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EXISTENCE AND MULTIPLICITY OF SOLUTIONS TO
ELLIPTIC PROBLEMS WITH DISCONTINUITIES AND FREE

BOUNDARY CONDITIONS

SABRI BENSID, SIDI MOHAMMED BOUGUIMA

Abstract. We study the nonlinear elliptic problem with discontinuous non-
linearity

−∆u = f(u)H(u− µ) in Ω,

u = h on ∂Ω,

where H is the Heaviside unit function, f, h are given functions and µ is a

positive real parameter. The domain Ω is the unit ball in Rn with n ≥ 3. We

show the existence of a positive solution u and a hypersurface separating the
region where −∆u = 0 from the region where −∆u = f(u). Our method relies

on the implicit function theorem and bifurcation analysis.

1. Introduction

This article concerns the existence and multiplicity of solutions to the problem
−∆u = f(u)H(u− µ) in Ω,

u = h on ∂Ω,
(1.1)

where Ω is the unit ball of Rn with n ≥ 3; f, h are given functions; µ is a positive
real parameter; and H is the Heaviside function

H(t) =

{
1 if t > 0
0 if t ≤ 0 .

Problem (1.1) can be reformulated as an equivalent free boundary problem: Find
u ∈ C2(Ω \ ∂w) ∩ C1(Ω) such that

−∆u = f(u) in w,

−∆u = 0 in Ω \ w,
u = h on ∂Ω,

(1.2)

where w = {x ∈ Ω : u(x) > µ} and ∂w is the free boundary to be determined. On
each side of the free boundary ∂w = {x ∈ Ω, u(x) = µ} the equation −∆u = f(u)
(the side u > µ) or ∆u = 0 (the side u < µ) is satisfied in the classical sense.
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If χw denotes the characteristic function of the set w, we can write (1.1) as

−∆u = f(u)χw in Ω,
u = h on ∂Ω.

(1.3)

This problem has received less attention and a partial result is obtained by the
authors in [2].

The aim of this paper is to improve and complement the result obtained in [2].
We will prove the existence and multiplicity results for (1.1) together with some
properties of their free boundaries in the case where the nonlinearity satisfies only
the condition

f(µ)
µ

> Mn, Mn =
n(n− 2)

( 2
n )

2
n−2 − ( 2

n )
n

n−2
, for n ≥ 3.

Another question left open is whether the free boundary of (1.1) is analytic. In this
paper we use the techniques presented in [10] to derive affirmative answer to this
problem. For

f(µ)
µ

= Mn,

we will show that there exists an exceptional position of the free boundary corre-
sponding to (1.1) with h = 0 for which bifurcation can occur. The problem (1.1)
is often stated in variational context, but our approach hinges in considering the
parametrization of the free boundary as the unknown of the problem. This method
allows us to understand the effect of the boundary perturbation on the shape of
the free boundary. It is clearly not appropriate to review here the rather extensive
literature on discontinuous elliptic problems, and we restrict ourselves to outline,
referring the reader who requires more information to the paper [2] for extensive fur-
ther references. Other methods have been developed for problem (1.1), for example
Kolibal [11] recently used numerical schemes to compute solutions for a particular
case of (1.1) with h = 0. The reader can consult [6, 14] for similar problems with
Neumann boundary conditions.

We start by giving more precise definitions and hypotheses on quantities used
in this paper. Let Γ be the set {x ∈ Ω : u(x) = µ}. This set is called the
free boundary. Because the nonlinearity in (1.1) is discontinuous, we shall specify
precisely the meaning of a solution.

Definition 1.1. By a solution, we mean a function u ∈ C2(Ω\Γ)∩C1(Ω) satisfying
problem (1.1).

The free boundary determined by the solution itself separates the region where
u < µ and −∆u = 0 in the classical sense from the region where u > µ and
−∆u = f(u). The following assumptions will be needed throughout the paper.
Let λ1 be the first eigenvalue of −∆ in Ω under homogeneous Dirichlet boundary
conditions.

(F1) The function f is k-lipstchitzian, non-decreasing, positive and there exist
two strictly positive constants k, β > 0 such that f(s) ≤ ks + β with
k < min{λ1, 1}.

(F2) The function f is differentiable and constant on the interval of the form
[0, c] where c > β

2n−k .
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(F3) There exists µ∗ > 0 such that

f(µ∗)
µ∗

= Mn, Mn =
n(n− 2)

( 2
n )

2
n−2 − ( 2

n )
n

n−2
.

The main result of this paper is reads as follows.

Theorem 1.2. (a) Assume that (F1), (F2) are satisfied and suppose that there
exists µ > 0 such that

f(µ)
µ

> Mn, Mn =
n(n− 2)

( 2
n )

2
n−2 − ( 2

n )
n

n−2
, for n ≥ 3.

Let ‖h‖∞ = maxx∈∂Ω |h(x)|. If h is small enough, ‖h‖∞ < µ, then (1.1) has at
least two positive solutions and the free boundaries are analytic hypersurfaces.

(b) Assume that (F1), (F2), (F3) are satisfied. There is an exceptional value
r0 ∈ (0, 1) at which the reduced problem (1.1) with h = 0 has a bifurcation: there
is a solution of (1.1) with h = 0 having free boundary in polar coordinates of the
form

{(r, θ) ∈ (0, 1)× S, r = r0 + sφ00 + o(s)}

for all s in a neighborhood of zero, where φ00 is a given constant and S is the unit
sphere in Rn.

The proof of this theorem is given in several steps. The hypothesis (F2) is rather
technical and allows us to avoid some tedious computations.

This paper is organized as follows. In Section 2, we give existence results for the
reduced problem (1.1) with h = 0. Section 3 is devoted to the statements of the
main results. Finally, Section 4 is devoted to regularity of the free boundary.

2. The reduced problem

This section deals with the existence of solutions for the reduced problem (1.1)
with h = 0.

Proposition 2.1. (a) Assume that (F1), (F2), (F3) are satisfied. Then (1.1) with
h = 0 has a solution u > 0 such that the free boundary {(r, θ) ∈ Ω;u(r, θ) = µ∗} is
the sphere of radius r0 = ( 2

n )
1

n−2 .
(b) Assume that (F1), (F2) are satisfied. If f(µ)

µ > Mn, then (1.1) with h = 0 has
two positive and radial solutions and their free boundaries are respectively spheres
with radii r1 and r2 different from ( 2

n )
1

n−2 .

The approach we shall adopt in our analysis is to find radial solutions of (1.1)
with h = 0. For this purpose, we start by establishing useful estimates.

Lemma 2.2 (a priori estimates). Assume (F1). If u is a positive solution of (1.1)
with h = 0, then 0 < u ≤ β

2n−k in Ω.

Proof. Let u be a supersolution of the reduced problem satisfying

−∆u = ku+ β in Ω,
u = 0 on ∂Ω.

(2.1)
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Since the function u→ ku+ β is Lipschitzian, then from the well-known result by
[8], it follows that u is radial and satisfies

−r1−n∂/∂r(rn−1∂u/∂r) = ku+ β for 0 < r < 1

u′(0) = 0, u(1) = 0.
(2.2)

Therefore,

∂u

∂ρ
(ρ) = −ρ1−n

∫ ρ

0

sn−1(ku(s) + β)ds = −βρ
n
− kρ1−n

∫ ρ

0

sn−1u(s)ds.

Integrating on [0, r] gives

u(r)− u(0) = −βr
2

2n
− k

∫ r

0

t1−n

∫ t

0

τn−1u(τ) dτ dt.

Let r = 1, it is clear that

u(0) =
β

2n
+ k

∫ 1

0

t1−n

∫ t

0

τn−1u(τ) dτ dt.

Since u is strictly decreasing in Ω [8, Theorem 2.1], this implies that u(0) ≥ u(τ),
for all τ ∈ (0, 1) and

u(0) ≤ β

2n
+ k

∫ 1

0

t1−n

∫ t

0

τn−1u(0) dτ dt.

Clearly,

u(0) ≤ β

2n− k
.

Let u be a solution of (1.1) with h = 0 and let v = u− u. Therefore,

−∆v = −∆u+ ∆u

= ku+ β − f(u)

≥ ku+ β − (ku+ β)
≥ kv.

The function v satisfies

−∆v − kv ≥ 0 in Ω,
v = 0 on ∂Ω.

Using the fact that k < λ1 and the maximum principle, we obtain that v ≥ 0 in Ω;
see for instance [12].

Note that in the case −∆v = kv, necessarily v = 0 and therefore u = u in Ω
which gives the desired result. So

0 < u(x) ≤ β

2n− k
, for all x ∈ Ω,

as required. �

Proof of the Proposition 2.1. The eventual solution u and its gradient are continu-
ous in the whole domain Ω and the partial differential equation is satisfied in the
classical sense respectively in the region u < µ or u > µ. We look for the free
boundary in the form

Γ = {(r0, θ), θ ∈ S} for some r0 ∈ (0, 1).
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Let w := {(r, θ) ∈ Ω; 0 ≤ r < r0; θ ∈ S}. We obtain a solution of (1.1) with h = 0
by finding a radial function u(r) and a value r0 such that

−∆u = f(u) in w,

−∆u = 0 in Ω \ w.
(2.3)

Indeed: If u is a solution of (2.3) with u(r0) = µ, then by the maximum principle
u(r) > µ for 0 ≤ r < r0. For r > r0, u is a harmonic function, then its maximum
occurs on the boundary. The maximum µ is taken only at the free boundary Γ.
Hence u < µ and u satisfies (1.1) with h = 0.

In the region w, the solution u exists and is radial (see [2, Proposition 3.1]). The
maximum of u is achieved at r = 0 (see [8, Theorem 1]). Hence d := maxw u =
u(0) ≥ µ and f(d) ≥ f(µ) (since f is non-decreasing).

Now, in w, the function u satisfies

r1−n∂/∂r(rn−1∂u/∂r) = f(u).

And we will have

∂u

∂r
(r0 − 0) = −r1−n

0

∫ r0

0

sn−1f(u(s))ds

≥ −r1−n
0

∫ r0

0

sn−1f(d)ds

= −r0f(d)
n

where ∂u
∂r (r0 − 0) denotes the left derivative of u at the value r = r0.

In the region, u ≥ µ, we conclude that f(u) ≥ f(µ) and

∂u

∂r
(r0 − 0) = −r1−n

0

∫ r0

0

sn−1f(u(s))ds

≤ −r1−n
0

∫ r0

0

sn−1f(µ)ds

= −r0f(µ)
n

.

Therefore,

−r0f(d)
n

≤ ∂u

∂r
(r0 − 0) ≤ −r0f(µ)

n
.

By Lemma 2.2, d ∈ (0, β
2n−k ]. Since f is constant on this interval, f(d) = f(µ). We

deduce that
∂u

∂r
(r0 − 0) = −r0f(µ)

n
(2.4)

By solving the differential equation in the region Ω \ w, we obtain that

u(r) =
µr2−n

r2−n
0 − 1

− µ

r2−n
0 − 1

.

This implies that
∂u

∂r
(r0 + 0) =

(2− n)µ
r0 − rn−1

0

. (2.5)
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Now, a radial solution is obtained if u verifies the transmission conditions on the
free boundary, i.e, there exists r0 ∈ (0, 1) such that u(r0) = µ and

∂u

∂r
(r0 − 0) =

∂u

∂r
(r0 + 0). (2.6)

Using (2.4), (2.5) and (2.6), one has

f(µ)
µ

=
n(n− 2)
r20 − rn

0

. (2.7)

It is apparent that the function r0 → n(n−2)
r2
0−rn

0
has a unique minimum Mn achieved

at the point r0 = ( 2
n )

1
n−2 . Since by the assumption (F3), there exists µ∗ such that

f(µ∗)
µ∗

= Mn,

it follows that equation (2.7) has only one root r0 = ( 2
n )

1
n−2 and we obtain the

desired solution u with a free boundary which is a sphere of radius r0.
Now, for the case (b), if

f(µ)
µ

> Mn.

Equation (2.7) has two roots r1, r2 different from ( 2
n )

1
n−2 . The proof of Proposition

2.1 is complete. �

Note that (1.1) with h = 0 can have other solutions; see Theorem 3.5 below.

3. Main results

Let r0 denote one of the values r1 and r2 of Proposition 2.1(b), then r0 6= ( 2
n )

1
n−2 .

When h 6= 0, we look for the free boundary in the form r0 + b(θ), θ ∈ S, where b(θ)
is the perturbation caused by h. Consider

B = {b ∈ C(S,R) : 0 ≤ r0 + b(θ) < 1, θ ∈ S}
We seek a solution in W 2,p(Ω), p > 1, then the boundary value function h which is
a trace of W 2,p function will be taken in the set

A = {h ∈W 2− 1
p ,p(S,R) : p > n}.

Note that W 2− 1
p ,p(S) ⊂ W 1,p(S); see [1]. For p > n, we have W 1,p ⊂ L∞; see [1],

[3]. Let
w = {(r, θ) ∈ (0, 1)× S : 0 ≤ r < r0 + b(θ), θ ∈ S}.

We recall some results obtained in [2] which will be needed in the rest of this paper.
We omit the proofs since they are similar to those given in [2].

Proposition 3.1. [2] Assume that (F1) is satisfied. Then the problem

−∆u = f(u) in w,

u = µ on ∂w.
(3.1)

has a unique solution u∗ ∈ H1(w), for µ > 0.

Now, we denote by χw the characteristic function of w. In the following propo-
sition, we formulate a nonlinear equation for b and prove that by solving it, we can
solve the problem (1.1).
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Proposition 3.2. [2] Assume (F1). Let v =

{
u∗ in w,

µ in Ω \ w
. Then the problem

−∆u = f(v)χw(r, θ) in Ω,
u = h on ∂Ω

(3.2)

has a unique solution u0 ∈ W 2,p(Ω) ⊂ C1,α(Ω,R) with α = 1 − n
p . Moreover if

u0(r0 + b(θ), θ) = µ with ‖h‖∞ < µ, then u0 is a solution of (1.1).

Lemma 3.3. Assume (F1). Then the function u∗ satisfies

µ ≤ u∗ ≤ β

2n− k
.

Proof. Firstly, the function u∗ is the solution of the problem

−∆u = f(u) in w,
u = µ on ∂w.

(3.3)

We remark that u = µ is a subsolution of problem (3.3). In other part, we show
that problem (3.3) has a supersolution u ∈ C2(w). is fact, as k ∈ (0, λ1), then the
linear problem

−∆u = ku+ β in Ω
u = µ on ∂Ω

(3.4)

has a unique solution u ∈ C2,α(Ω) ∩C1,α(Ω) for α ∈ (0, 1). See [9, p. 107]. By the
maximum principle [12, Theorem 2.5], we deduce that u > µ in Ω. consequently,

u > µ in w ⊂ Ω.

Then

−∆u = ku+ β in w
u > µ on ∂w.

This implies that u is a supersolution for the problem (3.3). Now a classical result
in [7] shows that (3.3) has a solution u∗ with µ ≤ u∗ ≤ u.

We remark that in the proof of lemma 2.2, the function u is radial and satisfies

u(r) ≤ β

2n− k
for r ∈ (0, 1).

Hence, by uniqueness of the solution u∗ in the region w, we have

µ ≤ u∗ ≤ β

2n− k
.

This completes the proof. �

Now, it is easy to see that

µ ≤ v ≤ β

2n− k
.

Hence, the problem (3.2) can be written as

−∆u = f(µ)χw(r, θ) in Ω
u = h on ∂Ω.

(3.5)
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Now, using Green’s representation formula for u0, we obtain a nonlinear integral
equation for b ∈ C(S). Then the solution of (1.1) can be recovered from the knowl-
edge of b. The solution u0 corresponding to (3.2) has an integral representation
which is well defined [2, Theorem 4.1], given by

u0(r, θ) =
∫

S

P (r, θ, θ′)h(θ′)dθ′ − f(µ)
∫

S

dθ′
∫ r

0

(r′)n−1χw(r′, θ′)G(r, θ, r′, θ′)dr′

where P is the Poisson kernel and G is the Green function for the Laplacian in Ω.
Now, we define the operator F : A× R+ ×B → C(S,R) by

F (h, µ, b)(θ) = u0(r0 + b(θ), θ)− µ;

i.e.,

F (h, µ, b)(θ) =
∫

S

P (r0 + b(θ), θ, θ′)h(θ′)dθ′

− f(µ)
∫

S

dθ′
∫ r0+b(θ′)

0

(r′)n−1G(r0 + b(θ), θ, r′, θ′)dr′ − µ .

The main results of this section are stated in the following theorems.

Theorem 3.4. Assume that (F1), (F2) are satisfied and suppose that there exists
µ > 0 such that

f(µ)
µ

> Mn, Mn =
n(n− 2)

( 2
n )

2
n−2 − ( 2

n )
n

n−2
, forn ≥ 3.

Let ‖h‖∞ = maxx∈∂Ω |h(x)|. If h is small enough with ‖h‖∞ < µ, then (1.1) has
at least two positive solutions and the free boundaries are analytic hypersurfaces.

Theorem 3.5. Assume that (F1), (F2), (F3) are satisfied.
Let Z = {ξ ∈ C(S),

∫
S
ξ(y)dy = 0}. Then there exist:

(i) an interval I =]− ε,+ε[, ε > 0;
(ii) a continuous functions φ : I → R and ψ : I → Z with φ(0) = µ∗ and

ψ(0) = 0;
(iii) a neighborhood V of (µ∗, 0) in R×C(S) such that for all s ∈ I, the following

pair is a solution of F (0, µ, b) = 0 in V

(µ, b) = (φ(s), sφ00 + sψ(s))

where φ00 is a given constant.

The proofs will be given in several steps.

Proof of Theorem 3.4. We will give the main steps of the proof and we refer
the reader to [2] when appropriate to avoid unnecessary duplication of arguments.
We deal with the resolution of the integral equation u0(r0 + b(θ), θ) − µ = 0 with
respect to b ∈ C(S). The result is described by the following proposition from
which Theorem 3.4 follows immediately.

Proposition 3.6. If h is small enough with ‖h‖∞ < µ, then there exists a neigh-
borhood V of 0 in A and a unique function b : V → B differentiable such that

(i) b(0) = 0
(ii) F (h, µ, b(h)) = 0 for h ∈ V .
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Note that Proposition 3.6 shows that the dependence of the free boundary on
the boundary data h is continuously differentiable.

Proof of Proposition 3.6. We denote by DjF the partial derivative of F with re-
spect to the j-th variable. Let r0 be one of the values r1 or r2 obtained in Propo-
sition 2.1, then r0 6= ( 2

n )
2

n−2 . Let K be the compact operator defined on C(S)
by

Kβ(θ) =
∫

S

G(r0, θ, r0, θ′)β(θ′)dθ′.

Claim 3.7. [2] The eigenvalues of the operator K are

σl = − 1
rn−2
0

1− r2l+n−2
0

2l + n− 2
, for l ∈ N.

Following the same argument as in [2], the expression of the operator D3F is
given by

D3F (h, µ, b)β(θ) =
[ ∫

S

dθ′
∂P

∂r
(r0 + b(θ), θ, θ′)h(θ′)

− f(µ)
∫

S

dθ′
∫ r0+b(θ′)

0

(r′)n−1dr′
∂G

∂r
(r0 + b(θ), θ, r′, θ′)]β(θ)

− f(µ)
∫

S

dθ′(r0 + b(θ′))n−1G(r0 + b(θ), θ, r0 + b(θ′), θ′)β(θ′).

This operator is a continuous mapping of a neighborhood of (0, µ, 0) in A×R+×B
into C(S). In fact the operator D3F can be written as

∂u

∂r
(r0 + b(θ), θ)β(θ)− (φβ)(θ)

where (φβ)(θ) = f(µ)
∫

S
dθ′(r0 + b(θ′))n−1G(r0 + b(θ), θ, r0 + b(θ′), θ′)β(θ′). The

solution u depends continuously in the norm of C1,α on (h, µ, b) and since the
singularity of the Green function is integrable, then φ is a continuous mapping.
Hence, the operator D3F (0, µ, 0) can be written in form

D3F (0, µ, 0)β(θ) =
∂u

∂r
(r0, θ)β(θ)− rn−1

0 f(µ)Kβ(θ).

The implicit function theorem can be applied if D3F (0, µ, 0) is invertible. It follows
from the expression of D3F (0, µ, 0) that this is the case if

r1−n
0

∫ r0

0

sn−1f(u(s))ds+ rn−1
0 f(µ)σl 6= 0 (3.6)

for σl any eigenvalue of K.
If l ≥ 1, it is clear that (3.6) is satisifed. If l = 0, then since r0 6= ( 2

n )
1

n−2 , it
follows that (3.6) is satisfied. This proves Proposition 3.6. �

For the regularity of the free boundary, see the section 4 below. Now, it is easy
to see that Theorem 3.4 is a consequence of Proposition 3.6.

For the proof of Theorem 3.5, we need some preparations. From the above
computations, the operator D3F (0, µ∗, 0) is invertible since (3.6) is satisfied when
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l ≥ 1. If l = 0, we have

r1−n
0

∫ r0

0

sn−1f(u(s))ds+ rn−1
0 f(µ∗)σ0 = r1−n

0

∫ r0

0

sn−1f(µ∗)ds+ rn−1
0 f(µ∗)σ0

=
r0
n
f(µ∗) + rn−1

0 f(µ∗)σ0

= r0f(µ∗)(
1
n
− 1− rn−2

0

n− 2
) = 0.

Since in this case u is the solution of the reduced problem and by hypothesis (F2),
it follows that f(u) = f(µ∗). Hence, the operator D3F (0, µ∗, 0) is not invertible,
the implicit function theorem fails and a phenomenon of bifurcation appears. In
what follows, we apply a bifurcation theorem of Crandall-Rabinowitz [13, Theorem
2.2.1] to show the emergence of bifurcated solutions of reduced problem (1.1) with
h = 0.

Proof of Theorem 3.5. We shall explore the situation when r0 = ( 2
n )

1
n−2 . As

already mentioned, in this case the operator D3F (0, µ∗, 0) is not invertible. The
conditions needed to prove Theorem 3.5 are established in the next lemmas.

Lemma 3.8. Let φ00 := 1/(nwn), where wn is the volume of the unit ball in Rn.
For µ∗ > 0, the operator D3F (0, µ∗, 0) has a one dimensional null space spanned
by φ00, while its range has codimension one coinciding with the null space of the
continuous linear functional

Φ(ξ) =
∫

S

ξ(y)φ00dy.

Proof. Initially, note that for β ∈ C(S), we have

D3F (0, µ∗, 0)β(θ) = r1−n
0

∫ r0

0

sn−1f(u(s))dsβ(θ) + rn−1
0 f(µ∗)Kβ(θ).

Since
r1−n
0

∫ r0

0

sn−1f(u(s))ds+ rn−1
0 f(µ∗)σ0 = 0,

then the operator D3F (0, µ∗, 0) is not invertible. Obviously,

D3F (0, µ∗, 0)φ00 = r1−n
0

∫ r0

0

sn−1f(u(s))φ00ds+ rn−1
0 f(µ∗)φ00 = 0.

This gives that the kernel of D3F (0, µ∗, 0) is a one dimensional space spanned by
φ00. The function φ00 is the first eigenfunction corresponding to the eigenvalue σ0

(see [2, p. 2342]). Since the operator K is compact, the equation

D3F (0, µ∗, 0)β(θ) = ξ(θ)

has a solution if ξ is orthogonal to φ00. Let

Φ(ξ) =
∫

S

ξ(θ)φ00dθ,

it becomes apparent that

ImD3F (0, µ∗, 0) = kerΦ.

This concludes the proof �

Lemma 3.9. [2] The mixed derivative D2D3F (0, µ, b) exists and is continuous in
a neighborhood of (µ∗, 0).
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Now, we can state the following lemma.

Lemma 3.10. D2D3F (0, µ∗, 0)φ00 does not belong to the range of D3F (0, µ∗, 0).

Proof. When h = 0 and b = 0, we have

D2D3F (0, µ∗, 0)φ00 =
∂

∂µ
(
∂u

∂r
(r0 + b(θ), θ))φ00 |(h=0,µ=µ∗,b=0)

Now, it easy to see that the partial derivative
∂

∂µ
(
∂u

∂r
(r0)) 6= 0,

this completes the proof. �

Now, let

Z = {ξ ∈ C(S),
∫

S

ξ(y)φ00dy = 0} = {ξ ∈ C(S),
∫

S

ξ(y)dy = 0}.

To conclude the proof of Theorem 3.5, we remark that all the hypothesis of bifur-
cation’s theorem of Crandall-Rabinowitz [13, Theorem 2.2.1] are satisfied. Then
there exists a solution with the desired properties (i), (ii) and (iii).

4. Regularity of the free boundary

In this section, we discuss regularity of the free boundary under the conditions
of the Theorem 3.4.

Proposition 4.1. Under the conditions of the theorem 3.4, the free boundary is
an analytic hypersurface.

The proof of this proposition is obtained with the aid of a suitably constructed
mapping which transforms the two different regions of problem (1.1) separated by
the free boundary Γ to the same half space. The partial differential equations in
w and Ω \w are transformed into other equations in half space and we then apply
the known regularity theorem for elliptic systems to obtain the desired result.

Proof of Proposition 4.1. First, under the condition of Theorem 3.4, we have that
r0 6= ( 2

n )
1

n−2 . Let u be a solution of the problem (1.1), and let

Γ := {(r, θ) : u(r, θ) = µ} = {(r0 + b(θ), θ), θ ∈ S}

be the free boundary. We have the following result.

Proposition 4.2. [2] Let b ∈ C(S) and if u is a solution of (1.1) such that u(r0 +
b(θ), θ) = µ, then b ∈ C1,α(S), for some α ∈ (0, 1).

This proposition shows that Γ is C1,α-hypersurface with α ∈ (0, 1). Now, one way
to deal with the analyticity of Γ is to introduce an appropriate transformation. We
proceed as follows: Consider a small ball B about a point x0 = (r0 + b(θ0), θ0) ∈ Γ
translating coordinates so that x0 = 0. Using the rotational invariance of Laplacian
and writing v = u− µ, we have

−∆v + f(v + µ) = 0 in B+ = {x = (x1, . . . , xn), xn > 0},
−∆v = 0 in B− = {x = (x1, . . . , xn), xn < 0},

v = 0 on Γ

(4.1)
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We know that v ∈ C1,α(B+ ∪ Γ ∪ B−), and from the Hopf maximum principle,
we have that ∂v

∂ν (0) < 0, where ν is the outer unit normal of Γ which is ν =
(0, 0, . . . ,−1). We have

∂v

∂ν
(0) =

n∑
i=1

∂v

∂xn
(0)νi(0) = − ∂v

∂xn
(0) < 0,

which implies that
∂v

∂xn
(0) > 0.

We introduce the zeroth order hodograph transformation [10] as

yσ = xσ σ < n,

yn = v(x) x ∈ B, (4.2)

This definition transforms B+,Γ, B− into

U+ = {y ∈ U, yn > 0}, Σ = {y ∈ U, yn = 0}, U− = {y ∈ U, yn < 0}
respectively. Define the inverse of (4.2) as

xσ = yσ 1 ≤ σ ≤ n− 1,

xn = ψ(y) y ∈ U, (4.3)

We remark that ψ ∈ C1,α(U+ ∪ Σ ∪ U−). We denote by vi, 1 ≤ i ≤ n, the partial
derivative with respect to xi, and ψj , 1 ≤ j ≤ n, the partial derivative with respect
to yj . �

One of the important properties of the hodograph transformation is that

dyn = dv =
∑

σ

vσdxσ + vndxn

=
∑

σ

vσdxσ + vndψ

=
∑

σ

vσdxσ + vn(
∑

σ

ψσdyσ + ψndyn)

=
∑

σ

(vσ + vnψσ)dxσ + vnψndyn

This implies

ψnvn = 1
ψσvn + vσ = 0

which in turn implies

ψn =
1
vn

ψσ =
−vσ

vn
.

(4.4)

Using this property, it easy to see that
∂

∂xσ
= ∂σ −

ψσ

ψn
∂n 1 ≤ σ ≤ n− 1,

∂

∂xn
=

1
ψn

∂n with ∂k =
∂

∂yk
,

(4.5)
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From (4.4) and (4.5), we obtain the following property.

Claim 4.3.

vσσ =
−ψσσ

ψn
+ 2

ψσ

ψ2
n

ψσn −
ψ2

σ

ψ3
n

ψnn

vnn =
−1
ψ3

n

ψnn.

Proof. Using the properties (4.4), (4.5), for vσ and vn, we find

vσσ =
∂v

∂xσ
=
∂vσ

∂yσ
− ψσ

ψn

∂vσ

∂yn

We know that
∂vσ

∂yσ
= −[vn

∂ψσ

∂yσ
+ ψσ

∂vn

∂yσ
] = −[vnψσσ − ψσ

ψnσ

ψ2
n

],

∂vσ

∂yn
− [

∂ψσ

∂yn
vn +

∂vn

∂yn
ψσ] = −vnψnσ + ψσ

ψnn

ψ2
n

.

Combining the two previous results,

vσσ = −vnψσσ + ψσ
ψnσ

ψ2
n

− ψσ

ψn
[−vnψnσ + ψσ

ψnn

ψ2
n

]

vσσ =
−ψσσ

ψn
+ 2

ψσ

ψ2
n

ψσn −
ψ2

σ

ψ3
n

ψnn,

and

vnn =
∂vn

∂xn
=

1
ψn

∂vn

∂yn
= −ψnn

ψ3
n

.

�

Now, since v satisfies ∆v =
∑

σ vσσ +vnn, it follows that ψ satisfies the nonlinear
equation

g(ψ,Dψ,D2ψ) + f(yn + µ) = 0 in U+,

where

g(ψ,Dψ,D2ψ) =
−1
ψn

∑
σ

ψσσ +
2
ψ2

n

∑
σ

ψσψσn −
1
ψ3

n

(1 +
∑

σ

ψ2
σ)ψnn .

Moreover, ψ satisfies g(ψ,Dψ,D2ψ) = 0 in U−. Writing y = (y1, . . . , yn−1, yn) =
(y′, yn). We define for y ∈ U+, φ(y) = ψ(y′,−yn), then φ satisfies

g(φ,Dφ,D2φ) = 0

in U+. Hence, we obtain the system

g(ψ,Dψ,D2ψ) + f(yn + µ) = 0 in U+, (4.6)

g(φ,Dφ,D2φ) = 0 in U+, (4.7)

with the boundary conditions
φ− ψ = 0 on Σ,
φn + ψn = 0 on Σ .

(4.8)

Claim 4.4. The system (4.6)-(4.7) is elliptic and the boundary conditions (4.8)
are coercive at a point 0.
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Proof. We can verify immediately that (4.6)-(4.7) is elliptic at the point 0. It
remains to prove the coerciveness of (4.6)-(4.7)-(4.8). For that, we show that (4.6)-
(4.7) with the boundary conditions admit no nontrivial bounded exponential solu-
tions. First, by our choice of coordinates

ψn(0) =
1

vn(0)
> 0 ψσ(0) = −vσ(0)

vn(0)
= 0, 1 ≤ σ ≤ n− 1

Hence, the linearized equations for (4.6)-(4.7) with the obvious weight s1 = s2 =
0, t1 = t2 = 2, are ∑

σ

ψσσ + a2ψnn = 0 in Rn
+, (4.9)∑

σ

φσσ + a2φnn = 0 in Rn
+, (4.10)

where a = vn(0) > 0. The linearized boundary conditions are

φ− ψ = 0 on Rn−1,

φn + ψn = 0 on Rn−1
(4.11)

Introduce ψ(y′, t) = eiξ′y′w(t) and φ(y′, t) = eiξ′y′m(t), for ξ′ ∈ Rn−1 \ {0}. We
obtain by replacing φ, ψ in (4.9)-(4.10),

a2w′′(t)− |ξ′|2w(t) = 0,

a2m′′(t)− |ξ′|2m(t) = 0,

with the conditions (4.11),

w(0) = m(0) = 0, w′(0) +m′(0) = 0.

Let X(t) = w(t) +m(t). Then

a2X ′′(t)− |ξ′|2X(t) = 0, (4.12)

The boundary condition (4.11) imply X(0) = 0 and X ′(0) = 0, which implies

c1 + c2 = 0
c2 − c1 = 0 .

Then c1 = c2 = 0 which implies that X(t) = 0. Now, let Y (t) = w(t)−m(t) with
Y (0) = 0, we obtain

Y (t) = c3(e−
|ξ′|

a t − e
|ξ′|

a t).

The function Y (t) is bounded if and only if c3 = 0. Hence, this conclude that
w(t) = m(t) = 0. which implies that (4.9)-(4.10)-(4.11) admit no nontrivial
bounded exponential solutions, then (4.9)-(4.10)-(4.11) is coercive at 0.

As in problem (P3), (see the proof of Lemma 3.3) the function f is constant,
then f is analytic. It suffices to apply [10, Theorem 3.3] to show that the free
boundary Γ is analytic. �
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4.1. Conclusions and open problems. (1) The regularity of the free boundary
in the case when r0 = ( 2

n )
1

n−2 remains an open problem. We have shown only
the existence of a continuous function b. It seems that it is possible to study the
optimal regularity using the ideas introduced by Caffarelli [4, 5].

(2) For the sake of simplicity Theorem 3.4 and Theorem 3.5 are stated only for
the case n ≥ 3, it is not difficult to see that the same result holds for the case n = 2.

(3) We remark that the regularity of free boundary is preserved after perturba-
tions. Hence for a small perturbation h and under a suitable conditions, the free
boundary is analytic and does not develop singularities.

(4) The case of a general domain Ω is still unknown.
(5) In Theorem 3.5, if the boundary value h 6= 0, what happens to the bifurcated

solutions?.
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