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STEADY-STATE THERMAL HERSCHEL-BULKLEY FLOW WITH
TRESCA’S FRICTION LAW

FARID MESSELMI, BOUBAKEUR MEROUANI, FOUZIA BOUZEGHAYA

ABSTRACT. We consider a mathematical model which describes the steady-
state flow of a Herschel-Bulkley fluid whose the consistency and the yield limit
depend on the temperature and with mixed boundary conditions, including
a frictional boundary condition. We derive a weak formulation of the cou-
pled system of motion and energy equations which consists of a variational
inequality for the velocity field. We prove the existence of weak solutions.
In the asymptotic limit case of a high thermal conductivity, the temperature
becomes a constant solving an implicit total energy equation involving the
consistency function and the yield limit.

1. INTRODUCTION

The model of Herschel-Bulkley fluid has been used in various publications to
describe the flow of metals, plastic solids and some polymers. The literature con-
cerning this topic is extensive; see e.g. [0, [16] and references therein. The new
feature in the model is due to a Fourier type boundary condition, and consists in
the appearance of a nonlocal term on the boundary part where Tresca’s thermal
friction is taken into account.

An intrinsic inclusion leads in a natural way to variational equations which justify
the study of problems involving the incompressible, plastic Herschel-Bulkley fluid
using arguments of the variational analysis. The paper is organized as follows. In
Section 2 we present the mechanical problem of the steady-state Herschel-Bulkley
flow where the consistency and the yield limit depend on the temperature and
with Tresca’s thermal friction law. Moreover, we introduce some notations and
preliminaries. In Section 3 we derive the variational formulation of the problem.
We prove in Section 4 the existence of weak solutions as well as an existence result
to the steady-state Herschel-Bulkley flow with temperature dependent nonlocal
consistency, yield limit and tresca’s friction, which can be obtained as an asymptotic
limit case of a very large thermal conductivity.
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2. STATEMENT OF THE PROBLEM

We consider a mathematical problem modelling the steady-state flow of a ther-
mal Herschel-Bulkley fluid in a bounded domain Q@ C R™ (n = 2,3), with the
boundary T of class C', partitioned into two disjoint measurable parts I'g and I'y
such that meas(T'g) > 0. The fluid is supposed to be incompressible, the consistency
and the yield limit depend on the temperature. The fluid is acted upon by given
volume forces of density f. In addition, we admit a possible external heat source
proportional to the temperature. On I'y we suppose that the velocity is known.
The temperature is given by a homogeneous Neumann boundary condition on I'y.
We impose on I'; a frictional contact described by a Tresca thermal friction law, as
well as a Fourier boundary condition.

We denote by S,, the space of symmetric tensors on R™. We define the inner
product and the Euclidean norm on R™ and S,,, respectively, by

u-v=uv; Vu,veR" and o -7 =o047; Vo,TES,.
luj=(u-u)"/? YueR" and |o|=(c-0)/? VoeS,.
Here and below, the indices ¢ and j run from 1 to n and the summation convention
over repeated indices is used. We denote by & the deviator of o = (0;;) given by
Okk

¢ = (0ij),  Gij = 0ij — = =0ij,

where d = (d;;) denotes the identity tensor.
Let 1 < p < 2. We consider the rate of deformation operator defined for every
uec Whr(Q)" by
1

e(u) = (eij(W)iigen,  €ij(w) = 5w +uji).

We denote by v the unit outward normal vector on the boundary I'. For every
vector field v € W1P(Q)™ we also write v for its trace on I'. The normal and the
tangential components of v on the boundary are

V,=V-U, V;,=V—V,U.

Similarly, for a regular tensor field o, we denote by o, and o, the normal and
tangential components of o on the boundary given by

o,=0V -V, O,=0V—0,V.

We consider now, the following mechanical problem.

Problem 1. Find a velocity field u = (u;),_15 : & — R", stress field o0 =
(0ij)i j=17m 2 — S, and a temperature 6 : 2 — R such that
u-Vu=Div(e)+f inQ (2.1)
g(u)

lel#00 o (2.2)

5 P=2-(yg (7
& = el =(w) + 9(0) oy
o] <g(0) if [e(u)] =0
div(u) =0 in (2.3)
—kAO+u-Vl=0-c(u)—af inf

u=0 only



EJDE-2010/46 STEADY-STATE THERMAL FLOW 3

u, =0, |o;] <wv()

lor| <v(d) = u, =0 on I'y (2.6)
o =v(l) = u, =-Xo;y, A>0
00
e 0 onTIy (2.7)
00
k% + 60 =v(@)|u;| on Iy (2.8)

Where Div(o) = (045,;) and div(u) = u;,;. The flow is given by the equation
(2.1) where the density is assumed equal to one. Equation represents the
constitutive law of a Herschel-Bulkley fluid whose the consistency p and the yield
limit g depend on the temperature, 1 < p < 2 is the power law exponent of the
material. represents the incompressibility condition. Equation represents
the energy conservation where the specific heat is assumed equal to one, k > 0 is
the thermal conductivity and the term —af represents the external heat source
with a > 0. gives the velocity on I'y. Condition represents a Tresca
thermal friction law on I'y where v(6) is the friction yield coefficient for liquid-solid
interface. is a homogeneous Neumann boundary condition on I'y. Finally,
represents a Fourier boundary condition on I'y, where 3 > 0 represents the
Robin coefficient.

Remark 2.1. In the constitutive law (2.2) of the Herschel-Bulkley fluid, the vis-
cosity is given by the formula

n(0) = 1(0) = (w) P2, (2.9)
We define
W={veW"(@)":div(v)=0inQ, v=0onTgand v, =0on T},
which is a Banach space equipped with the norm
Ivilw = [[vliwre@)n-

For the rest of this article, we will denote by ¢ possibly different positive constants
depending only on the data of the problem. Denote by p’ the conjugate of p and
by ¢’ the conjugate of ¢, ¢ € [0, +00o[. We introduce the following functionals

B:WxWxW —R, B(u,v,w):/u~Vv-wdaz
Q

E:WH(Q) x W' (Q) x W - R, E(6,7,v) = / OV - v da.
Q

We assume
VreQ, pu(,z)€C’'(R) and (2.10)
Jprpe >0 <p(y, ) Spe VyER, Vo e
VreQ, g(,z)€C’'(R) and (2.11)
90 >0:0<g(y,x) < go VyeR, Va €.
Vo eT'y,v(.,z) € COR) and (2.12)

Jug>0:0<v(y,z) <vy YyeR, Vel
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Lemma 2.2. Suppose that

3n n
— < 2 d 1 —_— 2.13
n+2_p< an <4< (2.13)

Then (1) B is trilinear, continuous on W x W x W. Moreover, for all (u,v,w) €
W x W x W we have B(u,v,w) = —B(u,w,Vv).

(2) E is trilinear, continuous on Wh4(Q) x Wh4' (Q) x W and on H'(Q) x
HY(Q) x W. Moreover, E(0,7,v) = —E(7,0,v) for all (0,7,v) € WhI(Q) x
Wha'(Q) x W and for all (0,7,v) € H(Q) x HY(Q) x W.

Proof. In these two assertions, the trilinearity is evident.
(1) The Soblov imbedding

np

Whr(Q) C LP(Q) Vp € [p, B

n—p
combined with (2.13)), gives W'(Q) C L*() for all p € [p, -2%[. Particularly,

WhP(Q) C LnT (). (2.14)
On the other hand, the use of Holder’s inequality leads to

B(u,v,w) < |[u

LR () [vIlLe @)y [[wl]
Consequently, the continuity of B follows from .

Moreover, the antisymmetry of the convective operator B is valid by the incom-
pressibility condition and the boundary conditions given by , 7 using
an integration by parts.

(2) The continuity of E on H(Q) x H}(Q) x W is an immediate consequence of
the Sobolev imbedding W C L3(Q)" and H'(Q) C L3(2). The proof of the anti-
symmetry of E is based on the incompressibility condition and the boundary
conditions given by , .

Finally, to prove the continuity of E on Wh4(Q) x W4 (Q) x W, we proceed
as follows. Sobolev’s imbedding asserts that

3n .
Ln=1(Q)n

Wha(Q) c LP(Q) Vp e]—— "
@ c L@ voe o

2n i

n—2
Then, if § € Wh4(Q), 7 € W9 (Q) and v € W, the result follows from (2.15),
the antisymmetry of E and the continuity of the injection W' (Q) — C(Q) for
¢’ > n, that is, ¢ < -5, using Holder’s inequality . O

[a
(2.15)
W c L*(Q)" Vsé€|n,

For the rest of this article, we take n?’—fz <p<2and1<q< ;%

3. VARIATIONAL FORMULATION

The aim of this section is to derive a variational formulation to the problem
(P1). To do so we need the following Lemma.
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Lemma 3.1. Assume that f € W’'. If {u,o,0} are regular functions satisfying

23)-3), then
B(u,u,v —u) + /Q/i(e)(k(uﬂp—?g(u)) (e(v) —e(u))dz + ¢(0,v) — (6,u)

Z/f-(v—u)dx YveW,
Q

(3.1)
—E@,r,u)+k [ VO-Vrdex+a | Ordz+ 5 | O7ds
/Q /Q o / (3.2)
= / w(@)|e(u)|? +g(0)|5(u)\)7dm+/ v(0)|urrds Ve Whi(Q),
Q Iy
where
0.0 = [ @)l ds + RGOS (3.3)

Proof. Let us start by proving the variational inequality (3.1). Let {u,o,0} be
regular functions satisfying (2.1))-(2.8)) and let v.€ W. Using Green’s formula and
&1), @2), €3), @35 and (25), we obtain

/ u-Vu- (v - u)dz+ / $(O)(Je(u) P~2e(w)) - (£(v) — (u)) de
Q Q

+ /Q 9(8)|e(v)] da: - /Q 9(0)e(w)| da

Z/QfV(vfu)der/F ov-(v—u)ds.

On the other hand, by (2.6),

/Fl ov-(v—u)ds> /Fl U(G)IUTldS_/FlU(e”VT'dS'

Then (3.1) holds. Now, to prove the variational equation ([3.2), we proceed as
follows. Applying Green’s formula, (2.4), (2.7, (2.8) and Lemma we obtain,

after a simple calculation,

7/0(V7~v)d:ﬂ+k/V0~V7'dx+a/97dx+ﬂ Ords
Q Q Q r,

:/g.g(u)de+/ v(@)|u,|rds Ve WhT(Q).
Q

I'y
By definition of o, using the incompressibility condition (2.3)), we can infer

/ o e(u)rdz = / (O + g(B)]e(w))7 d,
Q

Q
which completes the proof. (Il

Remark 3.2. In (3.2)), the first term on the right hand side has sense, since the
injection W' (Q) — C(€) is continuous for ¢ > n, that is, ¢ < n/(n — 1).

Lemma leads us to consider the following variational system.
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Problem P2. For prescribed data f € W’'. Find u € W and 0 € Wh1(Q),
satisfying the variational system

B(u,u,v —u)+ /Q () (Je(w)[P~?e(w)) - (e(v) = e(u)) dz + (0, v) — ¢(6,u)

Z/f'(v—u)dx Vv e W,
Q

and

—E(H,T,u)—i—k/V@-Vde—i—a/Hde—i—ﬁ Otds
Q Q

IS

= /Q(u(9)|5(u)|p—|—g(9)\5(u)|)7dm+/ v(0)|u,|rds VT € Wl’q/(Q).

'

Now, we consider the weak nonlocal formulation to the mechanical problem

(2.1)-(2.3) and (2.5)-(2.6|) corresponding formally to the limit model k = oo (mod-
elling the steady-state Herschel-Bulkley flow with temperature dependent nonlocal

consistency, yield limit and friction).

Problem P3. For prescribed data f € W’. Find u € W and © € R, satisfying
the variational inequality

B(u,u,v — ) + () / (le(u)P~2e(w)) - (e(v) — e(u)) da
+4(0) /2 (e(v)| - |e(w)]) daz + v(©) / (Iv+] = [u,]) ds (3.6)

Iy

z/f-(v—u)dx Vv e W,
Q

where O is a solution to the implicit scalar equation

(ameas(2) + G meas(I';))0

/I<€ )P da + g(© /|€ )| da + v( )/ lu,| ds. (3.7)

4. EXISTENCE RESULTS
In this section we establish two existence theorems for problems (P2) and (P3).

Theorem 4.1. Problem (P2) has a solution (u,0) satisfying
uecW, (4.1)
0 c Whi(Q). (4.2)

Theorem 4.2. There ezists (u,0) € W x Ry a solution to the nonlocal problem
(P3), which can be obtained as a limit in W x Wh4(Q) as k — oo of solutions
(ug,0x) of problem (P2).

The proof of Theorem is based on the application of the Kakutani-Glicksberg
fixed point theorem for multivalued mappings, using two auxiliary existence results.
The first one results from the classical theory for inequalities with monotone op-
erators and convex functionals. The second one results from the theory of elliptic
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equations and L'-Data theory. Finally, compactness arguments are used to con-
clude the proofs. For reader’s convenience, let us recall the fixed point theorem
.

Theorem 4.3 (Kakutani-Glicksberg). Let X be a locally convexr Hausdorff topo-
logical vector space and K be a nonempty convex compact. If L : K — P(K) is an
upper semicontinuous mapping and L(z) # 0 is a conver and closed subset in K
for every z € K, then there exists at least one fized point, z € L(z).

The first auxiliary existence result is as follows.

Proposition 4.4. For every w € W and X € Wh4(Q), there exists a unique
solution u = u(w,\) € W to the problem

B(w,u,v —u)+ / (LN)le(@)[P%e(u)) - (e(v) = () dz + 6(\, v) = ¢(\, u)

Q
2/f~(v—u)dx Vv eWw,
Q

and it satisfies the estimate
Ellw 1)
[uflw < C(T)l/(p Y. (4.4)
Proof. Introducing the functional

TP C Sy =R, J(o) :/ Pio da.
Qb
nxn

This functional is convex, lower semi-continuous on L? ()"
entiable. Its Gateaux derivate at any point o € LP(£2)7*" is

<DJ(U')7T’>Lp/(Q)7sL><nXLp(Q)7sl><n = \/£2H|U|p720' . ndx Vn S LP(Q)’IS‘LXTL

Consequently, DJ is hemi-continuous and monotone. Moreover DJ is strict mono-
tone and bounded. To this aim, we have

(DJ(o) —DJ(n),o — 77>Lp/(Q)QX"><Lp(Q)gX"
> / ulle] = D) (o=t = [P~) da.

Then if o # 1, we get (DJ(o) — DJ(n),o — n)L,,f(Q)QanLp(Q)ZXn > 0. It means
that DJ is strict monotone. On the other hand, for every o € LP(Q2)7*"

[ ol 2ot o < [ |l da.
Q Q

which proves that DJ is bounded on W. Now, we consider the differential operator

and Gateaux differ-

Fo W —-=W, u—F,u YWew
(Fwu, v)wxw = B(w,u,v) + (DJ(e(n)),e(V)) Lo () po ()7 -
By Lemma (2.2) and the properties of DJ, we deduce that Fy is hemi-continuous,

strict monotone and bounded on W for every w € W. Therefore, for every u € W
we have

(4.5)

(Fwu, 0)wr xw lfQ le(u) [P dx
[[ullw - ullw
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Applying the generalized Korn inequality, we obtain
(Fwu, W) w
[[allw
It follows that the operator Fy, is coercive on W for every w € W.

Furthermore, the functional v — ¢(\,v) is continuous and convex on W, it is
then lower semi-continuous on W. Consequently, the existence and uniqueness of
the solution result from the classical theorems (see [I]) on variational inequalities
with monotone operators and convex functionals.

To prove the estimate (4.4) we proceed as follows, by choosing v = 0 as test

function in (4.3)), we get
Ammww&mswwwww

Hence, Korn’s inequality permits to conclude the proof. O

> el

The second auxiliary existence result is as follows.

Proposition 4.5. Let u = u(w, \) be the solution of problem (4.3)) given by Propo-
sition , Then there exists = 0(u,\) € W14(Q), a solution to the problem

—E(H,T,u)—|—k/§2V0'Vde+a/Q(97dw+ﬂ F19Tds o
:AwmmwwanMWM+/vmmm@ vr e Wh (),

Iy

and satisfies the estimate
al|0ll o) + B0l Loy + VEIVO| La@yn < R(vo, m, [E]lw), (4.7)
where R is a positive function.

Proof. There is a technical difficulty in the resolution of such problem. To this aim
we introduce the following approximate problem

—E(Hm,T,u)—i—k:/ V9m~Vde—|—a/9deac+B 0,,7 ds
@ @ 0 (4.8)

:/Fdex—l—/ v(N)|usrds V1 e HY(Q),
Q I

where
_ mpN)le@)P + g(A)le(w)]
" mt p(Ve(@)P +g(V)le(w)]
Let us consider for every u € W the form G : H'(Q) x H'(Q) — R,

€ L(Q). (4.9)

GO,7)=—-E(,1,u) + k;/ Vo -Vrdr + a/ Ordx+ 6 | Ords. (4.10)
Q Q

'
Lemma [2.2] and the Poincaré type inequality affirm that G is bilinear, continu-
ous and coercive on H'(Q) x H(Q) for every u € W. Furthermore, by Holder’s
inequality and Sobolev’s trace inequality using the estimate (4.4), we get

| [ vN|ur|rds| < |71 0)-
I

Consequently, from the Lax-Milgram theorem, there exists a unique solution 6, €

H'(Q) to the problem ({.8]).
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Now, we test the apprixamte equation (4.8 by the function

1
7 =sign(f,,)[l - ————] € HY(Q) N L®(Q), ¢ >0. 4.11
(01~ el € U@ N LX), ¢ (111)
We find by using some integration by parts (see for instance [4])
‘V977l|2
& | ——————dx +ﬂC’(§)/ Ol ds < M, (4.12)
o (1 [0, v
where M = M (vo, p1,¢, || fllw+) is a positive function. Particularly
V6, |2 M
————dr < —. 4.13
feme e & (419)
Denoting by ~ the function
" dt
V() = / —
O 1+t
Then v
Vy(0r) = S

(1 + |0 ])EFD/2°
We deduce from ([4.12) that V+(6,,,) is bounded in L?(f2), hence v(6,,) is bounded
in H'(Q). Sobolev’s imbedding asserts that H'(€2) C L*(f2), where p = -2 if

n#2and 2 <p<+ooifn=2.
1-¢ 1-¢
Keeping in mind that v(r) ~ r 2 as r — 4oco. Then |6,,] 2 is bounded in

Lr (). Consequently
0, |P1=9/2 is bounded in L*(£2). (4.14)
Moreover, by Holder’s inequality,

V6, |? ‘1/2/ _ (2-q)/2
V0, dx < d 1+16,,)EtDa/2=a) g .
oz (/<1+|om|)f+l =) (e iemD )
Hence, from , we obtain
(2—q)/2

/|w tdo < (o )q/?(/(1+|em|)<s+1>q/<2—q> dm) . (4.15)
Q

Let us choose the couple (&,¢q) such that M = %. It means that ¢ =

%. Then if 1 < ¢ < "5 Wecanchoose0<§<

using (4.14) and (4.15)), the follovvlng estimate holds

7 +2 Consequently, by

0,, is bounded in Wh4(Q). (4.16)

Combining this with , we can extract a subsequence (6,,),, satisfying
0, — 0 in WhH1(Q) weakly, (4.17)
6, — 60 in LYT") weakly. (4.18)

Recall that Rellich-Kondrachof’s theorem affirms the compactness of the imbed-
ding Wh4(Q) — L*(Q). It follows that we can extract a subsequence of 6,,, still
denoted by 6, such that

0, — 6 in L'(Q) strongly, (4.19)
0, — 6 in L'(T) strongly. (4.20)
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We conclude that problem (4.6) admits a solution § = f(u,\) € Wh4(Q). Using
(4.12), (4.14) and (4.15)), the estimate (4.7)) follows immediately. O

Proof of Theorem[{.1 To apply the Kakutani-Glicksberg fixed point theorem, let
us consider the closed convex ball

K ={(w,\) e WxW"P(Q) : |wllw < Ry, [Mwrag) < Ro}, (4.21)

1
where Ry > c(“fﬂif"’)P—l and Ry is given by the estimate (4.14). The ball K is
compact when the topological vector space is provided by the weak topology. Let
us built the mapping L : K — P(K), as follows

(W, A) = L(w,\) = {(u,0)} C K.

For every (w, A) € K, equation (4.6) is linear with respect to 8, and the solution u
is unique. Consequently the set L(w, A) is convex. To conclude the proof it remains
to prove the closeness in K x K of the graph set

G(L) = {((w,A), (u,0)) € K x K : (u,0) € L(w,\)}.
To do so, we consider a sequence (Wy,\,) € K, such that (wp, A,) — (w, ) in
W x WhH4(Q) weakly and (u,,0,) € L(w,,\,). Let us remember that (u,,6,) is
solution to the problem
B(Wp, 05,V —uy) + / (1) le(un) P~ 2e(un)) - (e(v) — e(un)) dz
Q
+ ¢(An, V) = (An, un) (4.22)

>/f~(v—un)dx Vv e W,
Q

—E(Gn,r,un)—l—kz/V@n-Vde—i—a/Ganx—i-B 0,7ds
Q Q 1Y

- / () )P + gn) ()7 dz (4.23)

+/ v(A)|(up)s|Tds V7 e W (Q).
Iy

Then, from Propositions [.4] and
[unllw < Ry and  |[[0n][wra0) < R
Thus, we can extract a subsequences u, and 6,, such that
u, —u in W weakly, (4.24)
0, — 60 in WhH1(Q) weakly. (4.25)

It follows from Rellich-Kondrachof’s theorem and Sobolev’s trace theorem, that we
can extract a subsequences of A, u, and 6, still denoted by A,, u, and 6, such
that

w, —w in L°(Q)" strongly and a.e. in Q, (4.26)
Ay — A in LY(Q) strongly and a.e. in €, (4.27)
u, —u in L*(Q)" strongly and a.e. in §, (4.28)
0, — 60 in L'(Q) strongly and a.e. in , (4.29)
u, —u in L"(T")" strongly and a.e. on T, (4.30)
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0,—0 in LY(T) strongly and a.e. on T, (4.31)

where n < s < ” and 2 <r < (n 1)
Now we prove that e(u,) — 6( ) a.e. in . To do so, we proceed as follows.
Introducing the positive function

hyu(x) = [0 (@) e (wy (1)) P2 (uy (@)

., (4.32)
— p(Au(@))le(u(@)) [P "e(u(z))] - (e(uu(x)) — e(u(@))).

Then

/Qhu(x) de < f(u, —u)+ B(wy,u,, v —u,) + é(A,,u) — (A, uy,)

- /QM(/\u(x))|€(u(9€))|p—25(u($)) (e(uu(z)) — e(u(z))) dz.
We know from Lemma that

(4.33)

B(wy,,u,,v) = —-B(w,v,u,) + B(w —w,,v,u,).
Then, Lebesgue’s dominated convergence theorem applied to the second term on
the right-hand side yields convergence
B(wy,u,,v) — B(w,u,V). (4.34)
On the other hand, since A\, — A a.e. in {2 and on I', the functions g and v are
continuous and due to the weak lower semicontinuity of the continuous and convex

functional v — ¢(\,v), combined with convergence result (4.24)), we deduce from
the Lebesgue dominated convergence theorem that

liminf ¢(Ay, u,) > ¢(A, u), (4.35)
lim ¢(A,, u) = (A, u). (4.36)

Since A\, — A a.e. in ©Q and on I, the function p is continuous and due to (4.24)

and the fact that |e(u(z))[?~2e(u(z)) is bounded in L¥' (2)"*", we obtain by the
Lebesgue dominated convergence theorem that

/Q pu(@))le(u(@) P2 (u()) (e(uu (@) — e(u(x))) dz — 0. (4.37)

Consequently, (4.33)), (4.34)), (4.35)), (4.36)) and (4.37)) give
lim ||hy|lpi@) =0 and h, —0 ae. (4.38)

Furthermore, h,(z) can be rewritten as
hy(@) = pu(@))le(u (@) P = p(Aa(x)]e(uu (2)) P2 (uy (2) - e(u())
= p(\u(2))le(u(2) P2 (u(@)) - (e(uu(@)) — e(u(z))),
which proves, using the estimate , that
() le(u(2)) [P < () + ep(Au(2))le(uu(2)) P
+ cp(Au(@))le(up ()] + c.

It follows that (e(u,(z))), is bounded in R™*", we can then extract a subsequence
still denoted by (e ( 1())) ., that converges to ¢ € R"*". By passage to the limit
in h,, we deduce that

(LNIEPT2E = p(V)]e(u())[Pe(u(x))) - (€ — (u(x))) = 0.
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Then e(u(z)) = . We conclude that
e(uy) —e(u) ae in . (4.40)

Therefore, the sequence (pu(\,(z))|e(uy(z))[P~%e(u,u(z))), converges a.e. in  to
p(M(z))|e(u(z))[P~2e(u(z)). Moreover, this sequence is bounded in L' (Q)"*", then
the LP — L9 compactness theorem (see [4] [I1]) implies the convergence in L"(€2)7*"™

for every 1 < r < p’. By choosing ¢ € D(Q)" as test function in inequality (4.22)),

B(w,u, o —u) + / pN)[e(m)P~2e(u) - e(p) dz + (X, @) — - (¢ —u)
@ (4.41)

> / (W) P dz + $(A,, 1),
Q

Using (4.35), the fact that A\, — X a.e. in Q, the continuity of 1 and g, the weak
lower semicontinuity of the norm || - ||yy1.»()». We conclude that u is solution to

(E3).
Our final goal is to show that 6 is solution of (4.23). To do so, we proceed as
follows. Introducing the function

Xu(@) = p(Au(@))le(un (@) [P + g(Au(@))|e(uy(2))]. (4.42)
From , we remark that x,, — x a.e. in Q, where
x(x) = p(A(x)le(u(z))[” 4+ g(A(x))|e(u(z))]- (4.43)

Substituting in (4.22) and taking v = u as test function, the passage to limit, using
Lebesgue’s dominated convergence theorem, gives

lim[/ﬂxu(w) dx—l—/rl v\ (W) ds] g/Qx(a:) dm—i—/rl v(N|u,|ds.  (4.44)

On the other hand, we know from the weak lower semicontinuity of the norm
|- llw1.r(@)» and the functional v — ¢(A,v), that

1iminf[/ﬂxu(a:) dx—l—/rl o)l (w,)- | ds] z/QX(x)dH/Flv(qums. (4.45)
We deduce from and that
nm[/QXM(x) da:+/rl o(\)| (w,)- | ds] :/QX(Q;) da:—l—/rl w(\)[uy| ds,

which implies, using the continuity of the injection W14 (Q) — C(Q) and the
Lebesgue dominated convergence theorem, that for every 7 € Whe (Q),

i [ [ (Ol + 9=l de+ [ o0 l(w,)elr ds]
¢ o (4.46)
= [P + g Drde + | vl ds
I'y
Thus, we conclude that 6 is solution to (4.23). Hence, (uy,,0,) — (u,0) € L(w, )
in W x Wh4(Q) weakly. By virtue of Kakutani-Glicksberg’s fixed point theorem,
the mapping L admits a fixed point (u, ) € L(u, @), which solves problem (P2). O

Remark 4.6. This proof permits also to verify the continuous dependence of the
solution (u(w, \),0(u,\)) € W x Wh4(Q) of problem (4.3), (4.6) with respect to
the function (w,\) € W x Wh4(Q).
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Proof of Theorem[[.3 Let (uy,0)) be a solution to the problem (P2), correspond-
ing to each £ > 0 and let ¥ — 4o00. From the estimates , and using
Rellich-Kondrachof’s theorem, we can extract a subsequence of (uy,8y), still de-
noted by (ug, 0x), satisfying

uy — u in W weakly,
u, —u in L*(Q)" strongly,
Vel — 0 in L'(Q)" strongly,
0x — © = a constant in L'() strongly,

where n < s < 2n/(n —2). We can proceed as in the proof of Theorem to get
the convergence

lim[/Q;L(Gk)|5(uk)|p7d:c+/Qg(ﬁk)5(ulc)|7'dx+/rl U(Gk)|(ulc)7\7ds]
(4.47)
:u(@)/ﬂ\es(u)|p7'dx+g(®)/ﬂ|€(u)\7'd:17+v(@)/F |u,|7ds.

Then, we can pass to the limit k¥ — 400 in and taking 7 = 1 to obtain the
implicit scalar equation . Now, taking the limit k¥ — 400 in (3.4]), it follows
that u solves the nonlocal inequality . Moreover, the scalar equation
asserts that © > 0. [l

REFERENCES

[1] H. Brezis; Fquations et Inéquations Non Linéaires dans les Espaces en Dualité, Annale de
I'Institut Fourier, Tome 18, No.1, (1968), p. 115-175.

[2] M. Bulicek, P. Gwiazda, J. Mdlek and A. Swierczewska; On steady Flows of an Incompressible
Fluids with Implicit Power-Law-Like Rheology, Advances of Calculus of Variation, (2009)

[3] L. Consiglieri and J. F. Rodrigues; A Nonlocal Friction Problem for a Class of Non-
Newtonian Flows, Portugaliae Mathematica 60:2 (2003), 237-252.

[4] J. Droniou et C. Imbert; Solutions de Viscosité et Solutions Variationnelle pour EDP Non-
Linéaires, Cours de DEA, Département de Mathématiques, Montpellier 11, (2002).

[5] G. Duvaut et J. L. Lions; Transfert de la Chaleur dans un Fluide de Bingham dont la
Viscosité Dépend de la Tempé rature. Journal of Functional Analysis 11 (1972), 85-104.

[6] G. Duvaut et J. L. Lions; Les In équations en Mécanique et en Physique, Dunod (1976).

[7] Fan, Ky; Fized Point and Min-mazx Theorems in Locally Convex Topological Linear Spaces,
Proc Natl. Acad. Sci. U S A. (1952), 38(2): 121-126.

[8] H. Fellouah, C. Castelain, A. Ould El Moctar et H. Peerhossaini; Instabilité dans un
écoulement de fluides complexes en canal courbe, 16eme Congres Francais de Mé canique,
Nice, 1-5 septembre 2003.

[9] P. N. Godbole and O. C. Zienkiewicz; Flow of Plastic and Viscoplastic Solids with Special
Reference to Extension and Forming Processes, Int, J, Num. Eng, 8, (1976), p. 3-16.

[10] S. Kobayashi and N. Robelo; A Coupled Analysis of Viscoplastic Deformation and Heat
Transfert: I Theoretical Consideration, II Applications, Int, J. of Mech. Sci, 22, 699-705,
707-718, (1980).

[11] J. L. Lions; Quelques Méthodes de Résolution des Problémes Auz Limites Non Linéaires,
Dunod (1969).

[12] J. L. Lions et E. Magenes; Problémes auz Limites Non Homogeénes et Applications, Volume
I, Dunod (1968).

[13] J. Malek, M. Ruzicka, and V. V. Shelukhin; Herschel-Bulkley fluids, Ezistence and Regularity
of SteadyFlows, Math. Models Methods Appl. Sci. 15, 12 (2005), 1845-1861.

[14] F. Messelmi, B. Merouani and M. Meflah F; Nonlinear Thermoelasticity Problem, Analele of
University Oradea, Fasc. Mathematica, Tome XV (2008), 207-217.



14 F. MESSELMI, B. MEROUANI, F. BOUZEGHAYA EJDE-2010/46

[15] 14] B. Merouani, F. Messelmi and S. Drabla; Dynamical Flow of a Bingham Fluid with
Subdifferential Boundary Condition, Analele of University Oradea, Fasc. Mathematica, Tome
XVI (2009), 5-30.

[16] Papanastasiou; Flow of Materials with Yield, J. of Rheology. 31(5), 385-404 (1987).

[17] M. Selmani, B. Merouani and L. Selmani; Analysis of a Class of Frictional Contact Problems
for the Bingham Fluid, Mediterr. J. Math 1-12, (2004).

FARID MESSELMI
DEPARTMENT DE MATHEMATIQUES, UNIVERISITE ZIAN ACHOUR DE DJELFA, DJELFA 17000, ALGE-
RIA

E-mail address: foudimath@yahoo.fr

BOUBAKEUR MEROUANI
DEPARTMENT DE MATHEMATIQUES, UNIVERSITE FERHAT-ABBES DE SETIF, SETIF 19000, ALGERIA
E-mail address: mermathsb@hotmail.fr

FouziA BOUZEGHAYA
DEPARTMENT DE MATHEMATIQUES, UNIVERSITE FERHAT-ABBES DE SETIF, SETIF 19000, ALGERIA
E-mail address: bouzeghaya@yahoo.fr



	1. Introduction
	2. Statement of the Problem
	Problem 1

	3. Variational Formulation
	Problem P2
	Problem P3

	4. Existence Results
	References

