ey <1 (2151 ey 2 T 15 1)

- +

(3) If lulp@) > 1, then [ul} ) < p(u) < ul),)

(4) If lulpy < 1, then |u\p(l) p(u) < |“‘p(1)

()

(6)

limg 4 oo [Uk]p) = 0 if and only if limy,— oo p(uz) =0
limg 4 oo [Uk|p) = +00 if and only if limy,_. 4 oo p(ur) = +o00.

Proposition 2.3 ([17]). In Wol’p(m)(Q) the Poincaré inequality holds; that is, there
exists a positive constant Cy such that

[ul o @) < Col Vo @), Vu € Wo ().

S0 [Vu| o) () is an equivalent norm in Wol’p(z)(Q). We will use the equivalent
norm in the following discussion and write [|ul| = [Vu[ps@)(q) for simplicity.

Proposition 2.4 ([I7]). (1) Assume that the boundary of € possesses the cone
property and p € C(Q). If ¢ € C(Q) and 1 < q(z) < p*(x) for x € Q, then there
is a continuous embedding WP (Q) — LI@)(Q). When 1 < q(z) < p*(x), the
embedding is compact, where p*(x) = Np;&) if p(z) < N, p*(z) = oo if p(x) > N.

(2) If p1(z), p2(z) € C(Q), and 1 < pi(z) < po(x), then LP>®) — LP1(®) and
the embedding is continuous.

Proposition 2.5 ([I7]). The conjugate space of LP®)(Q) is LI)(Q), where ﬁ +
L= 1. For any u € LP®)(Q) and v € L1®)(Q), we have

p(z)
1 1
‘/qudx’ < (; + qf)‘u|p(z)|v‘q(z)

Let (Y,]| - ]|) be a real Banach space and Y™* be its topological dual. A function
f:Y — R is called locally Lipschitz if each point uw € Y possesses a neighborhood
Q,, such that | f(u1) — f(u2)| < L||lug — ug]| for all uz,us € Q,, for a constant L > 0
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depending on 2,,. The generalized directional derivative of f at the point u € Y in
the direction v € X is

f°(u,v) = limsup %(f(w—&—tv) — f(w)).

w—u,t—0
The generalized gradient of f at u € Y is
Of (u) = {u* € X*: (u*,0) < fo(u;¢) for all p € Y},

which is a non-empty, convex and w*-compact subset of Y*, where (-,-) is the
duality pairing between Y* and Y. We say that u € Y is a critical point of f if
0 € 0f(u). For further details, we refer the reader to Chang [3] or Clarke [5].

3. MAIN RESULTS

In this section we give two existence theorems for problem (|1.1). For simplicity

we write X = WOI’I’(I)(Q)7 denote by ¢, ¢;, | and M the general positive constant
(the exact value may change from line to line). The precise hypotheses are the
followings:

(HF) F : @ x R — R is a Borel measurable locally Lipschitz function with
F(z,0) =0 for a.e. z € {2 such that
(i) there exists a constant ¢ > 0 such that for a.e. z € Q, all w € R and
all £(u) € OF (z,u)

€ (w)] < e(1+[u*@7h),

where a € C(Q) and pt < o™ < a(x) < p*(z);
(ii) There exist M > 0, 6 > p* such that

0<O0F(z,u) <{&u), ae xz€Q allue X, |ul|>M, £€0F(z,u); (3.1

(i) F(xz,t) = o(|t[""),t — 0, uniformly for a.c. = € Q.

Because X be a reflexive and separable Banach space, there exist e; € X and
e; € X™ such that

X =spanfe; :i=1,2,...}, X'= span{e;f cj=1,2,...}
L, i=y,
e-,e”f =
teires) {o, i# .
For convenience, we write X; = span{e;}, Y = ®F_ X;, Z; = @, X;. In the
following we need the nonsmooth version of Palais-Smale condition.

Definition 3.1. We say that I satisfies the nonsmooth (PS). condition if any
sequence {u,} C X such that I(u,) — ¢ and m(u,) — 0, as n — +oo, has a
strongly convergent subsequence, where m(u,) = inf{||u*||x~ : v* € 0I(uy)}.

In what follows we write the (PS).-condition as simply the PS-condition if it
holds for every level ¢ € R for the Palais-Smale condition at level c. Let

u) = Lup(w)x u) = z,u)dz
T = [ Vs, W) = [ P
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By a solution of (1.1)), we mean a function v € X to which there corresponds a
mapping Q 3 z — g(x) with g(z) € OF(z,u) for a.e. z € Q having the property
that for every ¢ € X, the function z — g(z)p(x) € L'(Q2) and

/Q|Vu|p(m)*2Vquod:r:/Qg(x)cp(:r)da:.

By standard argument, we show that u € X is a solution of (1.1)) if and only if
0 € I(u), where I(u) = J(u) — ¥(u). Below we give a proposition that will be used
later.

Proposition 3.2 ([I6]). The functional J : X — R is convex. The mapping
J'+ X — X* is a strictly monotone, bounded homeomorphism, and is of (Sy) type;
namely u, — u and limy, oo (J' (tn, u, —u) < 0 implies u, — u.

Theorem 3.3. If (HF) holds, then (1.1) has at least one nontrivial solution.

Theorem 3.4. If (HF) holds and F(x,—u) = F(z,u) for a.e. © € Q and allu € R,
then (1.1) has at least k-pairs of nontrivial solutions.

To prove Theorems [3.3] and [3:4] we need the following generalizations of the
classical Mountain pass Theorem (see [3], 18,22} 23]) and of the symmetric Mountain
pass Theorem [18] [19].

Lemma 3.5. If X is a reflexive Banach space, I : X — R is a locally Lipschitz
function which satisfies the nonsmooth (PS)c-condition, and for some r > 0 and
er € X with |ler|| > r, max{I(0),I(e1)} < inf{I(u) : ||ul] = r}. Then I has a
nontrivial critical uw € X such that the critical value ¢ = I(u) is characterized by
the following minimaz principle

= inf I(~(t
¢ = Inf max (v(®),

where I' = {v € C([0,1], X) : v(0) = 0,~v(1) = e }.

Lemma 3.6. If X is a reflexive Banach space and I : X — R is even locally
Lipschitz functional satisfying the nonsmooth (PS)c-condition and

(i) 1(0) = 0;

(ii) there exists a subspace Y C X of finite codimension and number 3,~v > 0,
such that inf{I(u) : w € Y NIB,(0)} > 3, where B, = {u € X : |lul| <~}
and 0B, = {u € X : ||lu|| =~};

(iii) there is a finite dimensional subspace V' of X with dimV > codimY’, such
that I(v) — —oo as ||v]| — 400 for any v € V.

Then I has at least dimV — codimY pairs of nontrivial critical points.

4. PROOF MAIN RESULTS

Let ¥ denote its extension to L*®)(€2). We know that W is locally Lipschitz on
Le@)(Q). In fact, by Proposition for u, v € L*@)(Q), we have

B(w) = B(0)] < (il + Comax |0 Jlu = vlagey,  (41)

where U is an open neighborhood involving « and v, w in the open segment joining
u and v. However, since p(1) = |2, by Proposition [2.2] we have

1o (2 < 00 (4.2)



6 G. DAI EJDE-2010/44

Meanwhile, since

p(wa(m)fl):/ ‘wa(z)71|a'(z)dx
Q

§/ lw|*®) dz

Q

< 2a+(/ \u|0‘(I)dx+/ Ju|*®dz) < oo
Q Q

by Proposition we also have \w"(w)_1|a/(z) < 0o. Then, using Proposition
and [3, Theorem 2.2], we have that ¥ = ¥|x is also locally Lipschitz, and 0W (u) C
Jo OF (x,u)dx (see [24]), where U|x stands for the restriction of U to X. The
interpretation of 9 (u) C [, OF (z,u)dx is as follows: For every £ € O¥(u) there
corresponds a mapping f (x) € OF (z,u) for a.e. z € Q havmg the property that for
every ¢ € X the function &(x)p(z) € L(Q2) and ( = [ &( x (see [24]).
Therefore, I is a locally Lipschitz functional and we can use the nonsmooth critical
point theory.

Lemma 4.1. If hypotheses (i) and (ii) hold, then I satisfies the nonsmooth (PS)-
condition.

Proof. Let {un}n>1 C X be a sequence such that |I(u,)| < ¢ for all » > 1 and
m(uyn) — 0 as n — oo. Then, from (ii), we have

c>1(uy) = /Nu&;dx—/QF(m uw)dx

||UnH / E(up),up)de — ¢
9 n n 1
1
> (5 = gl + /(,nunn (€, )z — 1
1 1
> (o5 = Ml = 1l ]l = e

Hence {un }n>1 € X is bounded.
Thus by passing to a subsequence if necessary, we may assume that u, — wu in
X as n — oo. We have

(J (), ty — u) — /an(z)(un —w)de < ep||lu, — ull

with &, | 0, where &, € U (u,). From Chang [3] we know that &, € L ®)(Q)
(o/(z) = a?‘gll) Since X is embedded compactly in L*®)(Q), we have that
Up — u as n — oo in L¥*)(Q). So using Proposition we have

&n(z)(up —u)der — 0 asn — oo. (4.3)
)

Therefore we obtain limsup,,_, . {J'(u), u, — u) < 0. But we know that J' is a
mapping of type (S+). Thus we have

U, — u in X.
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Lemma 4.2. If hypotheses (i), (iii) hold, then there exist v > 0 and § > 0 such
that I(u) > > 0 for every u € X and |ju|| = r.
Proof. Let € > 0 be small enough such that aecg+ < 2?%, where ¢ is the embedding
constant of X < L?' (€2). From hypothesis (i) and (iii), we have

F(z,t) < elt|?” + c(e)]t|*®). (4.4)

Therefore, for every u € X, we have

1 + + + -
I(U)ijlluﬂp —ech [ul” —c()lluf”

1 + -
> o llull” —cl@)llul*,

2 5t
when ||ul] < 1. So we can find r > 0 small enough and ¢ > 0 such that I(u) > >0
for every u € X and |ju| =r. O

Lemma 4.3. If hypotheses (i) holds, then there exists u; € X such that I(uy) < 0.
Proof. From (ii), there exist M > 0, co > 0 such that (see [I8, p. 298])
F(x,u) > colul®

for all |u| > M and a.e. z € Q. Thus for 1 <t € R, we have

/F(x,tu)dx:/ F(amtu)dx—i—/ F(z,tu)dx
Q {t|ul>M} {tlu|<M}

> czte/ lu|fdz — ¢s.
{tlul>M}

Therefore, for ¢ > 1, we have

1
I(tu) < it’ﬁ/ |Vul[P@ dz — czte/ lul’dx + c3
p Q {tlu|>M} (4.5)
. .
= —_tp+ / |Vul|P® dz — czte/ lul®dz 4 czt‘)/ lul®dz 4 c3.
p Q Q {tlu|<M}
Noting that cot? f{t\uISMs} |u|? is bounded, it follows that
I(tu) — —o0  as t — +oo.
]

Proof of Theorem[3.3 Using Lemma[3.5]and Lemmas[£.I{4.3] we can find anu € X
such that I(u) > 0 (hence u # 0) and 0 € 9I(u). Hence u € X is a nontrivial

solution of (|1.1)). O

Proof of Theorem[3.4). Firstly, we can easily see that I is even functional on X. We
claim that I(u) — —oo as ||u|| — +oo, for any u € Y;. We assume |lu|| > 1. From
(4.4]), we have

M) < =l —edulf+er [ e,
{lul<M}

Since Y}, is finite dimensional, all norms of Y} are equivalent. For pT < 6, we get

I(u) — —o0 as |jul| — +oo. We can apply Lemma [3.6) with V =Y}, and ¥ = X.

From Lemma [f.1] and Lemma [£.2] we get k-pairs of nontrivial critical points, which

are solutions of ([1.1)). O
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We remark that using the same method as in hte proof of Theorems [3.3] and [3:4]
we can obtain the same results for the corresponding differential inclusion problems
with Neumann boundary data.

As an example of a nonsmooth potential function F(z,u) satisfying (HF), we
have

1
a(z)
Then we can check that it satisfies all hypotheses of Theorem [3.3] Note that in this
case. OF (z,u) = [u[P" ! sgn(u) + |u|*®) 1 sgn(u), where

1
Fw,u) = ptlu\p* +—— fu]*@®),

1, if u>0,
sgn(u) =4 [-1,1] ifu=0,
-1 if u < 0.

Moreover, it is obvious that F(x, —u) = F(x,u). So F satisfies all the hypotheses
in Theorem 3.4l
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