Electronic Journal of Differential Equations, Vol. 2010(2010), No. 52, pp. 1-10. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

MULTIPLICITY OF POSITIVE SOLUTIONS FOR FOUR-POINT BOUNDARY VALUE PROBLEMS OF IMPULSIVE DIFFERENTIAL EQUATIONS WITH p-LAPLACIAN

Li shen, XIPING LIU, ZHENHUA LU

Abstract

Using a fixed-point theorem in cones, we obtain sufficient conditions for the multiplicity of positive solutions for four-point boundary value problems of third-order impulsive differential equations with p-Laplacian.

1. Introduction

Recently, there has been much attention focused on the theory of impulsive differential equation as it is widely used in various areas such as mechanics, electromagnetism, chemistry. A lot of theories have been established to solve these problems, see [9, 3] and the references therein. Guo 4] obtained the existence of solutions, via cone theory, for second-order impulsive differential equation

$$
\begin{gathered}
x^{\prime \prime}=f(t, x, T x), \quad t \geq 0, t \neq t_{k} k=1,2,3, \ldots, \\
\left.\Delta x\right|_{t=t_{k}}=I_{k}\left(x\left(t_{k}\right)\right), \quad k=1,2,3, \ldots, \\
\left.\Delta x^{\prime}\right|_{t=t_{k}}=\bar{I}_{k}\left(x\left(t_{k}\right)\right), \quad k=1,2,3, \ldots, \\
x(0)=x_{0}, \quad x^{\prime}(0)=x_{0}^{*}
\end{gathered}
$$

In [1], using Leggett-Williams fixed point theorem, authors studied the multiplicity result for second order impulsive differential equations

$$
\begin{gathered}
y^{\prime \prime}+\phi(t) f(y(t))=0, \quad t \in(0,1) \backslash\left\{t_{1}, t_{2}, \ldots, t_{m}\right\} \\
\Delta y\left(t_{k}\right)=I_{k}\left(y\left(t_{k}^{-}\right)\right), k=1,2,3, \ldots, m \\
\Delta y^{\prime}\left(t_{k}\right)=J_{k}\left(y\left(t_{k}^{-}\right)\right), k=1,2,3, \ldots, m \\
y(0)=y(1)=0
\end{gathered}
$$

Kaufmann [8] studied a second-order nonlinear differential equation on an unbounded domain with solutions subject to impulsive conditions and the SturmLiouville type boundary conditions. In [5]-[7], the authors studied positive solutions of multiple points boundary value problems for second order impulsive differential equations.

[^0]All the works above concern boundary value problems with second-order impulsive equations, and there are just a few works that consider multiplicity of positive solutions for third-order impulsive equations with p-Laplacian.

Motivated by all the works above, we concentrate on getting multiple positive solutions for four-point boundary value problems of third-order impulsive differential equations with p-Laplacian

$$
\begin{gather*}
\left(\phi_{p}\left(u^{\prime \prime}(t)\right)\right)^{\prime}=f\left(t, u(t), u^{\prime}(t)\right), \quad t \in(0,1) \backslash\left\{t_{1}, t_{2}, \ldots, t_{m}\right\} \\
\left.\Delta u^{\prime \prime}(t)\right|_{t=t_{k}}=0, \quad k=1,2, \ldots, m \\
\left.\Delta u^{\prime}(t)\right|_{t=t_{k}}=I_{k}\left(u\left(t_{k}\right)\right), \quad k=1,2, \ldots, m \tag{1.1}\\
\left.\Delta u(t)\right|_{t=t_{k}}=J_{k}\left(u\left(t_{k}\right)\right), \quad k=1,2, \ldots, m \\
u^{\prime \prime}(0)=0, \quad u^{\prime}(0)=\alpha u^{\prime}(\xi)+\beta u^{\prime}(\eta), \quad u(1)=\delta u(0),
\end{gather*}
$$

where ϕ_{p} is p-Laplacian operator

$$
\phi_{p}(s)=|s|^{p-2} s, p>1, \quad\left(\phi_{p}\right)^{-1}=\phi_{q}, \quad \frac{1}{p}+\frac{1}{q}=1
$$

$t_{k}, k=0,1,2, \ldots, m, m+1$, are constants which satisfy

$$
0=t_{0}<t_{1}<t_{2}<\cdots<t_{k}<\cdots<t_{m}<t_{m+1}=1
$$

$\left.\Delta u\right|_{t=t_{k}}=u\left(t_{k}^{+}\right)-u\left(t_{k}^{-}\right)$, in which $u\left(t_{k}^{+}\right)\left(u\left(t_{k}^{-}\right)\right.$respectively $)$denote the right limit (left limit respectively) of $u(t)$ at $t=t_{k}$, and $\alpha, \beta>0, \alpha+\beta<1 ; 0<\xi$, $\eta<1 ; \xi, \eta \neq t_{k}(k=1,2, \ldots, m) ; \delta>1 ; f \in C([0,1] \times[0,+\infty) \times \mathbb{R},[0,+\infty))$, $I_{k}, J_{k} \in C([0,+\infty),[0,+\infty))$.

2. Preliminaries

Let $J=[0,1] \backslash\left\{t_{1}, t_{2}, \ldots, t_{m}\right\}, P C[0,1]=\{u:[0,1] \rightarrow R, u$ is continuous at $t \neq t_{k}, u\left(t_{k}^{+}\right), u\left(t_{k}^{-}\right)$exist, and $\left.u\left(t_{k}^{-}\right)=u\left(t_{k}\right), k=1,2, \ldots, m\right\}, P C^{1}[0,1]=\{u \in$ $P C[0,1] \mid u^{\prime}$ is continuous at $t \neq t_{k}, u^{\prime}\left(t_{k}^{+}\right), u^{\prime}\left(t_{k}^{-}\right)$exist, $\left.k=1,2, \ldots, m\right\}$, with the norm

$$
\|u\|_{P C}=\sup _{t \in J}|u(t)|, \quad\|u\|_{P C^{1}}=\max _{t \in J}\left\{\|u\|_{P C},\left\|u^{\prime}\right\|_{P C}\right\} .
$$

Obviously $P C[0,1]$ and $P C^{1}[0,1]$ are Banach spaces.
Lemma 2.1. $u \in P C^{1}[0,1] \cap C^{3}[J]$ is a solution of (1.1) if and only if

$$
\begin{align*}
u(t)= & u(0)+u^{\prime}(0) t+\int_{0}^{t}(t-s) \phi_{q}\left(\int_{0}^{s} f\left(r, u(r), u^{\prime}(r)\right) d r\right) d s \tag{2.1}\\
& +\sum_{t_{k}<t}\left(t-t_{k}\right) I_{k}\left(u\left(t_{k}\right)\right)+\sum_{t_{k}<t} J_{k}\left(u\left(t_{k}\right)\right)
\end{align*}
$$

where

$$
\begin{align*}
u(0)= & \frac{\alpha \int_{0}^{\xi} \phi_{q}\left(\int_{0}^{s} f\left(r, u(r), u^{\prime}(r)\right) d r\right) d s+\beta \int_{0}^{\eta} \phi_{q}\left(\int_{0}^{s} f\left(r, u(r), u^{\prime}(r)\right) d r\right) d s}{(\delta-1)(1-\alpha-\beta)} \\
& +\frac{\alpha \sum_{t_{k}<\xi} I_{k}\left(u\left(t_{k}\right)\right)+\beta \sum_{t_{k}<\eta} I_{k}\left(u\left(t_{k}\right)\right)}{(\delta-1)(1-\alpha-\beta)} \\
& +\frac{\int_{0}^{1} \int_{0}^{s} \phi_{q}\left(\int_{0}^{r} f\left(w, u(w), u^{\prime}(w)\right) d w\right) d r d s}{\delta-1} \tag{2.2}\\
& +\frac{1}{\delta-1} \sum_{k=1}^{m}\left(\left(1-t_{k}\right) I_{k}\left(u\left(t_{k}\right)+J_{k}\left(u\left(t_{k}\right)\right)\right),\right. \\
u^{\prime}(0)= & \frac{\alpha \int_{0}^{\xi} \phi_{q}\left(\int_{0}^{s} f\left(r, u(r), u^{\prime}(r)\right) d r\right) d s+\beta \int_{0}^{\eta} \phi_{q}\left(\int_{0}^{s} f\left(r, u(r), u^{\prime}(r)\right) d r\right) d s}{1-\alpha-\beta} \tag{2.3}\\
& +\frac{\alpha \sum_{t_{k}<\xi} I_{k}\left(u\left(t_{k}\right)\right)+\beta \sum_{t_{k}<\eta} I_{k}\left(u\left(t_{k}\right)\right)}{1-\alpha-\beta} .
\end{align*}
$$

Proof. Suppose $u \in P C^{1}[0,1] \bigcap C^{3}[J]$ is a solution of 1.1 , for all $k=1,2, \ldots, m$, from Lagrange's mean value theorem we have

$$
u\left(t_{k}\right)-u\left(t_{k}-h\right)=u^{\prime}\left(\xi_{k}\right) h, \quad 0<h<t_{k}-t_{k-1}, \xi_{k} \in\left(t_{k}-h, t_{k}\right)
$$

because $u^{\prime}\left(t_{k}^{-}\right)$exists, we get

$$
u_{-}^{\prime}\left(t_{k}\right)=\lim _{h \rightarrow 0^{+}} \frac{u\left(t_{k}\right)-u\left(t_{k}-h\right)}{h}=\lim _{\xi_{k} \rightarrow t_{k}^{-}} u^{\prime}\left(\xi_{k}\right)=u^{\prime}\left(t_{k}^{-}\right)
$$

Let $u^{\prime}\left(t_{k}\right)=u_{-}^{\prime}\left(t_{k}\right)=u^{\prime}\left(t_{k}^{-}\right), k=1,2, \ldots, m$. We use Lagrange's mean value theorem again and obtain

$$
u^{\prime}\left(t_{k}\right)-u^{\prime}\left(t_{k}-h\right)=u^{\prime \prime}\left(\eta_{k}\right) h, \quad 0<h<t_{k}-t_{k-1}, \eta_{k} \in\left(t_{k}-h, t_{k}\right)
$$

we can get $u_{-}^{\prime \prime}\left(t_{k}\right)$ exists from $\left.\Delta u^{\prime \prime}(t)\right|_{t=t_{k}}=u^{\prime \prime}\left(t_{k}^{+}\right)-u^{\prime \prime}\left(t_{k}^{-}\right)=0$, and

$$
u_{-}^{\prime \prime}\left(t_{k}\right)=\lim _{h \rightarrow 0^{+}} \frac{u^{\prime}\left(t_{k}\right)-u^{\prime}\left(t_{k}-h\right)}{h}=\lim _{\xi_{k} \rightarrow t_{k}^{-}} u^{\prime \prime}\left(\xi_{k}\right)=u^{\prime \prime}\left(t_{k}^{-}\right)
$$

Let $u^{\prime \prime}\left(t_{k}\right)=u^{\prime \prime}\left(t_{k}^{-}\right), k=1,2, \ldots, m$. Integrating the differential equation (1.1) we have

$$
\phi_{p}\left(u^{\prime \prime}(t)\right)-\phi_{p}\left(u^{\prime \prime}(0)\right)=\int_{0}^{t} f\left(s, u(s), u^{\prime}(s)\right) d s, \quad 0 \leq t \leq t_{1}
$$

By $u^{\prime \prime}(0)=0$, we have

$$
u^{\prime \prime}(t)=\phi_{q}\left(\int_{0}^{t} f\left(s, u(s), u^{\prime}(s)\right) d s\right)
$$

that is,

$$
u^{\prime \prime}(t)=\phi_{q}\left(\int_{0}^{t} f\left(s, u(s), u^{\prime}(s)\right) d s\right)
$$

and

$$
u^{\prime \prime}\left(t_{1}\right)=\phi_{q}\left(\int_{0}^{t_{1}} f\left(s, u(s), u^{\prime}(s)\right) d s\right)
$$

Since $\left.\Delta u^{\prime \prime}(t)\right|_{t=t_{1}}=u^{\prime \prime}\left(t_{1}^{+}\right)-u^{\prime \prime}\left(t_{1}^{-}\right)=0$, for $t_{1}<t \leq t_{2}$, we obtain

$$
u^{\prime \prime}(t)=\phi_{q}\left(\int_{0}^{t} f\left(s, u(s), u^{\prime}(s)\right) d s\right)
$$

Similarly, by $\left.\Delta u^{\prime \prime}(t)\right|_{t=t_{k}}=u^{\prime \prime}\left(t_{k}^{+}\right)-u^{\prime \prime}\left(t_{k}^{-}\right)=0, k=1,2, \ldots, m$, we can show for all $t \in[0,1]$,

$$
\begin{equation*}
u^{\prime \prime}(t)=\phi_{q}\left(\int_{0}^{t} f\left(s, u(s), u^{\prime}(s)\right) d s\right) \tag{2.4}
\end{equation*}
$$

For each $t \in(0,1)$, there exist $0 \leq t_{k}<t_{k+1} \leq 1$, such that $t_{k}<t \leq t_{k+1}$, by integrating both sides of (2.4), we obtain

$$
\begin{aligned}
& u^{\prime}\left(t_{1}^{-}\right)-u^{\prime}(0)=\int_{0}^{t_{1}} \phi_{q}\left(\int_{0}^{s} f\left(r, u(r), u^{\prime}(r)\right) d r\right) d s \\
& u^{\prime}\left(t_{2}^{-}\right)-u^{\prime}\left(t_{1}^{+}\right)=\int_{t_{1}}^{t_{2}} \phi_{q}\left(\int_{0}^{s} f\left(r, u(r), u^{\prime}(r)\right) d r\right) d s \\
& \cdots \\
& u^{\prime}\left(t_{k}^{-}\right)-u^{\prime}\left(t_{k-1}^{+}\right)=\int_{t_{k-1}}^{t_{k}} \phi_{q}\left(\int_{0}^{s} f\left(r, u(r), u^{\prime}(r)\right) d r\right) d s \\
& u^{\prime}(t)-u^{\prime}\left(t_{k}^{+}\right)=\int_{t_{k}}^{t} \phi_{q}\left(\int_{0}^{s} f\left(r, u(r), u^{\prime}(r)\right) d r\right) d s
\end{aligned}
$$

Hence,

$$
u^{\prime}(t)=u^{\prime}(0)+\int_{0}^{t} \phi_{q}\left(\int_{0}^{s} f\left(r, u(r), u^{\prime}(r)\right) d r\right) d s+\sum_{t_{k}<t} I_{k}\left(u\left(t_{k}\right)\right)
$$

We have

$$
\begin{aligned}
& \alpha u^{\prime}(\xi)=\alpha u^{\prime}(0)+\alpha \int_{0}^{\xi} \phi_{q}\left(\int_{0}^{s} f\left(r, u(r), u^{\prime}(r)\right) d r\right) d s+\alpha \sum_{t_{k}<\xi} I_{k}\left(u\left(t_{k}\right)\right) \\
& \beta u^{\prime}(\eta)=\beta u^{\prime}(0)+\beta \int_{0}^{\eta} \phi_{q}\left(\int_{0}^{s} f\left(r, u(r), u^{\prime}(r)\right) d r\right) d s+\beta \sum_{t_{k}<\eta} I_{k}\left(u\left(t_{k}\right)\right) .
\end{aligned}
$$

It follows that

$$
\begin{aligned}
u^{\prime}(0)= & \frac{\alpha \int_{0}^{\xi} \phi_{q}\left(\int_{0}^{s} f\left(r, u(r), u^{\prime}(r)\right) d r\right) d s+\beta \int_{0}^{\eta} \phi_{q}\left(\int_{0}^{s} f\left(r, u(r), u^{\prime}(r)\right) d r\right) d s}{1-\alpha-\beta} \\
& +\frac{\alpha \sum_{t_{k}<\xi} I_{k}\left(u\left(t_{k}\right)\right)+\beta \sum_{t_{k}<\eta} I_{k}\left(u\left(t_{k}\right)\right)}{1-\alpha-\beta}
\end{aligned}
$$

from $u^{\prime}(0)=\alpha u^{\prime}(\xi)+\beta u^{\prime}(\eta)$.
Similarly, we get the results as follows with the method above

$$
\begin{aligned}
u(t)= & u(0)+u^{\prime}(0) t+\int_{0}^{t}(t-s) \phi_{q}\left(\int_{0}^{s} f\left(r, u(r), u^{\prime}(r)\right) d r\right) d s \\
& +\sum_{t_{k}<t}\left(t-t_{k}\right) I_{k}\left(u\left(t_{k}\right)\right)+\sum_{t_{k}<t} J_{k}\left(u\left(t_{k}\right)\right)
\end{aligned}
$$

Note that by the boundary condition $u(1)=\delta u(0)$,

$$
\begin{aligned}
u(0)= & \frac{\alpha \int_{0}^{\xi} \phi_{q}\left(\int_{0}^{s} f\left(r, u(r), u^{\prime}(r)\right) d r\right) d s+\beta \int_{0}^{\eta} \phi_{q}\left(\int_{0}^{s} f\left(r, u(r), u^{\prime}(r)\right) d r\right) d s}{(\delta-1)(1-\alpha-\beta)} \\
& +\frac{\alpha \sum_{t_{k}<\xi} I_{k}\left(u\left(t_{k}\right)\right)+\beta \sum_{t_{k}<\eta} I_{k}\left(u\left(t_{k}\right)\right)}{(\delta-1)(1-\alpha-\beta)} \\
& +\frac{\int_{0}^{1} \int_{0}^{s} \phi_{q}\left(\int_{0}^{r} f\left(w, u(w), u^{\prime}(w)\right) d w\right) d r d s}{\delta-1} \\
& +\frac{1}{\delta-1} \sum_{k=1}^{m}\left[\left(1-t_{k}\right) I_{k}\left(u\left(t_{k}\right)+J_{k}\left(u\left(t_{k}\right)\right)\right] .\right.
\end{aligned}
$$

On the other hand, let $u \in P C^{1}[0,1] \bigcap C^{3}[J]$ be a solution of (2.1), differentiate (2.1) when $t \neq t_{k}$, we have

$$
u^{\prime \prime}(t)=\phi_{q}\left(\int_{0}^{t} f\left(s, u(s), u^{\prime}(s)\right) d s\right)
$$

that is,

$$
\phi_{p}\left(u^{\prime \prime}(t)\right)=\int_{0}^{t} f\left(s, u(s), u^{\prime}(s)\right) d s .
$$

Differentiating again,

$$
\left(\phi_{p}\left(u^{\prime \prime}(t)\right)\right)^{\prime}=f\left(t, u(t), u^{\prime}(t)\right)
$$

By (2.1), we can easily get

$$
\begin{gathered}
\left.\Delta u^{\prime \prime}(t)\right|_{t=t_{k}}=0, \quad k=1,2, \ldots, m, \\
\left.\Delta u^{\prime}(t)\right|_{t=t_{k}}=I_{k}\left(u\left(t_{k}\right)\right), \quad k=1,2, \ldots, m, \\
\left.\Delta u(t)\right|_{t=t_{k}}=J_{k}\left(u\left(t_{k}\right)\right), \quad k=1,2, \ldots, m, \\
u^{\prime \prime}(0)=0, \quad u^{\prime}(0)=\alpha u^{\prime}(\xi)+\beta u^{\prime}(\eta), \quad u(1)=\delta u(0) .
\end{gathered}
$$

Next, we give the Bai-Ge fixed point theorem which is used in the proof of our main result. Let E be a Banach space, $P \subset E$ be a cone, $\theta, \psi: P \rightarrow[0,+\infty)$ be nonnegative convex functions which satisfy

$$
\begin{equation*}
\|x\| \leq k \max \{\theta(x), \psi(x)\}, \quad \text { for all } x \in P \tag{2.5}
\end{equation*}
$$

where k is a positive constant.

$$
\begin{equation*}
\Omega=\{x \in P: \theta(x)<r, \psi(x)<L\} \neq \phi, \text { where } r>0, L>0 . \tag{2.6}
\end{equation*}
$$

Let $r>a>0, L>0$ be constants, $\theta, \psi: P \rightarrow[0,+\infty)$ be two nonnegative continuous convex functions which satisfy (2.5 and 2.6), and γ be a nonnegative concave function on P. We define convex sets as follows

$$
\begin{gathered}
P(\theta, r ; \psi, L)=\{x \in P: \theta(x)<r, \psi(x)<L\}, \\
\bar{P}(\theta, r ; \psi, L)=\{x \in P: \theta(x) \leq r, \psi(x) \leq L\}, \\
P(\theta, r ; \psi, L ; \gamma, a)=\{x \in P: \theta(x)<r, \psi(x)<L, \gamma(x)>a\}, \\
\bar{P}(\theta, r ; \psi, L ; \gamma, a)=\{x \in P: \theta(x) \leq r, \psi(x) \leq L, \gamma(x) \geq a\} .
\end{gathered}
$$

Lemma 2.2 ([2]). Let E be Banach space, $P \subset E$ be a cone and $r_{2} \geq d>b>$ $r_{1}>0, L_{2} \geq L_{1}>0$ be constants. Assume $\theta, \psi: P \rightarrow[0,+\infty)$ are nonnegative continuous convex functions which satisfy (2.5) and 2.6). γ is a nonnegative
 $T: \bar{P}\left(\theta, r_{2} ; \psi, L_{2}\right) \rightarrow \bar{P}\left(\theta, r_{2} ; \psi, L_{2}\right)$ is a completely continuous operator. Suppose
(C1) $\left\{x \in \bar{P}\left(\theta, d ; \psi, L_{2} ; \gamma, b\right): \gamma(x)>b\right\} \neq \phi$, and $\gamma(T x)>b$, for $x \in \bar{P}\left(\theta, d ; \psi, L_{2} ; \gamma, b\right)$;
(C2) $\theta(T x)<r_{1}, \psi(T x)<L_{1}$, for $x \in \bar{P}\left(\theta, r_{1} ; \psi, L_{1}\right)$;
(C3) $\gamma(T x)>b$, for $x \in \bar{P}\left(\theta, r_{2} ; \psi, L_{2} ; \gamma, b\right)$ with $\theta(T x)>d$.
Then T has at least three fixed points x_{1}, x_{2}, x_{3} in $\bar{P}\left(\theta, r_{2} ; \psi, L_{2}\right)$. Further,

$$
\begin{aligned}
& x_{1} \in \bar{P}\left(\theta, r_{1} ; \psi, L_{1}\right), \quad x_{2} \in\left\{\bar{P}\left(\theta, r_{2} ; \psi, L_{2} ; \gamma, b\right): \gamma(x)>b\right\}, \\
& x_{3} \in \bar{P}\left(\theta, r_{2} ; \psi, L_{2}\right) \backslash\left(\bar{P}\left(\theta, r_{1} ; \psi, L_{1}\right) \cup \bar{P}\left(\theta, r_{2} ; \psi, L_{2} ; \gamma, b\right)\right)
\end{aligned}
$$

3. Main Results

Let closed cone P be defined by

$$
P=\left\{u \in P C^{1}[0,1]: u(t) \geq 0\right\}
$$

Define operator $T: P \rightarrow P C^{1}[0,1]$ by

$$
\begin{aligned}
T u(t)= & u(0)+u^{\prime}(0) t+\int_{0}^{t}(t-s) \phi_{q}\left(\int_{0}^{s} f\left(r, u(r), u^{\prime}(r)\right) d r\right) d s \\
& +\sum_{t_{k}<t}\left(t-t_{k}\right) I_{k}\left(u\left(t_{k}\right)\right)+\sum_{t_{k}<t} J_{k}\left(u\left(t_{k}\right)\right), t \in[0,1]
\end{aligned}
$$

which $u(0), u^{\prime}(0)$ are defined in (2.2), 2.3).
The nonnegative continuous convex functions θ, ψ, and nonnegative continuous concave function γ are defined by

$$
\theta(u)=\sup _{0 \leq t \leq 1} u(t), \quad \psi(u)=\sup _{0 \leq t \leq 1}\left|u^{\prime}(t)\right|, \quad \gamma(u)=\min _{t \in\left[a_{m}, b_{m}\right]} u(t)
$$

for all $u \in P$, where $a_{m}=\frac{3 t_{m}+t_{m+1}}{4}, b_{m}=\frac{t_{m}+3 t_{m+1}}{4}$. Let

$$
\begin{gathered}
l=\frac{\delta-1}{\int_{a_{m}}^{b_{m}}\left(b_{m}-r\right) \phi_{q}\left(r-a_{m}\right) d s}=\frac{2^{q+1} q(q+1)(\delta-1)}{\left(1-t_{m}\right)^{q+1}}, \\
I_{u}^{R}=\max \left\{I_{1}(u), I_{2}(u), \ldots, I_{m}(u)\right\}, \quad u \in[0, R] \\
M_{1}=\frac{1-\alpha-\beta}{\int_{0}^{1} \phi_{q}(s) d s+m(1-\alpha-\beta)+x \alpha+y \beta}=\frac{1-\alpha-\beta}{1 / q+m(1-\alpha-\beta)+x \alpha+y \beta}
\end{gathered}
$$

where x and y satisfy $t_{x}<\xi<t_{x+1}, t_{y}<\eta<t_{y+1}$.
Theorem 3.1. Suppose there exist constants $r_{2} \geq d \geq \delta b>b>r_{1}>0, L_{2} \geq L_{1}>$ 0 such that

$$
r_{2} \geq \frac{b l \delta(m+1 / q)}{(\delta-1)(1-\alpha-\beta)}, \quad L_{2} \geq \frac{b l \delta(m+1 / q)}{1-\alpha-\beta}
$$

and the following conditions hold
(H1) $f(t, u, v)<\phi_{p}\left(\min \left\{\frac{\delta-1}{\delta} M_{1} r_{1}, M_{1} L_{1}\right\}\right),(t, u, v) \in[0,1] \times\left[0, r_{1}\right] \times\left[-L_{1}, L_{1}\right]$;
(H2) $\phi_{p}(b l)<f(t, u, v),(t, u, v) \in\left[a_{m}, b_{m}\right] \times[b, d] \times\left[-L_{2}, L_{2}\right]$;
(H3) $f(t, u, v)<\phi_{p}\left(\min \left\{\frac{\delta-1}{\delta} M_{1} r_{2}, M_{1} L_{2}\right\}\right),(t, u, v) \in[0,1) \times\left[0, r_{2}\right] \times\left[-L_{2}, L_{2}\right]$;
(H4) $t_{k} I_{k}(u)>J_{k}(u)$ for $u \in\left[0, r_{2}\right], I_{u}^{r_{1}}<\min \left\{\frac{\delta-1}{\delta} M_{1} r_{1}, M_{1} L_{1}\right\}$,

$$
I_{u}^{r_{2}}<\min \left\{\frac{\delta-1}{\delta} M_{1} r_{2}, M_{1} L_{2}\right\} .
$$

Then boundary-value problem (1.1) has at least three positive solutions $u_{1}, u_{2}, u_{3} \in$ $\bar{P}\left(\theta, r_{2} ; \psi, L_{2}\right)$ which satisfy

$$
\begin{gathered}
\sup _{0 \leq t \leq 1} u_{1}(t) \leq r_{1}, \quad \sup _{0 \leq t \leq 1}\left|u_{1}^{\prime}(t)\right| \leq L_{1} \\
b<\min _{t \in\left[a_{m}, b_{m}\right]} u_{2}(t) \leq \sup _{0 \leq t \leq 1} u_{2}(t) \leq r_{2}, \sup _{0 \leq t \leq 1}\left|u_{2}^{\prime}(t)\right| \leq L_{2} \\
\sup _{0 \leq t \leq 1} u_{3}(t) \leq \delta d, \quad \sup _{0 \leq t \leq 1}\left|u_{3}^{\prime}(t)\right| \leq L_{2}
\end{gathered}
$$

Proof. We need to prove $\frac{\delta-1}{\delta} M_{1} r_{1} \geq b l$ in order to make sure that the theorem makes sense, since we have $r_{2} \geq b l \delta \frac{m+1 / q}{(\delta-1)(1-\alpha-\beta)}$, and

$$
\begin{aligned}
\frac{\delta-1}{\delta} M_{1} r_{1} & =\frac{(\delta-1)(1-\alpha-\beta)}{\delta(1 / q+m(1-\alpha-\beta)+x \alpha+y \beta)} r_{1} \\
& \geq \frac{\delta-1}{\delta} \times \frac{1-\alpha-\beta}{1 / q+m} \times \frac{m+1 / q}{(\delta-1)(1-\alpha-\beta)} b l \delta \\
& =b l .
\end{aligned}
$$

Similarly, we have $M_{1} L_{2} \geq M_{1} r_{2}(\delta-1) \geq b l \delta>b l$, so there has no contradiction among conditions. It is easy to see that 1.1 has a solution if and only if

$$
\begin{aligned}
T u(t)= & u(0)+u^{\prime}(0) t+\int_{0}^{t}(t-s) \phi_{q}\left(\int_{0}^{s} f\left(r, u(r), u^{\prime}(r)\right) d r\right) d s \\
& +\sum_{t_{k}<t}\left(t-t_{k}\right) I_{k}\left(u\left(t_{k}\right)\right)+\sum_{t_{k}<t} J_{k}\left(u\left(t_{k}\right)\right), \quad t \in[0,1]
\end{aligned}
$$

has a fixed point.
Next, we will check the conditions (C1), (C2) and (C3) of Lemma 2.2 are satisfied for the operator T.

Obviously, we can get $T u(t) \geq 0,(T u)^{\prime}(t) \geq 0$, for all $t \in[0,1]$ and $u \in P$, that also means $T u$ is a monotone increasing function.

Firstly, we have $\theta(u) \leq r_{2}, \psi(u) \leq L_{2}$ for all $u \in \bar{P}\left(\theta, r_{2} ; \psi, L_{2}\right)$. By the condition (H4) $t_{k} I_{k}(u)>J_{k}(u)$ and $I_{u}^{r_{2}}<\min \left\{\frac{\delta-1}{\delta} M_{1} r_{2}, M_{1} L_{2}\right\}$, we get

$$
\sum_{k=1}^{m}\left(\left(1-t_{k}\right) I_{k}\left(u\left(t_{k}\right)\right)+J_{k}\left(u\left(t_{k}\right)\right)\right) \leq \sum_{k=1}^{m} I_{k}\left(u\left(t_{k}\right)\right) \leq m \frac{\delta-1}{\delta} M_{1} r_{2}
$$

By condition (H3), $f(t, u, v)<\phi_{p}\left(\frac{\delta-1}{\delta} M_{1} r_{2}\right)$, we obtain

$$
\phi_{q}\left(\int_{0}^{s} f\left(t, u(r), u^{\prime}(r)\right) d r\right) \leq \frac{\delta-1}{\delta} M_{1} r_{2} \phi_{q}(s)
$$

Hence,

$$
u(0) \leq \frac{\alpha / q+\beta / q+x \alpha+y \beta}{\delta(1-\alpha-\beta)} M_{1} r_{2}+\frac{1}{q \delta} M_{1} r_{2}+\frac{m}{\delta} M_{1} r_{2}
$$

Similarly,

$$
u^{\prime}(0) \leq \frac{(\delta-1)(\alpha+\beta+q(x \alpha+y \beta))}{q \delta(1-\alpha-\beta)} M_{1} r_{2}
$$

Therefore, we can show that

$$
\begin{aligned}
\theta(T u)= & \sup _{0 \leq t \leq 1}\left(u(0)+u^{\prime}(0) t+\int_{0}^{t}(t-s) \phi_{q}\left(\int_{0}^{s} f\left(r, u(r), u^{\prime}(r)\right) d r\right) d s\right. \\
& \left.+\sum_{t_{k}<t}\left(t-t_{k}\right) I_{k}\left(u\left(t_{k}\right)\right)+\sum_{t_{k}<t} J_{k}\left(u\left(t_{k}\right)\right)\right) \\
\leq & \frac{\alpha / q+\beta / q+x \alpha+y \beta}{\delta(1-\alpha-\beta)} M_{1} r_{2}+\frac{1}{q \delta} M_{1} r_{2}+\frac{m}{\delta} M_{1} r_{2} \\
& +\frac{(\delta-1)(\alpha+\beta+q(x \alpha+y \beta))}{q \delta(1-\alpha-\beta)} M_{1} r_{2}+\frac{(\delta-1)(1+m q)}{q \delta} M_{1} r_{2} \\
= & \frac{1 / q+m(1-\alpha-\beta)+x \alpha+y \beta}{1-\alpha-\beta} M_{1} r_{2}
\end{aligned}
$$

Since $M_{1}=\frac{1-\alpha-\beta}{1 / q+m(1-\alpha-\beta)+x \alpha+y \beta}$, we have $\theta(T u) \leq r_{2}$.
Similarly, we have

$$
\begin{aligned}
\psi(T u) & =\sup _{0 \leq t \leq 1}\left|(T u)^{\prime}(t)\right| \\
& =\sup _{0 \leq t \leq 1}\left|u^{\prime}(0)+\int_{0}^{t} \phi_{q}\left(\int_{0}^{s} f\left(r, u(r), u^{\prime}(r)\right) d r\right) d s+\sum_{t_{k}<t} I_{k}\left(u\left(t_{k}\right)\right)\right| \\
& \leq \frac{1 / q+m(1-\alpha-\beta)+x \alpha+y \beta}{1-\alpha-\beta} M_{1} L_{2}=L_{2}
\end{aligned}
$$

Therefore, $T: \bar{P}\left(\theta, r_{2} ; \psi, L_{2}\right) \rightarrow \bar{P}\left(\theta, r_{2} ; \psi, L_{2}\right)$, and it is easy to see that T is a completely continuous operator.

The proof of the condition (C2) in Lemma 2.2 is similar to the one above.
To check condition (C 1) of Lemma 2.2 , we choose $u_{0}=d$. It is easy to see that $u_{0} \in \bar{P}\left(\theta, d ; \psi, L_{2}\right)$ and $\gamma(u)=d>b$, so $\left\{x \in \bar{P}\left(\theta, d ; \psi, L_{2} ; \gamma, b\right): \gamma(x)>b\right\} \neq \phi$.

For $u \in \bar{P}\left(\theta, d ; \psi, L_{2} ; \gamma, b\right)$, we have $b \leq u(t) \leq d,\left|u^{\prime}(t)\right| \leq L_{2}$ for all $t \in\left[a_{m}, b_{m}\right]$. Since $T u$ is a monotone increasing function, and $(T u)(t) \geq 0, t \in[0,1]$, we have

$$
\begin{aligned}
\gamma(T u)= & \min _{t \in\left[a_{m}, b_{m}\right]}\left(u(0)+u^{\prime}(0) t+\int_{0}^{t}(t-s) \phi_{q}\left(\int_{0}^{s} f\left(r, u(r), u^{\prime}(r)\right) d r\right) d s\right. \\
& +\sum_{t_{k}<t}\left[\left(t-t_{k}\right) I_{k}\left(u\left(t_{k}\right)+\sum_{t_{k}<t} J_{k}\left(u\left(t_{k}\right)\right)\right)\right. \\
= & T u\left(a_{m}\right) .
\end{aligned}
$$

By (H2) and $u(0), u^{\prime}(0)$ defined before, we have

$$
\phi_{p}(b l)<f(t, u, v), \quad(t, u, v) \in\left[a_{m}, b_{m}\right] \times[b, d] \times\left[-L_{2}, L_{2}\right]
$$

$$
\begin{aligned}
& T u\left(a_{m}\right)= u(0)+u^{\prime}(0) a_{m}+\int_{0}^{a_{m}}\left(a_{m}-s\right) \phi_{q}\left(\int_{0}^{s} f\left(r, u(r), u^{\prime}(r)\right) d r\right) d s \\
&+\sum_{t_{k}<a_{m}}\left(a_{m}-t_{k}\right) I_{k}\left(u\left(t_{k}\right)\right)+\sum_{t_{k}<a_{m}} J_{k}\left(u\left(t_{k}\right)\right) \\
& \geq u(0) \\
& \geq \frac{1}{\delta-1} \int_{0}^{1} \int_{0}^{s} \phi_{q}\left(\int_{0}^{r} f\left(w, u(w), u^{\prime}(w)\right) d w\right) d r d s \\
&> \frac{1}{\delta-1} \int_{a_{m}}^{b_{m}} d s \int_{a_{m}}^{s} \phi_{q}\left(\int_{a_{m}}^{r} \phi_{p}(b l) d w\right) d r \\
&= \frac{b l}{\delta-1} \int_{a_{m}}^{b_{m}} d s \int_{a_{m}}^{s} \phi_{q}\left(r-a_{m}\right) d r \\
&= \frac{b l}{\delta-1} \int_{a_{m}}^{b_{m}}\left(b_{m}-r\right) \phi_{q}\left(r-a_{m}\right) d r=b .
\end{aligned}
$$

Thus $\gamma(T u)>b$ and the condition (C1) of Lemma 2.2 also holds.
Finally to prove (C3) of Lemma 2.2, we check $\gamma(T u)>b$ to be satisfied for all $u \in \bar{P}\left(\theta, r_{2} ; \psi, L_{2} ; \gamma, b\right)$ with $\theta(T u)>d$. Since $T u$ is a nonnegative monotone increasing function, we can get

$$
\begin{gathered}
\theta(T u)=\sup _{0 \leq t \leq 1} T u(t)=T u(1), \\
\gamma(T u)=\min _{t \in\left[a_{m}, b_{m}\right]} T u(t)=T u\left(a_{m}\right), \\
T u\left(a_{m}\right) \geq T u(0)=\frac{1}{\delta} T u(1)>\frac{d}{\delta} \geq b ;
\end{gathered}
$$

that is, $\gamma(T u)>b$.
We have checked Lemma 2.2 to make sure all the conditions are satisfied with the work we have done in the section above. Then T has at least three fixed points u_{1}, u_{2}, u_{3} in $\bar{P}\left(\theta, r_{2} ; \psi, L_{2}\right)$. Further,

$$
\begin{gathered}
u_{1} \in \bar{P}\left(\theta, r_{1} ; \psi, L_{1}\right), \quad u_{2} \in\left\{\bar{P}\left(\theta, r_{2} ; \psi, L_{2} ; \gamma, b\right): \gamma(x)>b\right\}, \\
u_{3} \in \bar{P}\left(\theta, r_{2} ; \psi, L_{2}\right) \backslash\left\{\bar{P}\left(\theta, r_{1} ; \psi, L_{1}\right) \cup \bar{P}\left(\theta, r_{2} ; \psi, L_{2} ; \gamma, b\right)\right\} .
\end{gathered}
$$

Therefore (1.1) has at least three positive solutions u_{1}, u_{2}, u_{3}. From the boundary conditions we have $u_{3}(1)=\delta u_{3}(0)$ and u_{3} is a monotone increasing function, so we have

$$
b>\gamma\left(u_{3}\right)=\min _{a_{m} \leq t \leq b_{m}} u_{3}(t)=u_{3}\left(a_{m}\right) \geq u_{3}(0)=\frac{1}{\delta} u_{3}(1)=\frac{1}{\delta} \theta\left(u_{3}\right)
$$

so $\theta\left(u_{3}\right) \leq \delta b$, that means $\sup _{0 \leq t \leq 1} u_{3}(t) \leq \delta d$, and u_{1}, u_{2}, u_{3} satisfy

$$
\begin{gathered}
\sup _{0 \leq t \leq 1} u_{1}(t) \leq r_{1}, \quad \sup _{0 \leq t \leq 1}\left|u_{1}^{\prime}(t)\right| \leq L_{1} \\
b<\min _{t \in\left[a_{m}, b_{m}\right]} u_{2}(t) \leq \sup _{0 \leq t \leq 1} u_{2}(t) \leq r_{2}, \sup _{0 \leq t \leq 1}\left|u_{2}^{\prime}(t)\right| \leq L_{2} \\
\sup _{0 \leq t \leq 1} u_{3}(t) \leq \delta d, \quad \sup _{0 \leq t \leq 1}\left|u_{3}^{\prime}(t)\right| \leq L_{2}
\end{gathered}
$$

References

[1] Ravi P. Agarwal, Donal O'Regan; A multiplicity result for second order impulsive differential equations via the Leggett-Williams fixed point therom, Appl. Math. Comput. 161 (2005): 433439.
[2] Z. Bai, W. Ge; Existence of three positive solutions for some second-order boundary value problems, Comput. Math. Appl. 48 (2004): 699-707.
[3] X. Fu, B. Yan, Y. Liu; Introduction of impulsive differential equations system, Science Press, Beijing, 2005 (in Chinese).
[4] D. Guo; Second order impulsive integro-differential equation on unbounded domains in Banach spaces, Nonlinear Analysis, 35(1999): 217-221.
[5] T. Jankowski; Positive solutions of three-point boundary value problems for second order impulsive differential equations with advanced arguments, Applied Mathematics and Computation, 2008, 197: 179-189.
[6] T. Jankowski; Positive solutions to second order four-point boundary value problems for impulsive differential equations, Applied Mathematics and Computation, 2008, 202: 550-561.
[7] M. Jia, and X. Liu; Three nonnegative solutions of three-point boundary value problem for second-order impulsive differential equations, Journal of Mathematical Research and Exposition, 2008, 28 (3): 567-574.
[8] Eric R. Kaufmanna, N. Kosmatov, Y. N. Raffoul; A second-order boundary value problem with impulsive effects on an unbounded domain, Nonlinear Analysis 2008, 69: 2924-2929.
[9] V. Lakshmikantham, D. D. Bainov, P. S. Simeonov; Theory of Impulsive Differential Equations, World Scientific, Singapore, 1989.

Li Shen
College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China

E-mail address: eric0shen@gmail.com
Xiping Liu
College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China

E-mail address: xipingliu@163.com
Zhenhua Lu
College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China

E-mail address: ehuanglu@163.com

[^0]: 2000 Mathematics Subject Classification. 34A37, 34B37.
 Key words and phrases. p-Laplacian; impulsive; positive solutions; boundary value problem. (C) 2010 Texas State University - San Marcos.

 Submitted November 16, 2009. Published April 14, 2010.
 Supported by grant 10ZZ93 from Innovation Program of Shanghai Municipal
 Education Commission.

