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SOLVABILITY OF A NONLINEAR THIRD-ORDER
THREE-POINT GENERAL EIGENVALUE PROBLEM
ON TIME SCALES

KAPULA R. PRASAD, NADAKUDUTI V. V. S. S. NARAYANA

ABSTRACT. We study the existence of eigenvalue intervals for the third-order
nonlinear three-point boundary value problem on time scales satisfying gen-
eral boundary conditions. Values of a parameter are determined for which
the boundary value problem has a positive solution by utilizing a fixed point
theorem on a cone in a Banach space.

1. INTRODUCTION

The study of obtaining optimal eigenvalue intervals for the existence of positive
solutions to boundary value problems(BVPs) on time scales has gained prominence
and is a rapidly growing field, since it arises in many applications. By a time scale
we mean a nonempty closed subset of R. For an excellent introduction to the overall
area of dynamic equations on time scales, we refer to the text book by Bohner and
Peterson [5].

In this paper, we focus on determining the eigenvalue intervals for which there
exists a positive solution to the third order boundary value problem on time scales

3 2
yA (t) + )‘f(ta y(t)? yA(t)a yA (t)) = 07 te [t17 Ug(t?))] (11)
satisfying the general three point boundary conditions

any(ty) + ay®(t) + a13yA2 (t1) =0
oy (ta) + agy® (ta) + 0123?/A2 (t2) =0
b 2
az1y(0®(ts)) + as2y™ (0% (ts)) + assy™ (o(ts)) =0

where t; < to < 03(t3) and «;, for 4,5 = 1,2,3 are real constants. The BVPs of
this form arise in the modelling of nonlinear diffusion via nonlinear sources, thermal
ignition of gases, and in chemical concentrations in biological problems. In these
applied settings, only positive solutions are meaningful.

Optimal eigenvalue intervals were obtained for the existence of positive solutions
of boundary value problems for ordinary differential equations, as well as for finite

(1.2)
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difference equations using the Krasnosel’skii fixed point theorem [20] on a cone. A
few papers along these lines are Agarwal, Bohner and Wang [2], Anderson and Davis
[4], Davis, Eloe and Henderson [9], Davis, Henderson, Prasad and Yin [10] 11}, Eloe
and Henderson [12], Erbe and Tang [16], Henderson and Wang [18], Jiang and Liu
[19], Prasad and Murali [2I]. Recently, Prasad and Rao [22] extended these results
to third order general three point boundary value problem.

In order to unify the results on differential equations and difference equations,
the theory of dynamical equations on time scales is being developed. It has a great
potential in nonlinear analysis and its applications in the modeling of physical
and biological systems. Some papers on boundary value problems on time scales
are Chyan and Henderson [6], Chyan, Davis, Henderson and Yin [7], DaCunha,
Davis and Singh [§] and Erbe and Peterson [I3], 14} [I5]. This paper generalizes
many papers in the literature. By choosing different values to the constants in the
boundary conditions we get various three point BVPs.

For simplicity we make the following notation: 3; = «a;1t; + s, v = aﬂt? +
Oéig(ti + O'(ti)) + 2ay3, for i = 1,2, B3 = a3103(t3) + 30 and 3 = a31(03(t3))2 +
a32(02(t3) + Ug(tg)) + 2ai33. We define

Q175 — Q17

- ) Bivi — Bii
Y 2(an B — aifBi)]

B — ajfBi

M;; =
Also let

mi = maX{mlz, mis, mzs},

mg = min{maz + \/m3; — Mag;myz + \/mis — Mis},
d = a11(Bay3 — B372) — Pr(a2173 — az1y2) + 71 (2183 — azif2),
li = ajio(s)o?(s) — (o(s) + 0%(s))Bi+v fori=1,2,3.
Let us assume that

Q12 Q22 Q32 .
a11 > 0, o1 > 0, azr >0 and o > o > oy

)
2)
3) my <ty <ty <tz <mo; 20q3a11 > Ay, 2003001 > 034, 2033031 > Ay
4) m%?) > Mos, m%z < Mo, m%?) > Mg, d > 0 and

) The point ¢ € [t1,03(t3)] is not left dense and right scattered at the same
time.

Define the nonnegative extended real numbers fy, f0, foo, f> by

2
fty,y2,y2)

fO = lim ’
y—0+ yA -0+ yA2 0+ tE[t1,0%(t3)] Yy
¢ A A?
o_ - max LYY YT
y—0+,yA =0+ yA2 S0+ tE[t1,05(t3)] Yy
2
o . Sy, v y™)
= y—>007yA—>OO7yA2—>OO t€[t1,03(t3)] Y ,
+ A A2
o i max  LBwyy)
y—00,y2 —00,y% o0 tE[t1,0°(t3)] Y

and assume that they will exist. By an interval we mean the intersection of the
real interval with a given time scale.
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This paper is organized as follows. In Section 2, we construct Green’s function
for the corresponding homogeneous problem of — and estimate bounds
of the Green’s function. In Section 3, we present a lemma which is needed in
further discussion and determine eigenvalue intervals for which — has at
least one positive solution, by using Krasnosel’skii fixed point theorem. Finally as
an application, we give an example to demonstrate our result.

2. GREEN’S FUNCTION AND BOUNDS

In this section, we construct the Green’s function for the corresponding homoge-
neous problem of — in six different intervals and we estimate the bounds
for the Green’s function.

Let G(t, s) be the Green’s function for the problem —yA? (t) = 0 satisfying (L.2).
After computation, the Green’s function G(t, s) can be obtained as

Gll(t,s), t1 <t<s<ty <03(t3),
G12(t,8), 1 < U(S) <t<ty < 0'3(t3),
< 3
G(t7s): Glg(t,s), t1 <t<tya<s<o (tg), (21)
Gai(t,s), t1 <ty <t<s<od(tz),
GQQ(t,S), 11 <ty < (T(S) <t< O’S(tg),
Gaz(t,s), t1 <o(s) <ty <t<od(ts),
where
1
G (t, s) :ﬁ[—(ﬁﬂ:s — Bsm) +t(aiys — i) — t2(0é1153 —az151)]l2
1
+ ﬁ[(ﬂﬂ@ — Bay1) — t(a1172 — a21m1) + 3 (11 B2 — a2131)]ls
1
Gia(t, s) ﬁ[ (Bavs — Bav2) + t(az1vs — aziv2) — t2 (21 s — az1f2)]h
1
Gis(t, s) ﬁ[(ﬁl% — o) — tlar1ye — a21m) + 2 (@112 — a2151)]s
1
G2 (t, s) *d[(ﬁﬂz Bay1) — tlar1ye — ao1m1) + t (112 — a2151)]ls
1
Gaa(t,s) ﬁ[ (Bavs — Bav2) + t(az1vs — asiv2) — t2 (21 B3 — azi1f2)]h
1
+ *d[(ﬂl% — Bsm1) — t(ar1ys — azim) + (1185 — as151)]ls
1
Gas(t, s) :ﬁ[—(ﬁﬂ:’, — B32) + t(ao1ys — as1y2) — £ (0185 — as1B2)]l

Figure [2 indicates that the Green’s function for (1.1)-(1.2)) should take the form of
(2.1)), where s € [t1, t3].

Theorem 2.1. Assume that the conditions (A2)-(A4) are satisfied. Then
1G(o(s),5) < G(t.5) < G(o(s),s), forall (t,5) € [t1,0°(t3)] x [tr, ], (2.2)

where

<1.

Gi2(o3(ts),s)  Gas(t1,s) Gri(t1,s) Gll(US(f:a)aS)}

O< 9 9 9
7= min { Gia(ti,s) ~Gis(o3(ts),s)’ Gii(o3(ts),s)”  Gii(ti,s)
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FIGURE 1. Representation of Green’s function in six intervals

Proof. The Green’s function G(t, s) is given in (2.1)) in six different cases. In each
case we prove the inequality as in ([2.2). Clearly

G(t,s) >0 on [t1,0%(t3)] x [t1,t3]. (2.3)
Case (i). For t; < o(s) <t <ty < 03(t3),
G(t, s) G1a(t, s)

G(o(s),s)  Gia(o(s),s)
[—(Bav3 — B37v2) + tlao1vs — az172) — t% (2183 — a1 32))]
[—(B2ys — B37v2) + 0(s) (2173 — as1v2) — (0(s))? (2103 — as182)]
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from (A3) and (A4), we have G12(t,s) < Gi2(o(s),s). Therefore,
G(t,s) < G(o(s),s), forall (t,s) € [ty,o3(t3)] x [t1,13].
And also, from (A2), we have
G(t,s) _ G1a(t, s) S G1a(t, s) S G12(03(t3), s)
G(o(s),s) Gia(o(s),s) = Gia(ti,s) =  Gia(ty,s)

Therefore,
Gr2(03(t3), s)
G(t,s) > “nltns)
Case (ii). For t; <t <ty < s < 03(t3)
G(t,s)  Gus(t,s)
G(o(s),s)  Giz(o(s),s)
_ [(B1v2 — Bay1) — tlaniya — ao1m1) + tz(au/@z — a9101)]
[(Biv2 — Bam1) — o(s) (172 — aa1m1) + (0(s))? (1182 — a2151)]
from, (A3) and (A4), we have G13(t, s) < G13(0(s), s). Therefore,
G(t,s) < G(o(s),s) forall (t,s) € [t,0°(t3)] x [t1,13].
Also, from (A2), we have
G(t, s) _ G13(t, s) S G13(t, s) < G13(t1, s) .
G(o(s),s) Gis(o(s),s) = Gis(o3(t3),s) — Gis(o3(t3),s)

G(o(s),s), forall (t,s) € [t1,0°(t3)] x [t1,t3].

Therefore,

G13(t1, 8)
G(t,s) > Cra(03(t3), 5)

Case (iii). For t; <t < s <ty < 03(t3). From (A3) and Case (ii), we have
G11(t, s) < G11(0(s), s). Therefore,

G(t,s) < G(o(s),s) forall (t,s) € [ty,o®(t3)] x [t1,13].
Also, from (A2), we have

G(t,S) > min{Gll(JS(tg),S) Gll(tl,s) Glg(tl,s) }
G(O’(S),S) - Gn(tl,s) ’ G11(0'3(t3),8)’ G13(0’3(t3)78) ’

Therefore,

G(o(s),s), forall (t,s) € [t1,0°(t3)] x [t1,t3].

Gui(0®(ts),s)  Gulti,s) Gi3(t1, )
Gu(tl,s) ’ G11(U3(t3),$)’ G13(0'3(t3),8
for all (¢,s) € [t1,03(t3)] x [t1,t3)].
Case (iv). For t; < ty < o(s) < t < o3(t3). From Case (i) and Case (ii), we
have

G(t,s) > min {

)}G(o(s),s),

G(t,s) < G(o(s),s) forall (t,s) € [ty,0°(t3)] x [t1, 3],
and

Gi2(0®(ts), 5)
Glts) =2 =G hrs)

Case (v). For t; <ty <t < s < 03(t3). From Case (ii), we have
G(t,s) < G(o(s),s) forall (t,s) € [ty,o>(t3)] X [t1, 3],

G(o(s),s), forall (t,s) € [t1,03(t3)] ¥ [t1,t3].
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and
G3(t1, s)
G(t,s) > 13005
(t:5) G13(0(t3), 5)
Case (vi). For t; < o(s) <ty <t < 03(t3). From Case (i), we have
G(t,s) < G(o(s),s) forall (t,s) € [tl,ag(tg)] x [t1,ts],

G(o(s),s), forall (t,s) € [t1,0°(t3)] ¥ [t1,t3].

and

Gi2(0(ts), s)
Glts) 2 = s

By consolidating all the above cases, we have
vG(o(s),s) < G(t,s) < G(a(s),s), forall (t,s) € [t1,0°(t3)] x [t1,13],

where

G(o(s),s),for all (t,s) € [t1,0°(t3)] X [t1,t3].

Gia(0®(ts),s)  Gis(t,s) Gu(t,s)  Gu(o®(ts),s) !

) , , < 1.
Gia(ti,s) ~Gis(o3(t3),s)” Gii(o3(ts),s)”  Gii(ti,s)

0 <~ =min {
U

3. EXISTENCE OF POSITIVE SOLUTIONS

In this section, first we prove a lemma which is needed in our main result and
establish a criteria to determine eigenvalue intervals for which there exists at least

one positive solution of (|L.1)-(1.2).
Definition 3.1. Let X be a Banach space. A nonempty closed convex set k is
called a cone of X, if it satisfies the following conditions:

(1) a1u+ agv € K, for all u,v € k and ay,as > 0,
(2) u € k and —u € £, implies u = 0.

Let y(t) be the solution of (1.1)-(1.2), given by

2

o(ts)
y(t) = )\/t G(t,s)f(s,y(s),yA(s),yA (5))As, forallt € [ty,o3(t3)]. (3.1)

Define

X={ue C3[ty a?’(tg)]}7
with norm ||ul| = maxep, o3(¢,)) [w(t)|. Then (X, || -[|) is a Banach space. Define a
set

k={ueX:u(t)>0on[t;,oc(ts)] and min _u(t) >[ul}. (3.2)
tefty,o3(t3)]

Then it is easy to see that k is a positive cone in X.
Definition 3.2. Let X and Y be Banach spaces and T : X — Y. T is said
to be completely continuous, if T is continuous, and for each bounded sequence
{zn} C X, {Tx,} has a convergent subsequence.

Now we define the operator T': K — X by

o(ts) )
@0 =2 [ G509 05 (). ()As, for all £ f1,0°(ta)]
t
' (3.3)
If y € k is a fixed point of T', then y satisfies (3.1) and hence y is a positive solution
of (1.1))-(1.2). We seek a fixed point of the operator T in the cone k.
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Lemma 3.3. The operator T defined in (3.3) is a self map on k.
Proof. Let y € k. From (2.3), we have (Ty)(t) > 0, for all t € [t1,03(¢3)], and

2

o(t3)
(Ty)(t) = A / Gt 5) (5, 5(s), 4™ (), 4™ () As

1<7(753) 5
<A t G(a(s),5)f(5,y(s),y™(s),y™ (s5))As

so that

2

o(ts)
[Tyl < /\/t G(a(s),5)f(5,9(s),y™(5), 5™ (5))As

Next, if y € x, then by the above inequality we have

a(ts) )

(Ty)(t) = A / Gt 5) (5, y(s), 5™ (5), ™ () As
o(t3) R

> A / G(o(s), 5)F(5.5(s), 5> (3), 4" (5)) As

t1
> [Tyl

Hence T : k — k. Standard arguments involving the Arzela-Ascoli theorem shows
that T is completely continuous. O

To establish eigenvalue intervals we will employ the following fixed point theorem
due to Krasnosel’skii [20].

Theorem 3.4. Let X be a Banach space, K C X be a cone, and suppose that
Q1,92 are open subsets of X with 0 € Q1 and Oy C Qz. Suppose further thal
T: KN (Q\) — K is completely continuous operator such that either

(i) |Tu]| < ||lull, v € KNOQy and || Tu| > ||lul|, v € KNI, or
(ii) || Tul| > |lull, v € KNOQ and | Tul| < ||lull, v € K NoQ,y

holds. Then T has a fized point in K N (Q2\Q1).
Theorem 3.5. Assume that conditions (A1)-(A5) are satisfied. Then, for each A
satisfying
1 1
) <A< 7
2 Ji, Glo(s),s)As] foo [Ji, " Glo(s),s)As]f0

t1 t1

(3.4)

there exists at least one positive solution of (L.1)-(1.2) that lies in k.

Proof. Let X be given as in (3.4). Now, let ¢ > 0 be chosen such that

1 <A< 1

2 171 G(o(s), 5)As](foo — €) 21 Glo(s), ) As](f0 + €)

t1 tl

Let T be the cone preserving, completely continuous operator defined in (3.3). By
the definition of f0, there exists Hy; > 0, i = 0, 1,2 such that

t A A2
max f(ayvy ay )S(f0+€)
t€ft1,03(ts)] Y
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for 0 < y < Hip,0 < y® < Hyy,0 < y»" < Hyo. Let Hy = min{Hy; : i = 0,1,2}.
It follows that, f(t,y,yA,yAz) < (f"+e)y, for 0 < y,yA,yA2 < Hj. So choosing
y € k with ||y|| = Hy, then from ([2.2]) we have

2

o(ts)
(Ty)(t) = A / Gt 5)F (s, y(s), y> (), y™" (5))As

t1

2

o(ts)
= A/ G(o(s),8)f(s,y(s),y"(s),y™ (s))As

<A/

t';)
o(ts)
< )\/t G(o(s),5)(f° + €)lly]| As

<lyll, te€[tr,o’(ts)]:
Consequently, | Ty|| < ||ly|l. So, if we define O = {y € X : ||y|| < H1}, then
[Tyl < llyll, fory e rno. (3.5)

s)(f" + €)y(s)As

By the definition of f., there exists Hg; > 0, 3 = 0, 1,2 such that

A A2
min JEY:y7y) > (foo — 6,
te(t1,03(t3)] Y

for y > Hag, y> > Ho1, yAz > Hoo. Let Hy = min{Ho; : i = 0,1,2}. It follows
that,

Pty y® y™) > (foo — €y, for y,y%,y™ > Ha.
Let
1—
ngmax{QHl,;Hg}, QQZ{yEXI ||yH <H2}.

Now choose y € kN0 with |ly|| = Ha, so that

min t) > >,
te[tl,;3(t3)]y( ) >yl > Ho

Consider
o(ts) 5
(Ty)(t) = A / G(t,5)f(5,y(5), v (), 4> (5))As
o(ts) 5
> / VG (s), 5) F(5,5(5), 5™ (5), > (5)) As
U(ts)
>7A/ ) (foo — u(s)As
o(ts)
> 22 / G(o(3).8)(foo — ©)y]| As
> lyll-
Thus,

[Tyl = [lyll, for y € kN ONy. (3.6)
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An application of Theorem to (3.5) and (3.6) yields that T has a fixed point
y(t) € kN (Q2\Q1). This fixed point is the positive solution of (1.1)-(1.2)) for the
given A. O

Theorem 3.6. Assume that conditions (A1)-(A5) are satisfied. Then, for each A
satisfying
1 1

o(ts) <A< )
V2 [ G(a(s), s)As] fo ;7 G(a(s), s)As] foe

t1

there exists at least one positive solution of (1.1)-(1.2) that lies in k.

Proof. Let X be given in (3.7), and choose € > 0 such that

1 e 1

b2 79 Glo(s), 9)Asl(fo— )~ [7" Glals),s)As)(f> +e)

Let T be the cone preserving, completely continuous operator that was defined by
(3-3). By the definition of fy, there exists Jy; > 0, i = 0, 1,2 such that

2
YRyt
min _—
tefty,o3(t3)] Yy

(3.7)

> (fo—e),

for 0 <y < Jig, 0 < y® < Ji1, 0 <y < Jio. Let Jy = min{Jy; : i = 0,1,2}. It
follows that,

f(t’yayAayAA) Z (fo - e)ya for 0 < yayA7yA2 S Jl'
So, choose y € k with ||y|| = Ji, then

o(ts)

@O =2 [ Gt o6 (5.5 () As

t1

O‘(tg) 5
>\ / VG(0(5), 8) (5, 5(5), ™ (5), 72" (5)) As
O’(t3)
> A / G(o(s), 8)(fo — )y(s)As

t1
) o(ts)
> A G(o(s),s)(fo—e)llyllAs
t1

= [lyll-
Consequently, | Ty|| > ||ly||. So, if we define ; = {y € X : ||y|| < J1}, then
[Tyl > llyll, fory € rno. (3.8)

It remains for us to consider f>°. By the definition of >, there exists Jo; > 0,
i =0,1,2 such that

¢ A, A2
. [t y,9%,y )S(foo+€)’
t€(t1,0%(t3)] Y

for y > J20, yA > Jo1, yA2 > Jog, it follows that

ftyy® v ) < (F° + ey, fory,y® v > Ja.

There are two possible cases.



10 K. R. PRASAD, N. V. V. S. S. NARAYANA EJDE-2010/57

Case(i). f is bounded. Suppose L > 0 and maxe(s, o5(15) f (£ 4, y>,y>) < L,
for all 0 < y,yA,yA2 < 00. Let

o(ts)
Jo = max {2.J;, L)\/ G(o(s),s)As}.

ty

Then, for y €  with ||y|| = J2, we have

2

o(ts)
(Ty)(t) = A / Gt 5)F (5, y(s), 5™ (), 42" (5)) As

(t3
</\/

) 2
$)f(5,y(5),y>(s),y™ (5))As
< /\L/t ta)G(a(s),s)As

S ||y||’ te [t1703(t3)]a
so that ||Ty|| < |ly|l. So, if we define Q3 = {y € X : ||y|| < J2}, then
[Tyl < [lyll, for y € kN ONs. (3.9)

Case(ii). f is unbounded. Let Jo; > max{2J1i,j2i}, i = 0,1,2 be such that
Flt g,y y>) < f(t Jag, o1, Jaa), for 0 <y < Jag, 0 < YA < Jo1, 0 < A" < o
Let Jy = max{Jy; : i = 0,1,2}. Let y € x with ||y|| = J2. Then

2

o(ts)
TO =3 [ 6108 p(5) 54,9 () s

ts) A A?

<) / ) f(5.y(5), 52 (), y™" () As
o(t3)

< /\/ G(o(s),s)f(s,J20,J21, J22)As
ts)

< A/ $)(f + €)JaAs

< Jy

= lyll, te [tr,o’(ts)].
Thus, ||Ty|| < ||y||- For this case, if we define Qs = {y € X : ||y|]| < Jo}, then
1Tyl < |lyll, fory € kN INs. (3.10)

Thus, an application of Theorem to (3.8), (3.9) and (3.10) yields that T has
fixed point y(¢) € kN (Q2\Q1). This fixed point is the positive solution of (1.1))-(1.2)
for the given A. O

4. EXAMPLE

Now, we give an example to illustrate the above result. Consider the eigenvalue
problem

2
™ £ \y(20-19.5e ) (30—29.5¢ " ) (61—60e 2" ) =0, t € [0,03(1)]NT (4.1)
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where T = {0} U {54+ : n € N} U [3, 2], subject to the boundary conditions

0(0) + 252 (0) + 27 (0) = 0

3 4
u(5)+ 352 (5) +52(5) =0 (42)
Y03 () + A% () + 5y (0(1) =0
The Green’s function is
Gul(t,s), 0<t<s<i<ad(1)
Gia(t,s), 0<o(s)<t<i<o3(1)
_ ) Gus(t,s), 0<t<3<s<o®(l)
GO =Y o ts), 0< L<t<s<ad(l)
Gas(t,s), 0< 3 <o(s)<t<o3(1)
Gas(t,s), 0<o(s)<i<t<od(1),
where
Gia(t,5) = [+ S][60(5)%(s) — 6(o(s) + 0*(5)) + >
+ (14— 3t — 4] [20(s)02(s) — g(a(s) +0%(s)) +5]
15

Gia(t,s) = Gas(t,s) = [Z —t —t?]|[60(s)0?(s) — 8(a(s) + a*(s)) + 15]

Gra(t,s) = Gor(t, 5) = [14— 3t — 4¢2)[20(8)0(s) — > (o(s) + 0*(s)) + 5]

2
Coalt, 5) = [143 b — 2)[60(s)02(s) — 8(0(s) + 02(s)) + 15]
2
+12 = LJl6o(s)0%(s) — 6(o(s) + 07(s) + 5.

We found that v = 0.4666, f. = 36600, and f° = 0.25. Employing Theorem
we obtain the optimal eigenvalue interval 0.0000089125 < A\ < 0.566972, for which

(4.1)-(4.2) has a positive solution.

Acknowledgements. The authors thank the anonymous referee for his/her valu-
able suggestions.
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