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STEADY-STATE THERMAL HERSCHEL-BULKLEY FLOW WITH
TRESCA’S FRICTION LAW

FARID MESSELMI, BOUBAKEUR MEROUANI, FOUZIA BOUZEGHAYA

Abstract. We consider a mathematical model which describes the steady-

state flow of a Herschel-Bulkley fluid whose the consistency and the yield limit
depend on the temperature and with mixed boundary conditions, including

a frictional boundary condition. We derive a weak formulation of the cou-

pled system of motion and energy equations which consists of a variational
inequality for the velocity field. We prove the existence of weak solutions.

In the asymptotic limit case of a high thermal conductivity, the temperature

becomes a constant solving an implicit total energy equation involving the
consistency function and the yield limit.

1. Introduction

The model of Herschel-Bulkley fluid has been used in various publications to
describe the flow of metals, plastic solids and some polymers. The literature con-
cerning this topic is extensive; see e.g. [6, 16] and references therein. The new
feature in the model is due to a Fourier type boundary condition, and consists in
the appearance of a nonlocal term on the boundary part where Tresca’s thermal
friction is taken into account.

An intrinsic inclusion leads in a natural way to variational equations which justify
the study of problems involving the incompressible, plastic Herschel-Bulkley fluid
using arguments of the variational analysis. The paper is organized as follows. In
Section 2 we present the mechanical problem of the steady-state Herschel-Bulkley
flow where the consistency and the yield limit depend on the temperature and
with Tresca’s thermal friction law. Moreover, we introduce some notations and
preliminaries. In Section 3 we derive the variational formulation of the problem.
We prove in Section 4 the existence of weak solutions as well as an existence result
to the steady-state Herschel-Bulkley flow with temperature dependent nonlocal
consistency, yield limit and tresca’s friction, which can be obtained as an asymptotic
limit case of a very large thermal conductivity.
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2. Statement of the Problem

We consider a mathematical problem modelling the steady-state flow of a ther-
mal Herschel-Bulkley fluid in a bounded domain Ω ⊂ Rn (n = 2, 3), with the
boundary Γ of class C1, partitioned into two disjoint measurable parts Γ0 and Γ1

such that meas(Γ0) > 0. The fluid is supposed to be incompressible, the consistency
and the yield limit depend on the temperature. The fluid is acted upon by given
volume forces of density f . In addition, we admit a possible external heat source
proportional to the temperature. On Γ0 we suppose that the velocity is known.
The temperature is given by a homogeneous Neumann boundary condition on Γ0.
We impose on Γ1 a frictional contact described by a Tresca thermal friction law, as
well as a Fourier boundary condition.

We denote by Sn the space of symmetric tensors on Rn. We define the inner
product and the Euclidean norm on Rn and Sn, respectively, by

u · v = uivi ∀u,v ∈ Rn and σ · τ = σijτij ∀σ, τ ∈ Sn.

|u| = (u · u)1/2 ∀u ∈ Rn and |σ| = (σ · σ)1/2 ∀σ ∈ Sn.

Here and below, the indices i and j run from 1 to n and the summation convention
over repeated indices is used. We denote by σ̃ the deviator of σ = (σij) given by

σ̃ = (σ̃ij), σ̃ij = σij −
σkk

n
δij ,

where δ = (δij) denotes the identity tensor.
Let 1 < p < 2. We consider the rate of deformation operator defined for every

u ∈ W 1,p(Ω)n by

ε(u) = (εij(u))1≤i,j≤n, εij(u) =
1
2
(ui,j + uj,i).

We denote by ν the unit outward normal vector on the boundary Γ. For every
vector field v ∈ W 1,p(Ω)n we also write v for its trace on Γ. The normal and the
tangential components of v on the boundary are

vν = v · ν, vτ = v − vνν.

Similarly, for a regular tensor field σ, we denote by σν and στ the normal and
tangential components of σ on the boundary given by

σν = σν · ν, στ = σν − σνν.

We consider now, the following mechanical problem.

Problem 1. Find a velocity field u = (ui)i=1,n : Ω → Rn, stress field σ =
(σij)i,j=1,n : Ω → Sn and a temperature θ : Ω → R such that

u · ∇u = Div(σ) + f in Ω (2.1)

σ̃ = µ(θ)|ε(u)|p−2ε(u) + g(θ)
ε(u)
|ε(u)|

if |ε(u)| 6= 0

|σ̃| ≤ g(θ) if |ε(u)| = 0

 in Ω (2.2)

div(u) = 0 in Ω (2.3)

−k∆θ + u · ∇θ = σ · ε(u)− αθ in Ω (2.4)

u = 0 on Γ0 (2.5)
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uν = 0, |στ | ≤ υ(θ)

|στ | < υ(θ) =⇒ uτ = 0

|στ | = υ(θ) =⇒ uτ = −λστ , λ ≥ 0

 on Γ1 (2.6)

∂θ

∂ν
= 0 on Γ0 (2.7)

k
∂θ

∂ν
+ βθ = υ(θ)|uτ | on Γ1 (2.8)

Where Div(σ) = (σij,j) and div(u) = ui,i. The flow is given by the equation
(2.1) where the density is assumed equal to one. Equation (2.2) represents the
constitutive law of a Herschel-Bulkley fluid whose the consistency µ and the yield
limit g depend on the temperature, 1 < p < 2 is the power law exponent of the
material. (2.3) represents the incompressibility condition. Equation (2.4) represents
the energy conservation where the specific heat is assumed equal to one, k > 0 is
the thermal conductivity and the term −αθ represents the external heat source
with α > 0. (2.5) gives the velocity on Γ0. Condition (2.6) represents a Tresca
thermal friction law on Γ1 where υ(θ) is the friction yield coefficient for liquid-solid
interface. (2.7) is a homogeneous Neumann boundary condition on Γ0. Finally,
(2.8) represents a Fourier boundary condition on Γ1, where β ≥ 0 represents the
Robin coefficient.

Remark 2.1. In the constitutive law (2.2) of the Herschel-Bulkley fluid, the vis-
cosity is given by the formula

η(θ) = µ(θ)|ε(u)|p−2. (2.9)

We define

W =
{
v ∈ W 1,p(Ω)n : div(v) = 0 in Ω, v = 0 on Γ0 and vν = 0 on Γ1

}
,

which is a Banach space equipped with the norm

‖v‖W = ‖v‖W 1,p(Ω)n .

For the rest of this article, we will denote by c possibly different positive constants
depending only on the data of the problem. Denote by p′ the conjugate of p and
by q′ the conjugate of q, q ∈ [0,+∞[. We introduce the following functionals

B : W ×W ×W → R, B(u,v,w) =
∫

Ω

u · ∇v ·w dx

E : W 1,q(Ω)×W 1,q′(Ω)×W → R, E(θ, τ,v) =
∫

Ω

θ∇τ · v dx.

We assume

∀x ∈ Ω, µ(., x) ∈ C0(R) and

∃µ1, µ2 > 0 : µ1 ≤ µ(y, x) ≤ µ2 ∀y ∈ R, ∀x ∈ Ω.
(2.10)

∀x ∈ Ω, g(., x) ∈ C0(R) and

∃g0 > 0 : 0 ≤ g(y, x) ≤ g0 ∀y ∈ R, ∀x ∈ Ω.
(2.11)

∀x ∈ Γ1, υ(., x) ∈ C0(R) and

∃υ0 > 0 : 0 ≤ υ(y, x) ≤ υ0 ∀y ∈ R, ∀x ∈ Γ1.
(2.12)
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Lemma 2.2. Suppose that

3n

n + 2
≤ p < 2 and 1 < q <

n

n− 1
. (2.13)

Then (1) B is trilinear, continuous on W ×W ×W . Moreover, for all (u,v,w) ∈
W ×W ×W we have B(u,v,w) = −B(u,w,v).

(2) E is trilinear, continuous on W 1,q(Ω) × W 1,q′(Ω) × W and on H1(Ω) ×
H1(Ω) × W . Moreover, E(θ, τ,v) = −E(τ, θ,v) for all (θ, τ,v) ∈ W 1,q(Ω) ×
W 1,q′(Ω)×W and for all (θ, τ,v) ∈ H1(Ω)×H1(Ω)×W .

Proof. In these two assertions, the trilinearity is evident.
(1) The Soblov imbedding

W 1,p(Ω) ⊂ Lρ(Ω) ∀ρ ∈ [p,
np

n− p
],

combined with (2.13), gives W 1,p(Ω) ⊂ Lρ(Ω) for all ρ ∈ [p, 2n
n−2 [. Particularly,

W 1,p(Ω) ⊂ L
3n

n−1 (Ω). (2.14)

On the other hand, the use of Hölder’s inequality leads to

B(u,v,w) ≤ ‖u‖
L

3n
n−1 (Ω)n

‖v‖Lp(Ω)n‖w‖
L

3n
n−1 (Ω)n

.

Consequently, the continuity of B follows from (2.14).
Moreover, the antisymmetry of the convective operator B is valid by the incom-

pressibility condition (2.3) and the boundary conditions given by (2.5), (2.6), using
an integration by parts.

(2) The continuity of E on H1(Ω)×H1(Ω)×W is an immediate consequence of
the Sobolev imbedding W ⊂ L3(Ω)n and H1(Ω) ⊂ L3(Ω). The proof of the anti-
symmetry of E is based on the incompressibility condition (2.3) and the boundary
conditions given by (2.5), (2.6).

Finally, to prove the continuity of E on W 1,q(Ω) × W 1,q′(Ω) × W , we proceed
as follows. Sobolev’s imbedding asserts that

W 1,q(Ω) ⊂ Lρ(Ω) ∀ρ ∈]
n

n− 1
,

n

n− 2
[,

W ⊂ Ls(Ω)n ∀s ∈ [n,
2n

n− 2
[.

(2.15)

Then, if θ ∈ W 1,q(Ω), τ ∈ W 1,q′(Ω) and v ∈ W , the result follows from (2.15),
the antisymmetry of E and the continuity of the injection W 1,q′(Ω) → C(Ω̄) for
q′ > n, that is, q < n

n−1 , using Hölder’s inequality . �

For the rest of this article, we take 3n
n+2 ≤ p < 2 and 1 < q < n

n−1 .

3. Variational Formulation

The aim of this section is to derive a variational formulation to the problem
(P1). To do so we need the following Lemma.
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Lemma 3.1. Assume that f ∈ W ′. If {u,σ, θ} are regular functions satisfying
(2.1)-(2.8), then

B(u,u,v − u) +
∫

Ω

µ(θ)(|ε(u)|p−2ε(u)) · (ε(v)− ε(u)) dx + φ(θ,v)− φ(θ,u)

≥
∫

Ω

f · (v − u) dx ∀v ∈ W,

(3.1)

− E(θ, τ,u) + k

∫
Ω

∇θ · ∇τ dx + α

∫
Ω

θτ dx + β

∫
Γ1

θτ ds

=
∫

Ω

µ(θ)|ε(u)|p + g(θ)|ε(u)|)τ dx +
∫

Γ1

υ(θ)|uτ |τ ds ∀τ ∈ W 1,q′(Ω),
(3.2)

where

φ(θ,u) =
∫

Γ1

υ(θ)|uτ | ds +
∫

Ω

g(θ)|ε(u)| dx. (3.3)

Proof. Let us start by proving the variational inequality (3.1). Let {u,σ, θ} be
regular functions satisfying (2.1)-(2.8) and let v ∈ W . Using Green’s formula and
(2.1), (2.2), (2.3), (2.5) and (2.6), we obtain∫

Ω

u · ∇u · (v − u) dx +
∫

Ω

µ(θ)(|ε(u)|p−2ε(u)) · (ε(v)− ε(u)) dx

+
∫

Ω

g(θ)|ε(v)| dx−
∫

Ω

g(θ)|ε(u)| dx

≥
∫

Ω

f · (v − u) dx +
∫

Γ1

σν · (v − u) ds.

On the other hand, by (2.6),∫
Γ1

σν · (v − u) ds ≥
∫

Γ1

υ(θ)|uτ | ds−
∫

Γ1

υ(θ)|vτ |ds.

Then (3.1) holds. Now, to prove the variational equation (3.2), we proceed as
follows. Applying Green’s formula, (2.4), (2.7), (2.8) and Lemma 2.2, we obtain,
after a simple calculation,

−
∫

Ω

θ(∇τ · v) dx + k

∫
Ω

∇θ · ∇τ dx + α

∫
Ω

θτ dx + β

∫
Γ1

θτds

=
∫

Ω

σ · ε(u)τ dx +
∫

Γ1

υ(θ)|uτ |τ ds ∀τ ∈ W 1,q′(Ω).

By definition of σ, using the incompressibility condition (2.3), we can infer∫
Ω

σ · ε(u)τ dx =
∫

Ω

(µ(θ)|ε(u)|p + g(θ)|ε(u)|)τ dx,

which completes the proof. �

Remark 3.2. In (3.2), the first term on the right hand side has sense, since the
injection W 1,q′(Ω) → C(Ω̄) is continuous for q′ > n, that is, q < n/(n− 1).

Lemma 3.1 leads us to consider the following variational system.
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Problem P2. For prescribed data f ∈ W ′. Find u ∈ W and θ ∈ W 1,q(Ω),
satisfying the variational system

B(u,u,v − u) +
∫

Ω

µ(θ)(|ε(u)|p−2ε(u)) · (ε(v)− ε(u)) dx + φ(θ,v)− φ(θ,u)

≥
∫

Ω

f · (v − u) dx ∀v ∈ W,

(3.4)
and

− E(θ, τ,u) + k

∫
Ω

∇θ · ∇τ dx + α

∫
Ω

θτdx + β

∫
Γ1

θτds

=
∫

Ω

(µ(θ)|ε(u)|p + g(θ)|ε(u)|)τ dx +
∫

Γ1

υ(θ)|uτ |τds ∀τ ∈ W 1,q′(Ω).
(3.5)

Now, we consider the weak nonlocal formulation to the mechanical problem
(2.1)-(2.3) and (2.5)-(2.6) corresponding formally to the limit model k = ∞ (mod-
elling the steady-state Herschel-Bulkley flow with temperature dependent nonlocal
consistency, yield limit and friction).

Problem P3. For prescribed data f ∈ W ′. Find u ∈ W and Θ ∈ R+, satisfying
the variational inequality

B(u,u,v − u) + µ(Θ)
∫

Ω

(|ε(u)|p−2ε(u)) · (ε(v)− ε(u)) dx

+ g(Θ)
∫

Ω

(|ε(v)| − |ε(u)|) dx + υ(Θ)
∫

Γ1

(|vτ | − |uτ |) ds

≥
∫

Ω

f · (v − u) dx ∀v ∈ W,

(3.6)

where Θ is a solution to the implicit scalar equation

(α meas(Ω) + β meas(Γ1))Θ

= µ(Θ)
∫

Ω

|ε(u)|p dx + g(Θ)
∫

Ω

|ε(u)| dx + υ(Θ)
∫

Γ1

|uτ | ds.
(3.7)

4. Existence Results

In this section we establish two existence theorems for problems (P2) and (P3).

Theorem 4.1. Problem (P2) has a solution (u, θ) satisfying

u ∈ W, (4.1)

θ ∈ W 1,q(Ω). (4.2)

Theorem 4.2. There exists (u,Θ) ∈ W × R+ a solution to the nonlocal problem
(P3), which can be obtained as a limit in W × W 1,q(Ω) as k → ∞ of solutions
(uk, θk) of problem (P2).

The proof of Theorem 4.1 is based on the application of the Kakutani-Glicksberg
fixed point theorem for multivalued mappings, using two auxiliary existence results.
The first one results from the classical theory for inequalities with monotone op-
erators and convex functionals. The second one results from the theory of elliptic
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equations and L1-Data theory. Finally, compactness arguments are used to con-
clude the proofs. For reader’s convenience, let us recall the fixed point theorem
[7].

Theorem 4.3 (Kakutani-Glicksberg). Let X be a locally convex Hausdorff topo-
logical vector space and K be a nonempty convex compact. If L : K → P (K) is an
upper semicontinuous mapping and L(z) 6= ∅ is a convex and closed subset in K
for every z ∈ K, then there exists at least one fixed point, z ∈ L(z).

The first auxiliary existence result is as follows.

Proposition 4.4. For every w ∈ W and λ ∈ W 1,q(Ω), there exists a unique
solution u = u(w, λ) ∈ W to the problem

B(w,u,v − u) +
∫

Ω

(µ(λ)|ε(u)|p−2ε(u)) · (ε(v)− ε(u)) dx + φ(λ,v)− φ(λ,u)

≥
∫

Ω

f · (v − u) dx ∀v ∈ W,

(4.3)
and it satisfies the estimate

‖u‖W ≤ c(
‖f‖W ′

µ1
)1/(p−1). (4.4)

Proof. Introducing the functional

J : Lp(Ω)n×n
s ⊂ Sn → R, J(σ) =

∫
Ω

µ

p
|σ|p dx.

This functional is convex, lower semi-continuous on Lp(Ω)n×n
s and Gâteaux differ-

entiable. Its Gâteaux derivate at any point σ ∈ Lp(Ω)n×n
s is

〈DJ(σ),η〉Lp′ (Ω)n×n
s ×Lp(Ω)n×n

s
=

∫
Ω

µ|σ|p−2σ · η dx ∀η ∈ Lp(Ω)n×n
s .

Consequently, DJ is hemi-continuous and monotone. Moreover DJ is strict mono-
tone and bounded. To this aim, we have

〈DJ(σ)−DJ(η),σ − η〉Lp′ (Ω)n×n
s ×Lp(Ω)n×n

s

≥
∫

Ω

µ(|σ| − |η|)(|σ|p−1 − |η|p−1) dx.

Then if σ 6= η, we get 〈DJ(σ) −DJ(η),σ − η〉Lp′ (Ω)n×n
s ×Lp(Ω)n×n

s
> 0. It means

that DJ is strict monotone. On the other hand, for every σ ∈ Lp(Ω)n×n
s∫

Ω

|µ|σ|p−2σ|p
′
dx ≤ µp′

2

∫
Ω

|σ|p dx,

which proves that DJ is bounded on W . Now, we consider the differential operator

Fw : W → W ′, u 7→ Fwu ∀v ∈ W

〈Fwu,v〉W ′×W = B(w,u,v) + 〈DJ(ε(u)), ε(v)〉Lp′ (Ω)n×n
s ×Lp(Ω)n×n

s
.

(4.5)

By Lemma (2.2) and the properties of DJ , we deduce that Fw is hemi-continuous,
strict monotone and bounded on W for every w ∈ W . Therefore, for every u ∈ W
we have

〈Fwu,u〉W ′×W

‖u‖W
≥ µ1

∫
Ω
|ε(u)|p dx

‖u‖W
.
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Applying the generalized Korn inequality, we obtain
〈Fwu,u〉W ′×W

‖u‖W
≥ µ1c‖u‖p−1

W .

It follows that the operator Fw is coercive on W for every w ∈ W .
Furthermore, the functional v 7→ φ(λ,v) is continuous and convex on W , it is

then lower semi-continuous on W . Consequently, the existence and uniqueness of
the solution result from the classical theorems (see [1]) on variational inequalities
with monotone operators and convex functionals.

To prove the estimate (4.4) we proceed as follows, by choosing v = 0 as test
function in (4.3), we get ∫

Ω

µ(λ)|ε(u)|p dx ≤ ‖f‖W ′‖u‖W .

Hence, Korn’s inequality permits to conclude the proof. �

The second auxiliary existence result is as follows.

Proposition 4.5. Let u = u(w, λ) be the solution of problem (4.3) given by Propo-
sition 4.4. Then there exists θ = θ(u, λ) ∈ W 1,q(Ω), a solution to the problem

− E(θ, τ,u) + k

∫
Ω

∇θ · ∇τ dx + α

∫
Ω

θτ dx + β

∫
Γ1

θτ ds

=
∫

Ω

(µ(λ)|ε(u)|p + g(λ)|ε(u)|)τ dx +
∫

Γ1

υ(λ)|uτ |τ ds ∀τ ∈ W 1,q′(Ω),
(4.6)

and satisfies the estimate

α‖θ‖Lq(Ω) + β‖θ‖Lq(Γ) +
√

k‖∇θ‖Lq(Ω)n ≤ <(υ0, µ1, ‖f‖W ′), (4.7)

where < is a positive function.

Proof. There is a technical difficulty in the resolution of such problem. To this aim
we introduce the following approximate problem

− E(θm, τ,u) + k

∫
Ω

∇θm · ∇τ dx + α

∫
Ω

θmτ dx + β

∫
Γ1

θmτ ds

=
∫

Ω

Fmτ dx +
∫
Γ1

υ(λ)|uτ |τ ds ∀τ ∈ H1(Ω),
(4.8)

where

Fm =
m

[
µ(λ)|ε(u)|p + g(λ)|ε(u)|

]
m + µ(λ)|ε(u)|p + g(λ)|ε(u)|

∈ L∞(Ω). (4.9)

Let us consider for every u ∈ W the form G : H1(Ω)×H1(Ω) → R,

G(θ, τ) = −E(θ, τ,u) + k

∫
Ω

∇θ · ∇τdx + α

∫
Ω

θτdx + β

∫
Γ1

θτds. (4.10)

Lemma 2.2 and the Poincaré type inequality affirm that G is bilinear, continu-
ous and coercive on H1(Ω) × H1(Ω) for every u ∈ W . Furthermore, by Hölder’s
inequality and Sobolev’s trace inequality using the estimate (4.4), we get

|
∫

Γ1

υ(λ)|uτ |τ ds| ≤ c‖τ‖H1(Ω).

Consequently, from the Lax-Milgram theorem, there exists a unique solution θm ∈
H1(Ω) to the problem (4.8).
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Now, we test the apprixamte equation (4.8) by the function

τ = sign(θm)[1− 1
(1 + |θm|)ξ

] ∈ H1(Ω) ∩ L∞(Ω), ξ > 0. (4.11)

We find by using some integration by parts (see for instance [4])

ξk

∫
Ω

|∇θm|2

(1 + |θm|)ξ+1
dx + βC(ξ)

∫
Γ1

|θm| ds ≤ M, (4.12)

where M = M(υ0, µ1, c, ‖f‖W ′) is a positive function. Particularly∫
Ω

|∇θm|2

(1 + |θm|)ξ+1
dx ≤ M

ξk
. (4.13)

Denoting by γ the function

γ(r) =
∫ r

0

dt

(1 + |t|)
ξ+1
2

.

Then
∇γ(θm) =

∇θm

(1 + |θm|)(ξ+1)/2
.

We deduce from (4.12) that ∇γ(θm) is bounded in L2(Ω), hence γ(θm) is bounded
in H1(Ω). Sobolev’s imbedding asserts that H1(Ω) ⊂ Lρ(Ω), where ρ = 2n

n−2 if
n 6= 2 and 2 < ρ < +∞ if n = 2.

Keeping in mind that γ(r) ∼ r
1−ξ
2 as r → +∞. Then |θm|

1−ξ
2 is bounded in

Lρ(Ω). Consequently

|θm|ρ(1−ξ)/2 is bounded in L1(Ω). (4.14)

Moreover, by Hölder’s inequality,∫
Ω

|∇θm|q dx ≤
( ∫

Ω

|∇θm|2

(1 + |θm|)ξ+1
dx

)q/2( ∫
Ω

(1 + |θm|)(ξ+1)q/(2−q) dx
)(2−q)/2

.

Hence, from (4.13), we obtain∫
Ω

|∇θm|q dx ≤ (
M

kξ
)q/2

( ∫
Ω

(1 + |θm|)(ξ+1)q/(2−q) dx
)(2−q)/2

. (4.15)

Let us choose the couple (ξ, q) such that ρ(1−ξ)
2 = (ξ+1)q

2−q . It means that q =
2ρ(1−ξ)

ρ(1−ξ)+2(1+ξ) . Then if 1 < q < n
n−1 , we can choose 0 < ξ < ρ−2

ρ+2 . Consequently, by
using (4.14) and (4.15), the following estimate holds

θm is bounded in W 1,q(Ω). (4.16)

Combining this with (4.12), we can extract a subsequence (θµ)µ, satisfying

θµ → θ in W 1,q(Ω) weakly, (4.17)

θµ → θ in Lq(Γ) weakly. (4.18)

Recall that Rellich-Kondrachof’s theorem affirms the compactness of the imbed-
ding W 1,q(Ω) → L1(Ω). It follows that we can extract a subsequence of θµ, still
denoted by θµ such that

θµ → θ in L1(Ω) strongly, (4.19)

θµ → θ in L1(Γ) strongly. (4.20)
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We conclude that problem (4.6) admits a solution θ = θ(u, λ) ∈ W 1,q(Ω). Using
(4.12), (4.14) and (4.15), the estimate (4.7) follows immediately. �

Proof of Theorem 4.1. To apply the Kakutani-Glicksberg fixed point theorem, let
us consider the closed convex ball

K = {(w, λ) ∈ W ×W 1,p(Ω) : ‖w‖W ≤ R1, ‖λ‖W 1,q(Ω) ≤ R2}, (4.21)

where R1 ≥ c(‖f‖W ′
µ1

)
1

p−1 and R2 is given by the estimate (4.14). The ball K is
compact when the topological vector space is provided by the weak topology. Let
us built the mapping L : K → P (K), as follows

(w, λ) 7→ L(w, λ) = {(u, θ)} ⊂ K.

For every (w, λ) ∈ K, equation (4.6) is linear with respect to θ, and the solution u
is unique. Consequently the set L(w, λ) is convex. To conclude the proof it remains
to prove the closeness in K ×K of the graph set

G(L) = {((w, λ), (u, θ)) ∈ K ×K : (u, θ) ∈ L(w, λ)}.
To do so, we consider a sequence (wn, λn) ∈ K, such that (wn, λn) → (w, λ) in
W ×W 1,q(Ω) weakly and (un, θn) ∈ L(wn, λn). Let us remember that (un, θn) is
solution to the problem

B(wn,un,v − un) +
∫

Ω

(µ(λn)|ε(un)|p−2ε(un)) · (ε(v)− ε(un)) dx

+ φ(λn,v)− φ(λn,un)

≥
∫

Ω

f · (v − un) dx ∀v ∈ W,

(4.22)

− E(θn, τ,un) + k

∫
Ω

∇θn · ∇τ dx + α

∫
Ω

θnτ dx + β

∫
Γ1

θnτ ds

=
∫

Ω

(µ(λn)|ε(un)|p + g(λn)|ε(un)|)τ dx

+
∫

Γ1

υ(λn)|(un)τ |τ ds ∀τ ∈ W 1,q′(Ω).

(4.23)

Then, from Propositions 4.4 and 4.5,

‖un‖W ≤ R1 and ‖θn‖W 1,q(Ω) ≤ R2.

Thus, we can extract a subsequences uµ and θµ such that

uµ → u in W weakly, (4.24)

θµ → θ in W 1,q(Ω) weakly. (4.25)

It follows from Rellich-Kondrachof’s theorem and Sobolev’s trace theorem, that we
can extract a subsequences of λµ, uµ and θµ, still denoted by λµ, uµ and θµ, such
that

wµ → w in Ls(Ω)n strongly and a.e. in Ω, (4.26)

λµ → λ in L1(Ω) strongly and a.e. in Ω, (4.27)

uµ → u in Ls(Ω)n strongly and a.e. in Ω, (4.28)

θµ → θ in L1(Ω) strongly and a.e. in Ω, (4.29)

uµ → u in Lr(Γ)n strongly and a.e. on Γ, (4.30)
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θµ → θ in L1(Γ) strongly and a.e. on Γ, (4.31)

where n ≤ s < 2n
n−2 and 2 ≤ r < 2(n−1)

n−2 .
Now we prove that ε(uµ) → ε(u) a.e. in Ω. To do so, we proceed as follows.

Introducing the positive function

hµ(x) = [µ(λµ(x))|ε(uµ(x))|p−2ε(uµ(x))

− µ(λµ(x))|ε(u(x))|p−2ε(u(x))] · (ε(uµ(x))− ε(u(x))).
(4.32)

Then∫
Ω

hµ(x) dx ≤ f(uµ − u) + B(wµ,uµ,v − uµ) + φ(λµ,u)− φ(λµ,uµ)

−
∫

Ω

µ(λµ(x))|ε(u(x))|p−2ε(u(x)) · (ε(uµ(x))− ε(u(x))) dx.

(4.33)

We know from Lemma 2.2 that

B(wµ,uµ,v) = −B(w,v,uµ) + B(w −wµ,v,uµ).

Then, Lebesgue’s dominated convergence theorem applied to the second term on
the right-hand side yields convergence

B(wµ,uµ,v) → B(w,u,v). (4.34)

On the other hand, since λµ → λ a.e. in Ω and on Γ, the functions g and υ are
continuous and due to the weak lower semicontinuity of the continuous and convex
functional v 7→ φ(λ,v), combined with convergence result (4.24), we deduce from
the Lebesgue dominated convergence theorem that

lim inf φ(λµ,uµ) ≥ φ(λ,u), (4.35)

lim φ(λµ,u) = φ(λ,u). (4.36)

Since λµ → λ a.e. in Ω and on Γ, the function µ is continuous and due to (4.24)
and the fact that |ε(u(x))|p−2ε(u(x)) is bounded in Lp′(Ω)n×n

s , we obtain by the
Lebesgue dominated convergence theorem that∫

Ω

µ(λµ(x))|ε(u(x))|p−2ε(u(x))(ε(uµ(x))− ε(u(x))) dx → 0. (4.37)

Consequently, (4.33), (4.34), (4.35), (4.36) and (4.37) give

lim ‖hµ‖L1(Ω) = 0 and hµ → 0 a.e. (4.38)

Furthermore, hµ(x) can be rewritten as

hµ(x) = µ(λµ(x))|ε(uµ(x))|p − µ(λµ(x))|ε(uµ(x))|p−2ε(uµ(x)) · ε(u(x))

− µ(λµ(x))|ε(u(x))|p−2ε(u(x)) · (ε(uµ(x))− ε(u(x))),
(4.39)

which proves, using the estimate (4.4), that

µ(λµ(x))|ε(uµ(x))|p ≤ hµ(x) + cµ(λµ(x))|ε(uµ(x))|p−1

+ cµ(λµ(x))|ε(uµ(x))|+ c.

It follows that (ε(uµ(x)))µ is bounded in Rn×n, we can then extract a subsequence
still denoted by (ε(uµ(x)))µ, that converges to ξ ∈ Rn×n. By passage to the limit
in hµ, we deduce that

(µ(λ)|ξ|p−2ξ − µ(λ)|ε(u(x))|p−2ε(u(x))) · (ξ − ε(u(x))) = 0.



12 F. MESSELMI, B. MEROUANI, F. BOUZEGHAYA EJDE-2010/46

Then ε(u(x)) = ξ. We conclude that

ε(uµ) → ε(u) a.e. in Ω. (4.40)

Therefore, the sequence (µ(λµ(x))|ε(uµ(x))|p−2ε(uµ(x)))µ converges a.e. in Ω to
µ(λ(x))|ε(u(x))|p−2ε(u(x)). Moreover, this sequence is bounded in Lp′(Ω)n×n

s , then
the Lp−Lq compactness theorem (see [4, 11]) implies the convergence in Lr(Ω)n×n

s

for every 1 < r < p′. By choosing ϕ ∈ D(Ω)n as test function in inequality (4.22),

B(w,u,ϕ− u) +
∫

Ω

µ(λ)|ε(u)|p−2ε(u) · ε(ϕ) dx + φ(λ, ϕ)− f · (ϕ− u)

≥
∫

Ω

µ(λµ)|ε(uµ)|p dx + φ(λµ,uµ).
(4.41)

Using (4.35), the fact that λµ → λ a.e. in Ω, the continuity of µ and g, the weak
lower semicontinuity of the norm ‖ · ‖W 1,p(Ω)n . We conclude that u is solution to
(4.3).

Our final goal is to show that θ is solution of (4.23). To do so, we proceed as
follows. Introducing the function

χµ(x) = µ(λµ(x))|ε(uµ(x))|p + g(λµ(x))|ε(uµ(x))|. (4.42)

From (4.40), we remark that χµ → χ a.e. in Ω, where

χ(x) = µ(λ(x))|ε(u(x))|p + g(λ(x))|ε(u(x))|. (4.43)

Substituting in (4.22) and taking v = u as test function, the passage to limit, using
Lebesgue’s dominated convergence theorem, gives

lim
[ ∫

Ω

χµ(x) dx +
∫

Γ1

υ(λµ)|(uµ)τ | ds
]
≤

∫
Ω

χ(x) dx +
∫

Γ1

υ(λ)|uτ | ds. (4.44)

On the other hand, we know from the weak lower semicontinuity of the norm
‖ · ‖W 1,p(Ω)n and the functional v 7→ φ(λ,v), that

lim inf
[ ∫

Ω

χµ(x) dx +
∫

Γ1

υ(λµ)|(uµ)τ | ds
]
≥

∫
Ω

χ(x) dx +
∫

Γ1

υ(λ)|uτ | ds. (4.45)

We deduce from (4.44) and (4.45) that

lim
[ ∫

Ω

χµ(x) dx +
∫

Γ1

υ(λµ)|(uµ)τ | ds
]

=
∫

Ω

χ(x) dx +
∫

Γ1

υ(λ)|uτ | ds,

which implies, using the continuity of the injection W 1,q′(Ω) → C(Ω̄) and the
Lebesgue dominated convergence theorem, that for every τ ∈ W 1,q′(Ω),

lim
[ ∫

Ω

(µ(λµ)|ε(uµ)|p + g(λµ)|ε(uµ)|)τ dx +
∫

Γ1

υ(λµ)|(uµ)τ |τ ds
]

=
∫

Ω

(µ(λ)|ε(u)|p + g(λ)|ε(u)|)τ dx +
∫

Γ1

υ(λ)|uτ |τ ds.

(4.46)

Thus, we conclude that θ is solution to (4.23). Hence, (un, θn) → (u, θ) ∈ L(w, λ)
in W ×W 1,q(Ω) weakly. By virtue of Kakutani-Glicksberg’s fixed point theorem,
the mapping L admits a fixed point (u, θ) ∈ L(u, θ), which solves problem (P2). �

Remark 4.6. This proof permits also to verify the continuous dependence of the
solution (u(w, λ), θ(u, λ)) ∈ W × W 1,q(Ω) of problem (4.3), (4.6) with respect to
the function (w, λ) ∈ W ×W 1,q(Ω).
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Proof of Theorem 4.2. Let (uk, θk) be a solution to the problem (P2), correspond-
ing to each k > 0 and let k → +∞. From the estimates (4.4), (4.7) and using
Rellich-Kondrachof’s theorem, we can extract a subsequence of (uk, θk), still de-
noted by (uk, θk), satisfying

uk → u in W weakly,

uk → u in Ls(Ω)n strongly,

∇θk → 0 in L1(Ω)n strongly,

θk → Θ = a constant in L1(Ω) strongly,

where n ≤ s < 2n/(n − 2). We can proceed as in the proof of Theorem 4.1 to get
the convergence

lim
[ ∫

Ω

µ(θk)|ε(uk)|pτ dx +
∫

Ω

g(θk)|ε(uk)|τ dx +
∫

Γ1

υ(θk)|(uk)τ |τ ds
]

= µ(Θ)
∫

Ω

|ε(u)|pτdx + g(Θ)
∫

Ω

|ε(u)|τ dx + υ(Θ)
∫

Γ1

|uτ |τ ds.

(4.47)

Then, we can pass to the limit k → +∞ in (3.5) and taking τ = 1 to obtain the
implicit scalar equation (3.7). Now, taking the limit k → +∞ in (3.4), it follows
that u solves the nonlocal inequality (3.6). Moreover, the scalar equation (3.7)
asserts that Θ ≥ 0. �
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