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EXISTENCE OF RADIAL POSITIVE SOLUTIONS VANISHING
AT INFINITY FOR ASYMPTOTICALLY HOMOGENEOUS

SYSTEMS

ALI DJELLIT, MOHAND MOUSSAOUI, SAADIA TAS

Abstract. In this article we study elliptic systems called asymptotically ho-

mogeneous because their nonlinearities may not have polynomial growth. Us-

ing the Gidas-Spruck Blow-up method, we obtain a priori estimates, and then
using Leray-Schauder topological degree theory, we obtain radial positive so-

lutions vanishing at infinity.

1. Introduction

We study asymptotically homogeneous systems involving nonlinearities which
may not have polynomial growth. More precisely, we establish the existence of
radial positive solutions vanishing at infinity, the so-called fundamental states, for
systems of the form

−∆pu = a11(|x|)f11(u) + a12(|x|)f12(v) in RN

−∆qv = a21(|x|)f21(u) + a22(|x|)f22(v) in RN
(1.1)

Here 1 < p, q < N , the coefficients aij (i, j = 1, 2) are positive continuous real-
valued functions and fij (i, j = 1, 2) belong to asymptotically homogeneous class of
functions. Such functions have been introduced later by Garcia-Huidobro, Guerra,
Manasevich, Schmitt and Ubilla [3, 4, 5] to deal with existence problems of quasi-
linear elliptic partial differential equations. Briefly this corresponds to a class of
nonhomogeneous functions which are not asymptotically equivalent to any strength
nevertheless they possess a suitable homogeneous behavior at the infinity or at the
origin. The system (1.1) being nonvariational , a first step consists in establishing
a priori estimates via Gidas-Spruck “Blow-up” method (see [6]). We use Leray-
Schauder topological degree to guarantee the existence of fundamental states. We
can refer the reader to the works of Clément, Manasevich and Mitidieri [1] on
hamiltonian systems defined in a ball, as well as works on nonvariational system
occurring sublinear growth conditions.

The main result established in this paper is expressed in the next section, namely
the system (1.1) possesses at last a fundamental state.
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2. Existence of ground states

First, we introduce definitions and notation utilized in this note. Let the Banach
space

X = {(u, v) ∈ C0([0,+∞[)× C0([0,+∞[), lim
r→+∞

u(r) = lim
r→+∞

v(r) = 0}

be equipped with the norm ‖(u, v)‖X = ‖u‖∞ + ‖v‖∞, ‖u‖∞ = supr∈[0,+∞[ |u(r)|.
Let K = {(u, v) ∈ X, u ≥ 0, v ≥ 0} a positive cone of X. For h ≥ 0 and λ ∈

[0, 1], we define two families of operators Th and Sλ from X to itself by Th(u, v) =
(w, z) such that (w, z) satisfies the system

−
(
rN−1|w′(r)|p−2w′(r)

)′ = rN−1a11(r)f11(|u(r)|) + rN−1a12(r)[f12(|v(r)|) + h]

in [0,+∞[ ,

−
(
rN−1|z′(r)|q−2z′(r)

)′ = rN−1a21(r)f21(|u(r)|) + rN−1a22(r)f22(|v(r)|)
in [0,+∞[ ,

w′(0) = z′(0) = 0, lim
r→+∞

w(r) = lim
r→+∞

z(r) = 0,

(2.1)
and Sλ(u, v) = (w, z) such that (w, z) satisfies the system

−
(
rN−1|w′(r)|p−2w′(r)

)′ = λrN−1a11(r)f11(|u(r)|) + λrN−1a12(r)f12(|v(r)|)
in [0,+∞[ ,

−
(
rN−1|z′(r)|q−2z′(r)

)′ = λrN−1a21(r)f21(|u(r)|) + λrN−1a22(r)f22(|v(r)|)
in [0,+∞[ ,

w′(0) = z′(0) = 0, lim
r→+∞

w(r) = lim
r→+∞

z(r) = 0

(2.2)
Let us recall the notion of “asymptotically homogeneous” functions and some of
their properties.

A function ϕ : R → R defined in a neighborhood at the infinity (respect. at
the origin) is said asymptotically homogeneous at the infinity (respect. at the
origin) of order ρ > 0 if for all σ > 0, we have lims→+∞

ϕ(σs)
ϕ(s) = σρ (respect.

lims→0
ϕ(σs)
ϕ(s) = σρ).

As an example, we have the function ϕ(s) = |s|α−2s(ln(1 + |s|))β with α > 1
and β > 1− α. It is asymptotically homogeneous at infinity of order α− 1 and at
the origin of order α + β − 1.

Proposition 2.1 ([3]). Let ϕ : R → R be a continuous, odd, asymptotically ho-
mogeneous at infinity (respect. at the origin) of order ρ such that tϕ(t) > 0 for all
t 6= 0 and ϕ(t) → infty as t →∞, then

(i) For all ε ∈]0, ρ[, there exists t0 > 0 such that ∀t ≥ t0 (respect. 0 ≤ t ≤ t0),
c1t

ρ−ε ≤ ϕ(t) ≤ c2t
ρ+ε; c1, c2 are positive constants. Moreover ∀s ∈ [t0, t] :

(ρ + 1− ε)ϕ(s) ≤ (ρ + 1 + ε)ϕ(t).
(ii) If (wn), (tn) are real sequences such that wn → w and tn → +∞ (respect.

tn → 0) then limn→+∞
ϕ(tnwn)

ϕ(tn) = wρ.

We assume that both the coefficients aij and the functions fij verify smooth
conditions; explicitly:
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(H1) For all i, j = 1, 2, the coefficient aij : [0,+∞[→]0,+∞[ is continuous and
satisfies ∃θ11, θ12 > p; ∃θ21, θ22 > q; there exists R > 0 such that aij(ξ) =
O(ξ−θij ) for all ξ > R and ãi = minr∈[0,R] aij(r) > 0; i, j = 1, 2; i 6= j.

(H2) For all i, j = 1, 2, the function fij : R → R is continuous, odd such that
sfij(s) > 0 for all s 6= 0 and lims→+∞ fij(s) = +∞.

(H3) For all i, j = 1, 2, fij is asymptotically homogeneous at the infinity of order
δij satisfying δ12δ21

(p−1)(q−1) > 1, α1δ11−α1(p−1)−p < 0, α2δ22−α2(q−1)−q <

0 and max(β1, β2) ≥ 0 where α1 = p(q−1)+δ12q
δ12δ21−(p−1)(q−1) , α2 = q(p−1)+δ21p

δ12δ21−(p−1)(q−1) ,

β1 = α1 − N−p
p−1 , β2 = α2 − N−q

q−1 .
(H4) For all i, j = 1, 2, fij is asymptotically homogeneous at the origin of order

δ̄ij with δ̄11, δ̄12 > p− 1, δ̄21, δ̄22 > q − 1.

To show the existence result, it is necessary to state some lemmas.

Lemma 2.2. Let u ∈ C1([0,+∞[) ∩ C2(]0,+∞[) be a positive solution of the
problem

−(rN−1|u′(r)|p−2u′(r))′ ≥ 0

in [0,+∞[ such that u(0) > 0 and u′(0) ≤ 0, then

(i) u(r) > 0 and u′(r) ≤ 0 for all r ≥ 0. Moreover, if u′(s) = 0 for all s > 0
then u′(r) = 0 for all r ∈ [0, s].

(ii) The function Mp defined by Mp(r) = ru′(r) + N−p
p−1 u(r), r ≥ 0, is non-

negative and nonincreasing. In particular, the function r 7→ r
N−p
p−1 u(r) is

nondecreasing in [0,+∞[.

Proof. To show (i), let us consider a nontrivial positive solution u of problem

−(rN−1|u′(r)|p−2u′(r))′ ≥ 0 in [0,+∞[.

Integrating from s to r, we obtain rN−1|u′(r)|p−2u′(r) ≤ sN−1|u′(s)|p−2u′(s), for
0 < s < r. Letting s → 0, u′(r) ≤ 0. If u′(r) = 0 then u′(s) = 0 for all 0 ≤ s ≤ r.
This means either u is a constant in [0,+∞[ or there exists r0 ≥ 0 such that
u′(r) < 0 for r > r0 and u′(r) = 0, u(r) = u(0) for 0 ≤ r ≤ r0. So u is non
increasing and u(0) > 0.

Let us show (ii). Since u is a positive solution of the problem

−(rN−1|u′(r)|p−2u′(r))′ ≥ 0 in [0,+∞[,

we have −rN−1(p − 1)|u′(r)|p−2u′′(r) − (N − 1)rN−2|u′(r)|p−2u′(r) ≥ 0. In other
words ru′′(r) + N−1

p−1 u′(r) ≤ 0, or (ru′(r))′ + N−p
p−1 u′(r) ≤ 0. This yields that Mp is

non increasing.
To show that Mp(r) ≥ 0 for all r ≥ 0, we use a contradiction argument. Indeed,

assume that there exists r1 > 0 such that Mp(r1) < 0. Since Mp is non increasing,
for all r > r1, Mp(r) ≤ Mp(r1) or u′(r) + N−p

p−1
u(r)

r ≤ Mp(r1)
r .

On the other hand u(r) > 0, N−p
p−1 > 0, hence u′(r) ≤ Mp(r1)

r . Consequently
u(r) − u(r1) ≤ Mp(r1) ln r

r1
, r > r1. It follows immediately that limr→+∞ u(r) =

−∞. This contradicts u begin positive. In particular

Mp(r)
ru(r)

≥ 0 ∀r > 0.
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Finally, we obtain u′(r)
u(r) + N−p

p−1
1
r ≥ 0. In other words,

(ln r
N−p
p−1 u(r))′ ≥ 0.

This implies that the function r 7→ r
N−p
p−1 u(r) is non decreasing. �

The study of the function Mp is essential and help us to estimate u(r).

Lemma 2.3. If (H1) is satisfied, then the operators Th and Sλ are compact.

The proof of the above lemma follows the same argument as in [2, Lemma 6],
and is omitted.

We remark that the ground states of (1.1) are precisely the fixed points of the
operator T0. Now, we show a nonexistence result related to a “limit” system.

Theorem 2.4. Under hypotheses (H1)-(H3), the system

−∆pu = a12(|x|)|v|δ12−1v in RN

−∆qv = a21(|x|)|u|δ21−1u in RN
(2.3)

has no non-trivial radial positive solutions; in particular (2.3) has no ground state.

Proof. Let us argue by contradiction. Let (u, v) be a radial positive solution of
System (2.3). Then (u, v) satisfies the differential system

−(rN−1|u′(r)|p−2u′(r))′ = rN−1a12(r)(v(r))δ12 in [0,+∞[ ,

−(rN−1|v′(r)|q−2v′(r))′ = rN−1a21(r)(u(r))δ21 in [0,+∞[ ,

u′(0) = v′(0) = 0

(2.4)

Hence,

−(rN−1|u′(r)|p−2u′(r))′ ≥ rN−1∼
a1v

δ12 , (2.5)

−(rN−1|v′(r)|q−2v′(r))′ ≥ rN−1∼
a2u

δ21 . (2.6)

First, consider the case β1 > 0 or β2 > 0. Integrating both (2.5) and (2.5) from 0
to r and taking into account that u′(r) < 0, v′(r) < 0 for all r > 0, we obtain

−u′(r) ≥ (
ã1

N
)

1
p−1 r

1
p−1 v

δ12
p−1 ,

−v′(r) ≥ (
ã2

N
)

1
q−1 r

1
q−1 u

δ21
q−1 .

By Lemma 2.2, we have Mp ≥ 0, Mq ≥ 0, thus

0 ≥ −ru′(r)− N − p

p− 1
u(r) ≥ (

ã1

N
)

1
p−1 r

p
p−1 v

δ12
p−1 − N − p

p− 1
u(r),

0 ≥ −rv′(r)− N − q

q − 1
v(r) ≥ (

ã2

N
)

1
q−1 r

q
q−1 u

δ21
q−1 − N − q

q − 1
v(r).

This yields

u(r) ≥ Cr
p

p−1 v
δ12
p−1 , (2.7)

v(r) ≥ Cr
q

q−1 u
δ21
q−1 . (2.8)
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Combining these two inequalities, we have

u(r) ≤ Cr−α1 , (2.9)

v(r) ≤ Cr−α2 . (2.10)

Since r
N−p
p−1 u(r) and r

N−q
q−1 v(r) are nondecreasing, for all r > r0 > 0,

u(r) ≥ Cr−
N−p
p−1 , (2.11)

v(r) ≥ Cr−
N−q
q−1 . (2.12)

Inequalities (2.9)-(2.12) imply either rβ1 ≤ C or rβ2 ≤ C. This yields a contradic-
tion. Suppose now that β1 = 0 (we may prove in a similar manner for β2 = 0).
Integrating with respect to r the first equation of System (2.4) from r0 > 0 to r,
we obtain

rN−1|u′(r)|p−1 − rN−1
0 |u′(r0)|p−1 ≥ ã1

r∫
r0

sN−1vδ12(s)ds.

Then (2.8) yields

vδ12(s) ≥ Cs
δ12q
q−1 u

δ12δ21
q−1 (s).

Consequently,

rN−1|u′(r)|p−1 ≥ C

∫ r

r0

sN−1+
δ12q
q−1 u

δ12δ21
q−1 (s)ds.

Taking into account inequality (2.11) and the fact that β1 = 0, we have

rN−1|u′(r)|p−1 ≥ C

r∫
r0

sN−1+
δ12q
q−1 −

N−p
p−1

δ12δ21
q−1 ds = C

∫ r

r0

s−1 ds = C ln
r

r0
.

On the other hand, Mp(r) ≥ 0 for r > 0 implies (N−p
p−1 )p−1up−1(r) ≥ rp−1|u′(r)|p−1.

Hence

up−1(r) ≥ Crp−1|u′(r)|p−1 ≥ Crp−N ln
r

r0
.

Then we write

r
N−p
p−1 u(r) ≥ C

(
ln

r

r0

) 1
p−1 .

This together with (2.9) yields a contradiction. �

We now show that the eventual radial positive solutions of System (2.1) are
bounded.

Theorem 2.5. Assume (H1)-(H4). If (u, v) is a ground state of (2.1). then there
exists a constant C > 0 (independent of u and v) such that ‖(u, v)‖X ≤ C.
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Proof. Let (u, v) be a ground state of (2.1) for h = 0, then (u, v) satisfies the system

−(rN−1|u′(r)|p−2u′(r))′ = rN−1a11(r)f11(u(r)) + rN−1a12(r)f12(v(r))

in [0,+∞[,

−(rN−1|v′(r)|q−2v′(r))′ = rN−1a21(r)f21(u(r)) + rN−1a22(r)f22(v(r))

textin[0,+∞[ ,

u′(0) = v′(0) = 0, lim
r→+∞

u(r) = lim
r→+∞

v(r) = 0

(2.13)

Assume now that there exists a sequence (un, vn) of positive solutions of (2.13)
such that ‖un‖∞ → ∞ as n → +∞ or ‖vn‖∞ → ∞ as n → +∞. Taking γn =

‖un‖
1

α1∞ + ‖vn‖
1

α2∞ , and using (H3), we have α1 > 0 and α2 > 0. So γn → +∞ as
n → +∞.

Now we introduce the transformations

y = γnr, wn(y) =
un(r)
γα1

n
, zn(y) =

vn(r)
γα2

n
.

Observe that for all y ∈ [0,+∞[, 0 ≤ wn(y) ≤ 1, 0 ≤ zn(y) ≤ 1. Furthermore it is
easy to see that for any n the pair (wn, zn) is a solution of the system

− (yN−1|w′n(y)|p−2w′n(y))′

= yN−1a11(
y

γn
)
f11(γα1

n wn(y))

γ
α1(p−1)+p
n

+ yN−1a12(
y

γn
)
f12(γα2

n zn(y))

γ
α1(p−1)+p
n

in [0,+∞[ ,

− (yN−1|z′n(y)|q−2z′n(y))′

= yN−1a21(
y

γn
)
f21(γα1

n wn(y))

γ
α2(q−1)+q
n

+ yN−1a22(
y

γn
)
f22(γα2

n zn(y))

γ
α2(q−1)+q
n

in [0,+∞[ ,

w′n(0) = z′n(0) = 0, lim
r→+∞

wn(r) = lim
r→+∞

zn(r) = 0 .

(2.14)
Let R > 0 be fixed. We claim that (w′n) and (z′n) are bounded in C([0, R]). Indeed
passing to a subsequence of (w′n) (denoted again (w′n)) assume that ‖w′n‖C([0,R]) →
+∞ as n → +∞. Hence there exists a sequence (yn) in [0, R] such that for all
A > 0, there exists n0 ∈ N such that for all n ≥ n0, |w′n(yn)| > A.

Integrating with respect to y the first equation of System (2.14), we obtain

|w′n(yn)|p−1

=
1

yN−1
n

∫ yn

0

(
yN−1a11(

y

γn
)
f11(γα1

n wn(y))

γ
α1(p−1)+p
n

+ yN−1a12(
y

γn
)
f12(γα2

n zn(y))

γ
α1(p−1)+p
n

)
dy.

From the fact that f1j , j = 1, 2, are asymptotically homogeneous at the infinity
together with part (i) of Proposition 2.1, we arrive to the statement: for all ε ∈
[0, δ1j [, there exists c1

1j , c
2
1j > 0, s0 > 0 such that for all s ≥ s0

c1
1js

δ1j−ε ≤ f1j(s) ≤ c2
1js

δ1j+ε.
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Since (wn) and (zn) are bounded, we conclude that

c1
11γ

α1(δ11−ε)−α1(p−1)−p
n ≤ f11(γα1

n wn(y))

γ
α1(p−1)+p
n

≤ c2
11γ

α1(δ11+ε)−α1(p−1)−p
n ,

c1
12γ

α2(δ12−ε)−α1(p−1)−p
n ≤ f12(γα2

n zn(y))

γ
α1(p−1)+p
n

≤ c2
12γ

α2(δ12+ε)−α1(p−1)−p
n .

By choosing ε sufficiently small, the assumption (H3) yields
f11(γα1

n wn(y))

γ
α1(p−1)+p
n

→ 0 and
f12(γα2

n zn(y))

γ
α1(p−1)+p
n

→ c1 as n → +∞

where c1 is positive constant. So there exists n1 ∈ N such that for any n ≥ n1, we
have

|w′n(yn)|p−1 ≤ a12(0)
yN−1

n

c1

∫ yn

0

yN−1dy =
c1

N
a12(0)yn ≤

Rc1

N
a12(0) ≡ c.

Setting n ≥ max(n0, n1), we have A < |w′n(yn)| ≤ c. This contradicts the fact that
A may be infinitely large. Similarly we prove that (z′n) is bounded in C([0, R]).
Consequently (wn) and (zn) are equicontinuous in C([0, R]). By Arzéla-Ascoli
theorem, there exists a subsequence of (wn) denoted again (wn) (respect. (zn))
such that wn → w (respect. zn → z) in C([0, R]).

On the other hand,

‖wn‖
1

α1∞ + ‖zn‖
1

α2∞ = 1,
this implies that the real-valued sequences (‖wn‖∞) and (‖zn‖∞) are bounded.
Hence there exist subsequences denoted again (‖wn‖∞) and (‖zn‖∞) such that

‖wn‖∞ → w0, ‖zn‖∞ → z0 and w
1

α1
0 + z

1
α2
0 = 1. In view of the uniqueness of

the limit in C([0, R]), we get ‖w‖
1

α1∞ + ‖z‖
1

α2∞ = 1. This implies that (w, z) is not
identically null. Integrating from 0 to y ∈ [0, R], the first and the second equation
of System (2.14), we obtain

wn(0)− wn(y) =
∫ y

0

(gn(s))
1

p−1 ds, (2.15)

zn(0)− zn(y) =
∫ y

0

(hn(s))
1

q−1 ds . (2.16)

Clearly gn(y) and hn(y) are defined by

gn(y) =
1

yN−1

∫ y

0

(
sN−1a11(

s

γn
)
f11(γα1

n wn(s))

γ
α1(p−1)+p
n

+ sN−1a12(
s

γn
)
f12(γα2

n zn(s))

γ
α1(p−1)+p
n

)
ds

hn(y) =
1

yN−1

∫ y

0

(
sN−1a21(

s

γn
)
f21(γα1

n wn(s))

γ
α2(q−1)+q
n

+ sN−1a22(
s

γn
)
f22(γα2

n zn(s))

γ
α2(q−1)+q
n

)
ds.

Compiling Proposition 2.1 and (H3), we obtain
f11(γα1

n wn(s))

γ
α1(p−1)+p
n

→ 0,
f22(γα2

n zn(s))

γ
α2(q−1)+q
n

→ 0,

f12(γα2
n zn(s))

γ
α1(p−1)+p
n

=
f12(γα2

n )

γ
α1(p−1)+p
n

f12(γα2
n zn(s))

f12(γα2
n )

→ czδ12(s),

f21(γα1
n wn(s))

γ
α2(q−1)+q
n

=
f21(γα1

n )

γ
α2(q−1)+q
n

f21(γα1
n wn(s))

f21(γα1
n )

→ cwδ21(s),
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as n →∞. By the Lebesgue theorem on dominated convergence, it follows that

gn(y) → c

yN−1

∫ y

0

sN−1a12(0)zδ12(s)ds,

hn(y) → c

yN−1

∫ y

0

sN−1a21(0)wδ21(s)ds,

as n →∞. Passing to the limit in (2.15) and (2.16), we arrive to

w(0)− w(y) = c

∫ y

0

1
τN−1

( ∫ τ

0

sN−1a12(0)zδ12(s)ds
) 1

p−1
dτ,

z(0)− z(y) = c

∫ y

0

1
τN−1

( ∫ τ

0

sN−1a21(0)wδ21(s)ds
) 1

q−1
dτ.

In this way w ≥ 0, z ≥ 0, w, z ∈ C1([0, R]) ∩ C2(]0, R]) and satisfy the system

−(yN−1|w′(y)|p−2w′(y))′ = ca12(0)yN−1(z(y))δ12 in [0, R]

−(yN−1|z′(y)|q−2z′(y))′ = ca21(0)yN−1(w(y))δ21 in [0, R]

w′(0) = z′(0) = 0

(2.17)

If we use the same arguments on [0, R∗] where R∗ > R, we obtain a solution (w∗, z∗)
of System (2.17) with R∗ in stead of R, which coincide with (w, z) in [0, R]. To this
end, we indefinitely extend (w, z) to [0,+∞[. By Lemma 2.2 we have w(y) > 0,
z(y) > 0, for all y ≥ 0. The pair (w, z) also satisfies System (2.17). In other words
(w, z) is a radial positive solution of (2.4). This contradicts Theorem 2.4. �

Lemma 2.6. Under assumptions (H1)-(H4), there exists h0 > 0 such that the
problem (u, v) = Th(u, v) has no solution for h ≥ h0.

Proof. Suppose by contradiction that there is a solution (u, v) ∈ X of the above
problem. Then (u, v) satisfies system

−(rN−1|u′(r)|p−2u′(r))′ = rN−1a11(r)f11(|u(r)|) + rN−1a12(r)[f12(|v(r)|) + h]

in [0,+∞[ ,

−(rN−1|v′(r)|q−2v′(r))′ = rN−1a21(r)f21(|u(r)|) + rN−1a22(r)f22(|v(r)|)
in [0,+∞[ ,

u′(0) = v′(0) = 0, lim
r→+∞

u(r) = lim
r→+∞

v(r) = 0

(2.18)
Assume that there exists a sequence (hn) hn → +∞ as n → +∞, such that
(2.18) admits a pair of solutions (un, vn). In accordance with Lemma 2.2, we have
un(r) > 0, vn(r) > 0, u′n(r) ≤ 0 and v′n(r) ≤ 0, for all n ∈ N. Integrating the first
equation of System (2.18), from R to 2R, R > 0, we obtain

un(R) ≥
∫ 2R

R

(
η1−N

η∫
0

ξN−1a12(ξ)hndξ
) 1

p−1
dη ≥ cRh

1
p−1
n

Here

c =
( 1

(2R)N−1

R∫
0

ξN−1a12(ξ)dξ
) 1

p−1
.
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Consequently un(R) ≥ cRh
1

p−1
n . Passing to the limit we get un(R) → +∞. On the

other hand, integrating the second equation of (2.18), from R to 2R, we obtain

vn(R) ≥
∫ 2R

R

(η1−N

η∫
0

ξN−1a21(ξ)f21(un(ξ))dξ)
1

q−1 dη ≥ cR(f21(un(R)))
1

q−1

By hypothesis (H3) and Proposition 2.1, we have vn(R) ≥ c(un(R))
δ21−ε

q−1 Oper-
ating similarly, we obtain un(R) ≥ c(vn(R))

δ12−ε
p−1 . It follows from the last two

inequalities, that

(un(R))
(δ12−ε)(δ21−ε)−(p−1)(q−1)

(p−1)(q−1) ≤ 1
c
.

This is the desired contradiction since un(R) increases to infinitely. �

Lemma 2.7. There exists ρ̄ > 0 such that for all ρ ∈]0, ρ̄[ and all (u, v) ∈ X
satisfying ‖(u, v)‖ = ρ, the equation (u, v) = Sλ(u, v) has no solution.

Proof. Assume that there exist (ρn) ∈ R+, ρn → 0; (λn) ⊂ [0, 1] and (un, vn) ∈ X
such that (un, vn) = Sλn

(un, vn) with ‖(un, vn)‖ = ρn. Taking (H4) into account,

‖un‖∞ ≤ cλ
1

p−1
n

(
‖un‖

δ̄11−ε
p−1
∞ + ‖vn‖

δ̄12−ε
p−1
∞

)
‖vn‖∞ ≤ cλ

1
q−1
n

(
‖un‖

δ̄21−ε
q−1
∞ + ‖vn‖

δ̄22−ε
q−1
∞

)
Adding term by term, we obtain

‖(un, vn)‖ ≤ C
(
‖(un, vn)‖

δ̄11−ε
p−1 + ‖(un, vn)‖

δ̄12−ε
p−1 ,

+ ‖(un, vn)‖
δ̄21−ε

q−1 + ‖(un, vn)‖
δ̄22−ε

q−1

)
.

This implies

1 ≤ C
(
‖(un, vn)‖

δ̄11−ε
p−1 −1 + ‖(un, vn)‖

δ̄12−ε
p−1 −1

+ ‖(un, vn)‖
δ̄21−ε

q−1 −1 + ‖(un, vn)‖
δ̄22−ε

q−1 −1
)
.

The above inequality contradicts the fact that ‖(un, vn)‖ = ρn → as n → +∞. �

Theorem 2.8. Under hypotheses (H1)-(H4), System (1.1) has positive radial so-
lution.

Proof. To show the existence of ground states for (1.1) (or (2.1) with h = 0), it
is sufficient to prove that the compact operator T0 admits a fixed point. In view
of Theorem 2.5, the eventual fixed point (u, v) of T0 are bounded; explicitly there
exists C > 0 such that ‖(u, v)‖X ≤ C. Let us chose R1 > C and let us designate
by BR1 the ball of X, centered at the origin with radius R1. To this end, the
Leray-Schauder degree degLS(I − Th, BR1 , 0) is well defined. It being understood
that I denote the identical operator in X. Moreover, by Lemma 2.6, we have
degLS(I − Th, BR1 , 0) = 0 for all h ≥ h0. It follows from the homotopy invariance
of the Leray-Schauder degree that

degLS(I − T0, BR1 , 0) = degLS(I − Th, BR1 , 0) = 0.
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On the other hand, by Lemma 2.7, there exists 0 < ρ < ρ̄ < R1 such that
degLS(I − Sλ, Bρ, 0) is well defined. Once again, the homotopy invariance of the
Leray-Schauder degree yields

1 = degLS(I,Bρ, 0)

= degLS(I − Sλ, Bρ, 0)

= degLS(I − S1, Bρ, 0)

= degLS(I − T0, Bρ, 0).

Using the additivity of the Leray-Schauder degree,

degLS(I − T0, BR1\Bρ, 0) = degLS(I − T0, BR1 , 0)− degLS(I − T0, Bρ, 0) = −1.

This implies that T0 has fixed point in BR1\Bρ. Consequently, there exists a
nontrivial ground state. �
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