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GREEN FUNCTION AND FOURIER TRANSFORM FOR O-PLUS
OPERATORS

WANCHAK SATSANIT

Abstract. In this article, we study the o-plus operator defined by

⊕k =
““ pX

i=1

∂2

∂x2
i

”4
−

“ p+qX
j=p+1

∂2

∂x2
j

”4”k
,

where x = (x1, x2, . . . , xn) ∈ Rn, p + q = n, and k is a nonnegative integer.
Firstly, we studied the elementary solution for the ⊕k operator and then this

solution is related to the solution of the wave and the Laplacian equations.

Finally, we studied the Fourier transform of the elementary solution and also
the Fourier transform of its convolution.

1. Introduction

Consider the ultra-hyperbolic operator iterated k times,

�k =
( ∂2

∂x2
1

+
∂2

∂x2
2

+ · · ·+ ∂2

∂x2
p

− ∂2

∂x2
p+1

− ∂2

∂x2
p+2

− · · · − ∂2

∂x2
p+q

)k

. (1.1)

Trione [6] showed that the generalized function RH
2k(x), defined by (2.1) below,

is the unique elementary solution for the �k operator, that is �kRH
2k(x) = δ for

x ∈ Rn, the n-dimensional Euclidian space.
Kananthai [2] studied the Diamond operator, iterated k times,

♦k =
(( p∑

i=1

∂2

∂x2
i

)2

−
( p+q∑

j=p+1

∂2

∂x2
j

)2)k

, (1.2)

for x = (x1, x2, . . . , xn) ∈ Rn, where p + q = n, n is the dimension of Euclidean
space Rn, and k is a nonnegative integer. The operator ♦k can be expressed in the
form

♦k = 4k�k = �k4k (1.3)

where 4k is the Laplacian operator iterated k times,

4k =
( ∂2

∂x2
1

+
∂2

∂x2
2

+ · · ·+ ∂2

∂x2
n

)k

. (1.4)
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Kananthai [2] showed that the function u(x) = (−1)kRe
2k(x) ∗ RH

2k(x) is the
unique elementary solution for the operator ♦k, where ∗ indicates convolution, and
Re

2k(x), RH
2k(x) are defined by (2.5) and (2.2) with α = 2k respectively; that is,

♦k
(
(−1)kRe

2k(x) ∗RH
2k(x)

)
= δ . (1.5)

Furthermore, The operator ⊕k was first studied by Kananthai, Suantai and Longani
[4]. The ⊕k operator can be expressed in the form

⊕k =
[( p∑

i=1

∂2

∂x2
i

)2

−
( p+q∑

j=p+1

∂2

∂x2
j

)2]k[ p∑
i=1

∂2

∂x2
i

+ i

p+q∑
j=p+1

∂2

∂x2
j

]k

·
[ p∑

i=1

∂2

∂x2
i

− i

p+q∑
j=p+1

∂2

∂x2
j

]k

.

The purpose of this work is to study the operator

⊕k =
(( p∑

i=1

∂2

∂x2
i

)4

−
( p+q∑

j=p+1

∂2

∂x2
j

)4)k

=
(( p∑

i=1

∂2

∂x2
i

)2

−
( p+q∑

j=p+1

∂2

∂x2
j

)2)k

·
(( p∑

i=1

∂2

∂x2
i

)2( p+q∑
j=p+1

∂2

∂x2
j

)2)k

.

(1.6)

Let us denote the operator

}k =
(( p∑

i=1

∂2

∂x2
i

)2

+
( p+q∑

j=p+1

∂2

∂x2
j

)2)k

.

By (1.1) and (1.4) we obtain

}k =
(( p∑

i=1

∂2

∂x2
i

)2

+
( p+q∑

j=p+1

∂2

∂x2
j

)2)k

=
[(4+ �

2
)2 +

(4−�
2

)2]k

=
(42 + �2

2
)k

.

(1.7)

Thus, (1.6) can be written as

⊕k = ♦k }k . (1.8)

For k = 1 the operator ♦ can be expressed in the form ♦ = 4� = �4 where � is
the Ultra-hyperbolic operator

� =
∂2

∂x2
1

+
∂2

∂x2
2

+ · · ·+ ∂2

∂x2
p

− ∂2

∂x2
p+1

− ∂2

∂x2
p+2

− · · · − ∂2

∂x2
p+q

. (1.9)

where p + q = n and 4 is the Lapacian operator

4 =
∂2

∂x2
1

+
∂2

∂x2
2

+ · · ·+ ∂2

∂x2
n

. (1.10)

By putting p = 1 and x1 = t(t = time) in (1.9), we obtain the wave operator

� =
∂2

∂t21
− ∂2

∂x2
2

− ∂2

∂x2
3

− · · · − ∂2

∂x2
n

. (1.11)
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From (1.6) with q = 0 and k = 1, we obtain

⊕ = 44
p (1.12)

where

4p =
∂2

∂x2
1

+
∂2

∂x2
2

+ · · ·+ ∂2

∂x2
p

. (1.13)

Firstly, we can find the elementary solution G(x) of the operator ⊕k; that is,

⊕kG(x) = δ, (1.14)

where δ is the Dirac-delta distribution. Moreover, we can find the relationship
between G(x) and the elementary solution of the wave operator defined by (1.11)
depending on the conditions of p, q and k of (1.6) with p = 1, q = n− 1, k = 1 and
x1 = t(t is time) and also we found that G(x) relates to the elementary solution
the Laplacian operator defined by (1.12) and (1.13) depending on the conditions of
q and k of (1.6) with q = 0 and k = 1. In finding the elementary solution of (1.6),
we use the method of convolutions of the generalized function. Finally, we study
the Fourier transform of the elementary solution of the ⊕k operator and also study
their convolution.

2. Preliminaries

Definition 2.1. Let x = (x1, x2, . . . , xn) be a point of the n-dimensional Euclidean
space Rn. Denoted by

υ = x2
1 + x2

2 + · · ·+ x2
p − x2

p+1 − x2
p+2 − · · · − x2

p+q (2.1)

the non-degenerated quadratic form, where p + q = n is the dimension the space
Rn.

Let Γ+ = {x ∈ Rn : x1 > 0 and u > 0} be the interior of a forward cone and Γ+

denotes it closure. For any complex number α, define the function

RH
α (υ) =

{
υ

α−n
2

Kn(α) , for x ∈ Γ+,

0, for x 6∈ Γ+,
(2.2)

where the constant Kn(α) is given by the formula

Kn(α) =
π

n−1
2 Γ( 2+α−n

2 )Γ( 1−α
2 )Γ(α)

Γ( 2+α−p
2 )Γ(p−α

2 )
. (2.3)

The function RH
α (υ) is called the Ultra-hyperbolic kernel of Marcel Riesz and

was introduced by Nozaki [5, p.72]. It is well known that RH
α (υ) is an ordinary

function if Re(α) ≥ n and is a distribution of α if Re(α) < n. Let suppRH
α (υ)

denote the support of RH
α (υ) and suppose supp RH

α (υ) ⊂ Γ̄+, that is suppRH
α (υ) is

compact.
If p = 1, then (2.2) reduces to the function

MH
α (υ) =

{
υ

α−n
2

Hn(α) , for x ∈ Γ+,

0, for x 6∈ Γ+,
(2.4)

where υ = x2
1 − x2

2 − · · · − x2
n and Hn(α) = π

n−1
2 2α−1Γ(α−n+2

2 )Γ(α
2 ). The function

MH
α (υ) is called the hyperbolic kernel of Marcel Riesz.
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Definition 2.2. Let x = (x1, x2, . . . , xn) be a point of Rn and |x| = (x2
1 + x2

2 +
· · ·+ x2

n)1/2. The elliptic kernel of Marcel Riesz is defined as

Re
α(x) =

|x|α−n

Wn(α)
, (2.5)

where

Wn(α) =
π

n
2 2αΓ(α/2)
Γ
(

n−α
2

) , (2.6)

with α a complex parameter and n the dimension of Rn.

It can be shown that Re
−2k(x) = (−1)k4kδ(x) where 4k is defined by (1.4). It

follows that Re
0(x) = δ(x); see [3]. The function Re

2k(x) is called the elliptic kernel
of Marcel Riesz and is ordinary function if Re(α) ≥ n and is a distribution of α for
Re(α) < n.

Definition 2.3. Let f(x) ∈ L1(Rn) (the space of integrable function in Rn). The
Fourier transform of f(x) is defined as

f̂(ξ) =
1

(2π)n/2

∫
Rn

e−iξ·xf(x)dx (2.7)

where ξ = (ξ1, ξ2, . . . , ξn), x = (x1, x2, . . . , xn) ∈ Rn, ξ ·x = ξ1x1 +ξ2x2 + · · ·+ξnxn

is the usual inner product in Rn and dx = dx1dx2 . . . dxn. The inverse of Fourier
transform is defined by

f(x) =
1

(2π)n/2

∫
Rn

eiξ·xf̂(ξ)dξ. (2.8)

If f is a distribution with compact supports by [8, Theorem 7.4-3], Equation (2.8)
can be written as

f̂(ξ) =
1

(2π)n/2
〈f(x), e−iξ·x〉. (2.9)

Lemma 2.4. The function RH
2k(υ) and (−1)kRe

2k(x) are the elementary solutions
of the operator �k and 4k respectively, where �k and 4k are defined by (1.4) and
(1.3) respectively. The function RH

2k(υ) defined by (2.2)with α = 2k and Re
2k(x)

defined by (2.5) with α = 2k.

Proof. We have to show that �kRH
2k(υ) = δ(x) and that 4k((−1)kRe

2k(x) = δ(x).
The first part follows from [7, Lemma 2.4], and the second part from [2, p.31]. �

Lemma 2.5. The convolution RH
2k(υ) ∗ (−1)kRe

2k(x) is an elementary solution for
the operator ♦k iterated k times and is defined by (1.1)

For the proof of the above lemma, see [2, p.33].

Lemma 2.6. The function RH
α (x) and Re

α(x), defined by (2.2) and (2.5) respec-
tively, for Re(α) are homogeneous distribution of order α− n and also a tempered
distribution.

Proof. Note taht RH
α (x) and Re

α(x) satisfy the Euler equation; that is,

(α− n)RH
α (x) =

n∑
i=1

xi
∂

∂xi
RH

α (x), (α− n)Re
α(x) =

n∑
i=1

xi
∂

∂xi
Re

α(x).
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Then RH
α (x) and Re

α(x) are homogeneous distributions of order α − n. Since
Donoghue [1, pp.154-155] proved the every homogeneous distribution is a tempered
distribution, the proof is complete. �

Lemma 2.7 (Convolution of tempered distributions). Re
α(x)∗RH

α (x) exists and is
a tempered distribution.

Proof. Choose suppRH
α (x) = K ⊂ Γ+ where K is a compact set. Then RH

α (x)
is a tempered distribution with compact support. By Donoghue [1, pp.156-159],
Re

α(x) ∗RH
α (x) exists and is a tempered distribution. �

Lemma 2.8. The functions RH
−2k(x) and (−1)kRe

−2k(x) are the inverse in the
convolution algebra of RH

2k(x) and (−1)kRe
2k(x), respectively. That is,

RH
−2k(x) ∗RH

2k(x) = RH
−2k+2k(x) = RH

0 (x) = δ(x),

(−1)kRe
−2k(x) ∗ (−1)kRe

2k(x) = (−1)2kRe
−2k+2k(x) = Re

0(x) = δ(x)

For the proof of the above lemma, see [7, p.123], [1, p.118, p.158], [6, p.10].

Lemma 2.9 (Convolution of Re
α(x) and RH

α (x)). Let Re
α(x) and RH

α (x) defined by
(2.5) and (2.2) respectively, then we obtain:

(1) Re
α(x) ∗Re

β(x) = Re
α+β(x) where α and β are complex parameters;

(2) RH
α (x) ∗ RH

β (x) = RH
α+β(x) for α and β are both integers and except only

the case both α and β are both integers.

Proof. Part (1) can be found in [1, p.158]. For the second formula, when α and β
are both even integers, see [3]. When α is odd and β is even, or α is even and β is
odd, from Trione [7] we have

�kRH
α (x) = RH

α−2k(x), (2.10)

�kRH
2k(x) = δ(x), k = 0, 1, 2, 3, . . . (2.11)

where �k is the Ultra-hyperbolic operator iterated k-times defined by

�k =
( p∑

i=1

∂2

∂x2
i

−
p+q∑

j=p+1

∂2

∂x2
j

)k

.

Now let m be an odd integer, we have

�kRH
m(x) = RH

m−2k(x),

RH
2k(x) ∗�kRH

m(x) = RH
2k(x) ∗RH

m−2k(x)

or

(�kRH
2k(x)) ∗RH

m(x) = RH
2k(x) ∗RH

m−2k(x), δ ∗RH
m(x) = RH

2k(x) ∗RH
m−2k(x).

Thus
RH

m(x) = RH
2k(x) ∗RH

m−2k(x).
Since m is odd, hence m − 2k is odd and 2k is a positive even. Put α = 2k, β =
m− 2k, we obtain

RH
α (x) ∗RH

β (x) = RH
α+β(x)

for α is a nonnegative even and β is odd.
For the case α is a negative even and β is odd, by (2.8) we have

�kRH
0 (x) = RH

−2k(x),



6 W. SATSANIT EJDE-2010/48

�kδ = RH
−2k(x),

where RH
0 (x) = δ. Now for m is odd,

RH
−2k(x) ∗�kRH

m(x) = RH
−2k(x) ∗RH

m−2k(x)

or (
�kδ

)
∗�kRH

m(x) = RH
−2k(x) ∗RH

m−2k(x),

δ ∗�2kRH
m(x) = RH

−2k(x) ∗RH
m−2k(x).

Thus
RH

m−2(2k)(x) = RH
−2k(x) ∗RH

m−2k(x).
Put α = −2k and β = m − 2k, now α is a negative even and β is odd. Then we
obtain

RH
α (x) ∗RH

β (x) = RH
α+β(x).

This completes the proof. �

Lemma 2.10. Given the equation

}kH(x) = δ(x) (2.12)

for x ∈ Rn, where }k is the operator iterated k− times is defined by (1.7) and 4k is
the Laplace operator iterated k times defined by (1.4) and �k is Ultra-hyperbolic op-
erator iterated k− times is defined by (1.1). Then we obtain H(x) is an elementary
solution of (2.12), where

H(x) =
(
RH

4k(x) ∗ (−1)2kRe
4k(x)

)
∗

(
C∗k(x)

)∗−1
(2.13)

where
C(x) =

1
2
RH

4 (x) +
1
2
(−1)2Re

4(x) . (2.14)

Here C∗k(x) denotes the convolution of C(x) itself k times,
(
C∗k(x)

)∗−1 denotes
the inverse of C∗k(x) in the convolution algebra. Moreover H(x) is a tempered
distribution.

Proof. We have

}kH(x) =
(42 + �2

2
)k

H(x) = δ(x)

or we can write (1
2
42 +

1
2
�2

)(1
2
42 +

1
2
�2

)k−1
H(x) = δ(x).

Convolving both sides of the above equation by RH
4 (x) ∗ (−1)2Re

4(x),(1
2
42 +

1
2
�2

)
∗

(
RH

4 (x) ∗ (−1)2Re
4(x)

)(1
2
42 +

1
2
�2

)k−1
H(x)

= δ(x) ∗RH
4 (x) ∗ (−1)2Re

4(x)

or(1
2
42(RH

4 (x) ∗ (−1)2Re
4(x)) +

1
2
�2(R4(x) ∗ (−1)2S4(x))

)
∗

(1
2
42 +

1
2
�2

)k−1
H(x)

= δ(x) ∗RH
4 (x) ∗ (−1)2Re

4(x).

By properties of convolutions,(1
2
42((−1)2Re

4(x)) ∗RH
4 (x) +

1
2
�2(RH

4 (x))
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∗ (−1)2Re
4(x)

)
∗

(1
2
42 +

1
2
�2

)k−1
H(x)

= δ(x) ∗RH
4 (x) ∗ (−1)2Re

4(x)

By Lemmas 2.4 and 2.5, we obtain(1
2
δ ∗RH

4 (x) +
1
2
δ ∗ (−1)2Re

4(x)
)
∗

(1
2
42 +

1
2
�2

)k−1

H(x) = RH
4 (x) ∗ (−1)2Re

4(x)

or (1
2
RH

4 (x) +
1
2
(−1)2Re

4(x)
)
∗

(1
2
42 +

1
2
�2

)k−1

H(x) = RH
4 (x) ∗ (−1)2Re

4(x)

keeping on convolving both sides of the above equation by RH
4 (x) ∗ (−1)2Re

4(x) up
to k − 1 times, we obtain

C∗k(x) ∗H(x) =
(
RH

4 (x) ∗ (−1)2Re
4(x)

)∗k
(2.15)

the symbol ∗k denotes the convolution of itself k−times. By properties of RH
α (x)

and Re
α(x) in Lemma 2.6, we have(

RH
4 (x) ∗ (−1)2Re

4(x)
)∗k

= RH
4k(x) ∗ (−1)2kRe

4k(x).

Thus (2.15) becomes,

C∗k(x) ∗H(x) =
(
RH

4k(x) ∗ (−1)2kRe
4k(x)

)
or

H(x) =
(
RH

4k(x) ∗ (−1)2kRe
4k(x)

)
∗ (C∗k(x))∗−1 (2.16)

is an elementary solution of (2.12). We consider the function C∗k(x), since RH
4 (x)∗

(−1)2Re
4(x) is a tempered distribution. Thus C(x) defined by (2.14) is a tempered

distribution, we obtain C∗k(x) is a tempered distribution.
Now, RH

4k(x) ∗ (−1)2kRe
4k(x) ∈ S ′, the space of tempered distribution. Choose

S ′ ⊂ D′
R where D′

R is the right-side distribution which is a subspace of D′ of dis-
tribution. Thus RH

4k(x)∗ (−1)2kRe
4k(x) ∈ D′

R. It follow that RH
4k(x)∗ (−1)2kRe

4k(x)
is an element of convolution algebra, since D′

R is a convolution algebra. Hence
Zemanian [8], (2.16) has a unique solution

H(x) =
(
RH

4k(x) ∗ (−1)2kRe
4k(x)

)
∗

(
C∗k(x)

)∗−1
,

where
(
C∗k(x)

)∗−1 is an inverse of C∗k(x) in the convolution algebra. H(x) is
called the Green function of the operator }k.

Since RH
4k(x) ∗ (−1)2kRe

4k(x) and
(
C∗k(x)

)∗−1 are lies in S ′, then by [8, p.152]
again, we have

(
RH

4k(x) ∗ (−1)2kRe
4k(x)

)
∗

(
C∗k(x)

)∗−1 ∈ S ′. Hence H(x) is a
tempered distribution. �

Lemma 2.11. The Fourier transform of ⊕kδ is

F ⊕k δ =
1

(2π)n/2

[
(ξ2

1 + ξ2
2 + · · ·+ ξ2

p)4 −
(
ξ2
p+1 + ξ2

p+2 + · · ·+ ξ2
p+q

)4
]k

where F is the Fourier transform defined by (2.7) and if the norm of ξ is given by
‖ξ‖ =

(
ξ2
1 + ξ2

2 + · · ·+ ξ2
n

)1/2 then

F ⊕k δ ≤ M

(2π)n/2
‖ξ‖8k.
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Since M is constant thus is F ⊕k δ is bounded and continuous on the space S ′ of
the tempered distribution. Moreover, by (2.8),

⊕kδ = F−1 1
(2π)n/2

[
(ξ2

1 + ξ2
2 + · · ·+ ξ2

p)4 −
(
ξ2
p+1 + ξ2

p+2 + · · ·+ ξ2
p+q

)4
]k

.

Proof. By (2.10)

F ⊕k δ =
1

(2π)n/2
〈⊕kδ, e−iξ·x〉

=
1

(2π)n/2
〈δ,⊕ke−iξ·x〉

=
1

(2π)n/2
〈δ,♦k }k e−iξ·x〉 by (1.6)

=
1

(2π)n/2

〈
δ,♦k

(1
2
42 +

1
2
�2

)k

e−iξ·x〉
=

1
(2π)n/2

〈
δ,♦k (−1)2k

2
(
(
ξ2
1 + . . . ξ2

n

)2
+

(
ξ2
1 + · · ·+ ξ2

p − ξ2
p+1 − . . .

− ξ2
n

)2)ke−iξ·x〉
=

1
(2π)n/2

〈δ, (−1)2k

2
(
(
ξ2
1 + · · ·+ ξ2

n

)2
+

(
ξ2
1 + · · ·+ ξ2

p − ξ2
p+1 − . . .

− ξ2
n

)2)k♦ke−iξ·x〉

=
1

(2π)n/2
〈δ, (

(
ξ2
1 + · · ·+ ξ2

p

)2
+

(
ξ2
p+1 + · · ·+ ξ2

p+q

)2
)4k�ke−iξ·x〉

=
1

(2π)n/2

〈
δ,

[( p∑
i=1

ξ2
i

)2

+
( p+q∑

j=p+1

ξ2
j

)2]k

(−1)2k
[( p∑

i=1

ξ2
i

)2

−
( p+q∑

j=p+1

ξ2
j

)2]k

e−iξ·x〉
=

1
(2π)n/2

〈δ, (−1)2k
[( p∑

i=1

ξ2
i

)4

−
( p+q∑

j=p+1

ξ2
j

)4]k

e−iξ·x〉

=
1

(2π)n/2

[( p∑
i=1

ξ2
i

)4

−
( p+q∑

j=p+1

ξ2
j

)4]k

.

=
1

(2π)n/2

[(
ξ2
1 + ξ2

2 + · · ·+ ξ2
p

)4 −
(
ξ2
p+1 + ξ2

p+2 + · · ·+ ξ2
p+q

)4]k
.

Next, we consider the boundness of F ⊕k δ. Since

⊕k =
(
(ξ2

1 + ξ2
2 + · · ·+ ξ2

p)4 −
(
ξ2
p+1 + ξ2

p+2 + · · ·+ ξ2
p+q

)4
)k

=
( (

ξ2
1 + · · ·+ ξ2

p

)2 −
(
ξ2
p+1 + · · ·+ ξ2

n

)2
)k ((

ξ2
1 + · · ·+ ξ2

p

)2

+
(
ξ2
p+1 + · · ·+ ξ2

n

)2
)k

=
((

ξ2
1 + · · ·+ ξ2

n

) (
ξ2
1 + · · ·+ ξ2

p − ξ2
p+1 . . . ξ2

n

))k
((

ξ2
1 + · · ·+ ξ2

p

)2
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+
(
ξ2
p+1 + · · ·+ ξ2

n

)2
)k

Thus

F ⊕k δ =
1

(2π)n/2

((
ξ2
1 + · · ·+ ξ2

n

) (
ξ2
1 + · · ·+ ξ2

p − ξ2
p+1 · · · − ξ2

n

))k

×
((

ξ2
p+1 + · · ·+ ξ2

n

)2 +
(
ξ2
p+1 + · · ·+ ξ2

n

)2
)k

,

|F ⊕k δ| = 1
(2π)n/2

|
(
ξ2
1 + · · ·+ ξ2

n

) (
ξ2
1 + · · ·+ ξ2

p+1 · · · − ξ2
n

)
|k

×
∣∣∣(ξ2

p+1 + · · ·+ ξ2
n

)2 +
(
ξ2
p+1 + · · ·+ ξ2

n

)2
∣∣∣k

≤ M

(2π)n/2

∣∣(ξ2
1 + · · ·+ ξ2

n

)∣∣k ∣∣(ξ2
1 + · · ·+ ξ2

n

)∣∣k ∣∣(ξ2
1 + · · ·+ ξ2

n

)∣∣2k
.

It follows that

|F ⊕k δ| ≤ M

(2π)n/2
‖ξ‖8k,

where M is constant and ‖ξ‖ =
(
ξ2
1 + ξ2

2 + · · ·+ ξ2
n

)1/2, ξi(i = 1, 2, . . . , n) ∈ R.
Hence we obtain F ⊕k δ is bounded and continuous on the space S ′ of the tem-
pered distribution. Since F is one-to-one transformation from the space S ′ of the
tempered distribution to the real space R, then by (2.8)

⊕δ = F−1 1
(2π)n/2

[
(ξ2

1 + ξ2
2 + · · ·+ ξ2

p)4 −
(
ξ2
p+1 + ξ2

p+2 + · · ·+ ξ2
p+q

)4
]
.

That completes the proof. �

3. Main Results

Theorem 3.1. Given the equation

⊕kG(x) = δ(x), (3.1)

where ⊕k is the Oplus operator iterated k times defined by (1.8), δ(x) is the dirac-
delta distribution, x ∈ Rn and k is a nonnegative integer. Then we obtain

G(x) =
(
RH

2k(υ) ∗ (−1)kRe
2k(x)

)
∗H(x) (3.2)

or by (2.13) and Lemma 2.10, we obtain

G(x) =
(
RH

6k(υ) ∗ (−1)3kRe
6k(x)

)
∗

(
C∗k(x)

)∗−1
(3.3)

is a Green’s function or an elementary solution for the operator ⊕k iterated k−times
where ⊕k is defined by (1.8), and H(x) defined by (2.13).

For q = 0, then(3.1) becomes

44kG(x) = δ(x) (3.4)

By Lemma 2.4, we obtain

G(x) = (−1)4kRe
8k(x) = Re

8k(x)

is an elementary solution of (3.4) where 44k
p is the Laplacian of p− dimension,

iterated 4k− times and is defined by (1.13). Moreover, from (3.3), we obtain

RH
−4k(υ) ∗ (−1)3kRe

−6k(x) ∗
(
C∗k(x)

)
∗G(x)
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=
(
RH

4k(υ) ∗RH
−4k(υ)

)
∗

(
(−1)3kRe

6k(x) ∗ (−1)3kRe
−6k(x)

)
∗

( (
C∗k(x)

)
∗

(
C∗k(x)

)∗−1
)
∗RH

2k(υ).

By (2.14) the above equation becomes( (−1)3k

2
∗Re

−6k(x) + RH
−4k(υ) ∗ (−1)5k

2
Re
−2k(x)

)
∗G(x) = RH

2k(υ) (3.5)

as an elementary solution of the operator k times is defined by (1.4) In particular,
if we put p = 1, q = n− 1, k = 1 and x1 = t in (1.4),(3.3), we obtain( (−1)3

2
Re
−6(x) + MH

−2(υ) ∗ (−1)5

2
Re
−6(x)

)
∗G(x) = MH

2 (υ), (3.6)

as an elementary solution of the wave operator defined by

� =
∂2

∂t21
− ∂2

∂x2
2

− ∂2

∂x2
3

− · · · − ∂2

∂x2
n

, (3.7)

where MH
2 (υ) and MH

−4(υ) defined by (2.4) with α = 2 and α = −4 respectively,
and υ = t21 − x2

2 − · · · − x2
n. The function Re

−6(x) is defined by (2.5) with α = −6.

Proof. From (3.1) and (1.8), we have

⊕kG(x) =
(
♦k}k

)
G(x) = δ(x). (3.8)

Convolving both sides of (3.8) by
(
RH

2k(υ) ∗ (−1)kRe
2k(x)

)
∗H(x), we obtain(

RH
2k(υ) ∗ (−1)kRe

2k(x)
)
∗H(x) ∗ (♦k}k)G(x) = δ ∗

(
RH

2k(υ) ∗ (−1)kRe
2k(x)

)
∗H(x)

By properties of convolution

♦k
(
RH

2k(υ) ∗ (−1)kRe
2k(x)

)
∗}k(H(x)) ∗G(x) =

(
RH

2k(υ) ∗ (−1)kRe
2k(x)

)
∗H(x).

By Lemma 2.5 and 2.10, we obtain,

δ ∗ δ ∗G(x) = G(x) =
(
RH

2k(x) ∗ (−1)kRe
2k(υ)

)
∗H(x).

By Lemma 2.9 and (2.13), we obtain

G(x) = RH
6k(υ) ∗ (−1)3kRe

6k(x) ∗
(
C∗k(x)

)∗−1
(3.9)

is an elementary solution or Green’s function of ⊕k operator. Now, for q = 0 the
(3.1) becomes

44k
p G(x) = δ, . (3.10)

where 44k
p is the Laplacian operator of p-dimension iterated 4k times. By Lemma

2.4, we have
G(x) = (−1)4kRe

8k(x)
is an elementary solution of (3.10).

On the other hand, we can also find G(x) from (3.9). Since q = 0, we have
RH

2k(υ) reduces to (−1)kRe
2k(x). Thus, by (3.9) for q = 0, we obtain

G(x) =
(
(−1)6kRe

6k(x) ∗Re
6k(x)

)
∗

(
(−1)2kRe

4k(x)
)∗−1

= (−1)6kRe
6k+6k(x)

(
(−1)2kRe

4k(x)
)∗−1

= Re
8k(x).

Now, consider the case of the wave equation. From (3.3), we have

G(x) =
(
RH

6k(υ) ∗ (−1)3kRe
6k(x)

)
∗

(
C∗k(x)

)∗−1
.
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Convolving the above equation by RH
−4k(υ) ∗ (−1)3kRe

−6k(x) ∗
(
C∗k(x)

)
and by

Lemma 2.8, we obtain

RH
−4k(υ) ∗ (−1)3kRe

−6k(x) ∗
(
C∗k(x)

)
∗G(x)

=
(
RH

4k(υ) ∗RH
−4k(υ)

)
∗

(
(−1)3kRe

6k(x) ∗ (−1)3kRe
−6k(x)

)
∗

( (
C∗k(x)

)
∗

(
C∗k(x)

)∗−1
)
∗RH

2k(υ).

By Lemma 2.8, we obtain

RH
−4k(υ) ∗ (−1)3kRe

−6k(x) ∗
(
C∗k(x)

)
∗G(x) = RH

0 (x) ∗Re
0(x) ∗ δ(x) ∗RH

2k(υ)

or

RH
−4k(υ) ∗ (−1)3kRe

−6k(x) ∗
(
C∗k(x)

)
∗G(x) = δ(x) ∗ δ(x) ∗ δ(x) ∗RH

2k(υ).

It follows that

RH
−4k(υ) ∗ (−1)3kRe

−6k(x) ∗
(
C∗k(x)

)
∗G(x) = RH

2k(υ) (3.11)

as an elementary solution of the operator �k iterated k times defined by (1.4). In
particular , if we put p = 1, q = n − 1, k = 1 and x1 = t in (3.3) and (3.9) then
RH
−4 reduces to MH

−4(υ) and RH
2 (υ) reduces to MH

2 (υ)where MH
−4(υ) and MH

2 (υ)
is defined by (2.4) with α = −4, α = 2 respectively. Thus (3.11) becomes

MH
−4(υ) ∗ (−1)3Re

−6(x) ∗
(
C∗1(x)

)
∗G(x) = MH

2 (υ) (3.12)

by (2.14), we obtain

MH
−4(υ) ∗ (−1)3Re

−6(x) ∗
(1

2
MH

4 (υ) +
(−1)2

2
Re

4(x)
)
∗G(x) = MH

2 (υ)

or (
MH

−4(υ) ∗ (−1)3Re
−6(x) ∗ 1

2
MH

4 (υ) + MH
−4(υ)

∗ (−1)3Re
−6(x) ∗ 1

2
(−1)2Re

4(x)
)
∗G(x)

= MH
2 (υ).

By Lemma 2.8, we obtain( (−1)3

2
Re
−6(x) + MH

−4(υ) ∗ (−1)5

2
Re
−2(x)

)
∗G(x) = MH

2 (υ) (3.13)

as an elementary solution of the wave operator defined by

� =
∂2

∂t21
− ∂2

∂x2
2

− ∂2

∂x2
3

− · · · − ∂2

∂x2
n

,

and Re
−6(x) defined by (2.5) with α = −6. This completes the proof. �

Theorem 3.2.

F
((

RH
6k(x) ∗ (−1)3kRe

6k(x)
)
∗ (C∗k(x))∗−1

)
=

1
(2π)n/2

[
(ξ2

1 + ξ2
2 + · · ·+ ξ2

p)4 −
(
ξ2
p+1 + ξ2

p+2 + · · ·+ ξ2
p+q

)4 ]k

and

|F
((

RH
6k(x) ∗ (−1)3kRe

6k(x)
)
∗ (C∗k(x))∗−1

)
| ≤ 1

(2π)
n
2

M (3.14)
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for a large ξi ∈ R, where M is a constant and C(x) is defined by (2.14). That is,
F is bounded and continuous on the space S′ of the tempered distributions.

Proof. By Theorem 3.1, we have

⊕k(
((

RH
6k(υ) ∗ (−1)3kRe

6k(x)
)
∗ (C∗k(x))∗−1

)
= δ(x)

or (
⊕kδ

)
∗ (

((
RH

6k(υ) ∗ (−1)3kRe
6k(x)

)
∗ (C∗k(x))∗−1

)
= δ(x).

Taking the Fourier transform on both sides of the above equation, we obtain

F(
(
⊕kδ

)
∗ [

(
RH

6k(υ) ∗ (−1)3kRe
6k(x)

)
∗ (C∗k(x))∗−1]) = Fδ =

1
(2π)n/2

.

By (2.10)
1

(2π)n/2
〈(

(
⊕kδ

)
∗ [

(
RH

6k(υ) ∗ (−1)3kRe
6k(x)

)
∗ (C∗k(x))∗−1]), e−i(ξ·x)〉 =

1
(2π)n/2

.

By the definition of convolution
1

(2π)n/2
〈(

(
⊕kδ

)
∗ [

(
RH

6k(υ) ∗ (−1)3kRe
6k(x)

)
∗ (C∗k(x))∗−1]), e−iξ.(x+r)〉

=
1

(2π)n/2
,

1
(2π)n/2

〈[
(
RH

6k(υ) ∗ (−1)3kRe
6k(x)

)
∗ (C∗k(x))∗−1]), e−i(ξ.r)〉〈(

(
⊕kδ

)
, e−iξ·x〉

=
1

(2π)n/2
,

F([
(
RH

6k(υ) ∗ (−1)3kRe
6k(x)

)
∗ (C∗k(x))∗−1]) (2π)

n
2 F

(
⊕kδ

)
=

1

(2π)n/2
,

F([
(
RH

6k(υ) ∗ (−1)3kRe
6k(x)

)
∗ (S∗k(x))∗−1])

· (−1)3k
[
(ξ2

1 + ξ2
2 + · · ·+ ξ2

p)4 −
(
ξ2
p+1 + ξ2

p+2 + · · ·+ ξ2
p+q

)4
]k

=
1

(2π)n/2
.

It follows that

F([
(
RH

6k(υ) ∗ (−1)3kRe
6k(x)

)
∗ (C∗k(x))∗−1])

=
1

(−1)4k (2π)n/2
[
(ξ2

1 + ξ2
2 + · · ·+ ξ2

p)4 −
(
ξ2
p+1 + ξ2

p+2 + · · ·+ ξ2
p+q

)4
]k

.

Since
1(

ξ2
1 + · · ·+ ξ2

p

)4 −
(
ξ2
p+1 + · · ·+ ξ2

p+q

)4

=
1((

ξ2
1 + · · ·+ ξ2

p

)2 +
(
ξ2
p+1 + · · ·+ ξ2

p+q

)2
)

× 1(
(ξ2

1 + · · ·+ ξ2
n)

(
ξ2
1 + · · ·+ ξ2

p − ξ2
p+1 − · · · − ξ2

p+q

)) .

(3.15)
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Let ξ = (ξ1, ξ2, . . . , ξn) ∈ Γ+ with Γ+ defined by Definition 2.1. Then (ξ2
1 + · · · +

ξ2
p+ξ2

p+1 + · · · + ξ2
p+q) > 0 and for a large k, the right-hand side of (3.15) tend

to zero. It follows that it is bounded by a positive constant M say, that is we
obtain (3.15) as required and also by (3.13) F is continuous on the space S′ of the
tempered distribution. �

Theorem 3.3.

F
(
[
(
RH

6k(υ) ∗ (−1)3kRe
6k(x)

)
∗ (C∗k(x))∗−1]

∗ [
(
RH

6m(υ) ∗ (−1)3mRe
6m(x)

)
∗ (C∗m(x))∗−1]

)
= (2π)n/2F

(
[
(
RH

6k(υ) ∗ (−1)3kRe
6k(x)

)
∗ (C∗k(x))∗−1

]
)

×F([
(
RH

6m(υ) ∗ (−1)3mRe
6m(x)

)
∗ (C∗m(x))∗−1])

=
1

(2π)n/2
[
(ξ2

1 + ξ2
2 + · · ·+ ξ2

p)4 −
(
ξ2
p+1 + ξ2

p+2 + · · ·+ ξ2
p+q

)4
]k+m

,

where k and m are nonnegative integer and F is bounded and continuous on the
space S′ of the tempered distribution.

Proof. Since RH
6k(υ) and Re

4k(x) are tempered distribution with compact support,(
[
(
RH

6k(υ) ∗ (−1)3kRe
6k(x)

)
∗ (C∗k(x))∗−1

]
)

∗
(
[
(
RH

6m(υ) ∗ (−1)3mRe
6m(x)

)
∗ (C∗m(x))∗−1]

)
=

(
RH

6k(υ) ∗RH
6m(υ)

)
∗

(
(−1)3(k+m)Re

6k(x) ∗Re
6m(x)

)
∗

((
C∗k(x)

)∗−1 ∗ ((C∗m(x))∗−1
)

=
(
RH

6(k+m)(υ) ∗ (−1)3(k+m)Re
6(k+m)(x)

)
∗

(
C∗(k+m)(x)

)∗−1

by [7, pp.156-159] and [3, Lemma 2.5]. Taking the Fourier transform on both sides
and using Theorem 3.2, we obtain

F
[(

RH
6k(υ) ∗ (−1)3kRe

6k(x)
)
∗ (C∗k(x)∗−1

]
)

∗
(
[
(
RH

6m(υ) ∗ (−1)3mRe
6m(x)

)
∗ (C∗m(x))∗−1]

)
=

1

(2π)n/2
[
(ξ2

1 + ξ2
2 + · · ·+ ξ2

p)4 −
(
ξ2
p+1 + ξ2

p+2 + · · ·+ ξ2
p+q

)4
]k+m

=
1

(2π)n/2
[
(ξ2

1 + ξ2
2 + · · ·+ ξ2

p)4 −
(
ξ2
p+1 + ξ2

p+2 + · · ·+ ξ2
p+q

)4
]k

× (2π)n/2

(2π)n/2
[(

ξ2
1 + · · ·+ ξ2

p

)4 −
(
ξ2
p+1 + · · ·+ ξ2

p+q

)4
]m

= (2π)n/2F
(
[
(
RH

6k(υ) ∗ (−1)3kRe
6k(x)

)
∗ (C∗k(x))∗−1

]
)

×F([
(
RH

6m(υ) ∗ (−1)3mRe
6m(x)

)
∗ (C∗m(x))∗−1]).



14 W. SATSANIT EJDE-2010/48

Since (RH
6(k+m)(υ) ∗ (−1)3(k+m)Re

6(k+m)(x)) ∗ (C∗(k+m)(x))∗−1 ∈ S′, the space of
tempered distribution and by Theorem 3.2, we obtain that F is bounded and con-
tinuous on S′. �
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