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ANTI-PERIODIC SOLUTIONS FOR HIGH-ORDER CELLULAR
NEURAL NETWORKS WITH TIME-VARYING DELAYS

ZUDA HUANG, LEQUN PENG, MIN XU

Abstract. In this article, we study anti-periodic solutions for high-order cel-
lular neural networks with time-varying delays. Sufficient conditions for the

existence and exponential stability of anti-periodic solutions are presented.

1. Introduction

In recent years, high-order cellular neural networks (HCNNs) have attracted
attention due to their wide range of applications in fields such as signal and image
processing, pattern recognition, optimization, and many other subjects. There
have been many results on the problem of global stability of equilibrium points
and periodic solutions of HCNNs in the literature (see [3, 4, 7, 14, 10, 11, 12,
15]). However, there are only a few references on the problem of existence and
stability of anti-periodic solutions. However, the existence of anti-periodic solutions
is important in nonlinear differential equation (see [1, 2, 6, 8, 9]). Thus, it is worth
while to investigate the existence and stability of anti-periodic solutions for HCNNs.

In this article, we study the anti-periodic solution of the high-order cellular
neural network medelled by

x′i(t) = −ci(t)xi(t) +
n∑

j=1

aij(t)fj(xj(t− τ̃j(t)))

+
n∑

j=1

n∑
k=1

bijk(t)gj(xj(t− τj(t)))gk(xk(t− τk(t))) + ui(t),

(1.1)

where i = 1, 2, . . . , n; ci, aij , bijk, fj , gj , ui are continuous functions on R; x =
(x1, x2, . . . , xn)T ∈ Rn is the state vector; ci is a positive parameter; aij and bijk

are the first and second order connection weights of the neural networks, respec-
tively; fj and gj are the activation functions; ui is an external input to the ith
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neuron; τ̃j(t) and τj(t) are the time-varying delay that satisfy 0 ≤ τ̃j(t) ≤ τ and
0 ≤ τj(t) ≤ τ (τ is a constant).

The initial conditions are

xi(t) = ϕi(t), t ∈ [−τ, 0], i = 1, 2, . . . , n, (1.2)

where ϕ(·) = [ϕ1(·), ϕ2(·), . . . , ϕn(·)] ∈ C([−τ, 0], Rn) and C([−τ, 0], Rn) denotes
the set of continuous functions.

The rest of this article is organized as follows. In Section 2, we give some
notations and preliminary knowledge. In Section 3, we present our main results.
In Section 4, we present an example to illustrate the effectiveness of our results.
Finally, we give the conclusions in Section 5.

2. Preliminary Results

A continuous function h : R → R is said to be T -anti-periodic on R, if

h(t + T ) = −h(t) for all t ∈ R.

We consider (1.1) under the following assumptions: For i, j = 1, 2, . . . , n, it will be
assumed that

ci(t + T ) = ci(t), τi(t + T ) = τi(t), aij(t + T )fj(v) = −aij(t)fj(−v),

τ̃j(t + T ) = τ̃j(t), bijk(t + T ) = −bijk(t), ui(t + T ) = −ui(t), ∀t, v ∈ R.

(2.1)
and

u = max
1≤i≤n

sup
t∈R

|ui(t)|. (2.2)

Also we will use the assumptions.
(H1) For j = 1, 2, . . . , n, there exist gj > 0 such that |gj(u)| ≤ gj for all u ∈ R;
(H2) for j = 1, 2, . . . , n, there exist Lj > 0 and Mj > 0 such that

|fj(u)− fj(v)| ≤ Lj |u− v|, |gj(u)− gj(v)| ≤ Mj |u− v|,
fj(0) = 0, gj(0) = 0, ∀u, v ∈ R.

(H3) There exist constants η > 0, λ > 0 and ξi > 0, i = 1, 2, . . . , n, such that for
all t > 0,

[λ− ci(t)]ξi +
[ n∑

j=1

|aij(t)|Ljξj +
n∑

j=1

n∑
k=1

|bijk(t)|(gkMjξj + gjMkξk)
]
eλτ < −η < 0.

Definition 2.1. Let x∗(t) =
(
x∗1(t), x

∗
2(t), . . . , x

∗
n(t)

)T be an anti-periodic solution
of (1.1) with initial value ϕ∗ = (ϕ∗1(t), ϕ

∗
2(t), . . . , ϕ

∗
n(t))T . If there exist constants

λ > 0 and Mϕ > 1 such that for every solution x(t) = (x1(t), x2(t), . . . , xn(t))T of
(1.1) with an initial value ϕ = (ϕ1(t), ϕ2(t), . . . , ϕn(t))T , with

|xi(t)− x∗i (t)| ≤ Mϕ‖ϕ− ϕ∗‖e−λt, ∀t > 0, i = 1, 2, . . . , n,

where
‖ϕ− ϕ∗‖ = sup

−τ≤s≤0
max

1≤i≤n
|ϕi(s)− ϕ∗i (s)|.

Then x∗(t) is said to be globally exponentially stable.

Next, we present two important lemmas, to be used for proving our main results
in Section 3.
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Lemma 2.2. Let (H1)–(H3) hold. Suppose that x̃(t) = (x̃1(t), x̃2(t), . . . , x̃n(t))T is
a solution of (1.1) with initial conditions

x̃i(s) = ϕ̃i(s), |ϕ̃i(s)| < ξi
u + 1

η
, s ∈ [−τ, 0], i = 1, 2, . . . , n. (2.3)

Then

|ϕ̃i(t)| < ξi
u + 1

η
, for all t ≥ 0, i = 1, 2, . . . , n. (2.4)

Proof. Assume, by way of contradiction, assume that (2.4) does not hold. Then
there must exist i ∈ {1, 2, . . . , n} and σ > 0 such that

|x̃i(σ)| = ξi
u + 1

η
, and |x̃j(t)| < ξj

u + 1
η

for all t ∈ (−τ, σ), j = 1, 2, . . . , n.

(2.5)
By directly computing the upper left derivative of |x̃i(t)|. under assumptions (H1)–
(H3), and (2.5), we deduce that

0 ≤ D+(|x̃i(σ)|)

≤ −ci(σ)|x̃i(σ)|+
n∑

j=1

|aij(σ)||fj(x̃j(σ − τ̃j(σ)))|

+
n∑

j=1

n∑
k=1

|bijk(σ)||gj(x̃j(σ − τj(σ)))|gk + |ui(σ)|

≤ −ci(σ)ξi
u + 1

η
+

n∑
j=1

|aij(σ)|Lj |x̃j(σ − τ̃j(σ))|

+
n∑

j=1

n∑
k=1

|bijk(σ)|Mj |x̃j(σ − τj(σ))|gk + u

≤ −ci(σ)ξi
u + 1

η
+

n∑
j=1

|aij(σ)|Ljξj
u + 1

η
+

n∑
j=1

n∑
k=1

|bijk(σ)|Mjξj
u + 1

η
gk + u

= [−ci(σ)ξi +
n∑

j=1

|aij(σ)|Ljξj +
n∑

j=1

n∑
k=1

|bijk(σ)|Mjξjgk]
u + 1

η
+ u < 0.

(2.6)
which is a contradiction and implies that (2.4) holds. This completes the proof. �

Remark 2.3. It follows that the bounded solution x̃(t) can be defined on [0,∞)
according to the theory of functional differential equations in [5].

Lemma 2.4. Suppose that (H1)–(H3) hold. Let x∗(t) = (x∗1(t), x
∗
2(t), . . . , x

∗
n(t))T

be the solution of (1.1) with initial value ϕ∗ = (ϕ∗1(t), ϕ
∗
2(t), . . . , ϕ

∗
n(t))T , and

x(t) = (x1(t), x2(t), . . . , xn(t))T be the solution of (1.1) with initial value ϕ =
(ϕ1(t), ϕ2(t), . . . , ϕn(t))T . Then there exist constants Mϕ > 1 such that

|xi(t)− x∗i (t)| ≤ Mϕ‖ϕ− ϕ∗‖e−λt, ∀t > 0, i = 1, 2, . . . , n.



4 Z. HUANG, L. PENG, M. XU EJDE-2010/59

Proof. Let y(t) = {yj(t)} = {xj(t)− x∗j (t)} = x(t)− x∗(t). Then

y
′

i(t) = −ci(t)[xi(t)− x∗i (t)] +
n∑

j=1

aij(t)
[
fj(xj(t− τ̃j(t)))− fj(x∗j (t− τ̃j(t)))

]
+

n∑
j=1

n∑
k=1

bijk(t)
[
gj(xj(t− τj(t)))gk(xk(t− τk(t)))

− gj(x∗j (t− τj(t)))gk(x∗k(t− τk(t)))
]

where i = 1, 2, . . . , n. Next, define a Lyapunov functional as

Vi(t) = |yi(t)|eλt, i = 1, 2, . . . , n. (2.7)

By (2.6) and (2.7) it follows that

D+(Vi(t)) ≤ D+(|yi(t)|)eλt + λ|yi(t)|eλt

≤ (λ− ci(t))|yi(t)|eλt + {
n∑

j=1

|aij |(t)Lj |yj(t− τ̃j(t))|

+
n∑

j=1

n∑
k=1

|bijk(t)|[gkMj |yj(t− τj(t))|+ gjMk|yk(t− τk(t))|]}eλt

(2.8)
where i = 1, 2, . . . , n. Let m∗ > 1 denote a real number such that

m∗ξi > ‖ϕ− ϕ∗‖ = sup
−τ≤s≤0

max
1≤j≤n

|ϕj(s)− ϕ∗j (s)| > 0, i = 1, 2, . . . , n.

Then by (2.7), we have

Vi(t) = |yi(t)|eλt < m∗ξi, for all t ∈ [−τ, 0], i = 1, 2, . . . , n.

Thus we can claim that

Vi(t) = |yi(t)|eλt < m∗ξi, for all t > 0, i = 1, 2, . . . , n. (2.9)

Otherwise, there must exist i ∈ {1, 2, . . . , n} and ti > 0 such that

Vi(ti) = m∗ξi, Vj(t) < m∗ξj , ∀t ∈ [−τ, ti), j = 1, 2, . . . , n. (2.10)
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Combining (2.8) with (2.10), we obtain

0 ≤ D+(Vi(ti)−m∗ξi)

= D+(Vi(ti))

≤ (λ− ci(ti))|yi(ti)|eλti + {
n∑

j=1

|aij(ti)|Lj |yj(ti − τ̃j(ti))|

+
n∑

j=1

n∑
k=1

|bijk(ti)|[gkMj |yj(ti − τj(ti))|+ gjMk|yk(ti − τk(ti))|]}eλti

≤ (λ− ci(ti))m∗ξi +
n∑

j=1

|aij |(ti)Ljm
∗ξje

λτ

+
n∑

j=1

n∑
k=1

|bijk(ti)|gkMjm
∗ξje

λτ +
n∑

j=1

n∑
k=1

|bijk(ti)|gjMkm∗ξkeλτ

= {(λ− ci(ti))ξi +
[ n∑

j=1

|aij(ti)|Ljξj

+
n∑

j=1

n∑
k=1

|bijk(ti)|(gkMjξj + gjMkξk)
]
eλτ}m∗

(2.11)

It is clear that

(λ− ci)ξi + [
n∑

j=1

|aij |(ti)Ljξj +
n∑

j=1

n∑
k=1

|bijk(ti)|(gkMjξj + gjMkξk)]eλτ > 0

This contradicts (H3), then (2.9) holds. Letting Mϕ > 1, such that

max
1≤i≤n

{m∗ξi} ≤ Mϕ‖ϕ− ϕ∗‖, i = 1, 2, . . . , n. (2.12)

In view of (2.9) and (2.12), we obtain

|xi(t)− x∗i (t)| = |yi(t)| ≤ max
1≤i≤n

{mξi}e−λt ≤ Mϕ‖ϕ− ϕ∗‖e−λt,

where i = 1, 2, . . . , n, t > 0. This completes the proof. �

Remark 2.5. If x∗(t) = (x∗1(t), x
∗
2(t), . . . , x

∗
n(t))T is the T -anti-periodic solution

of (1.1), it follows from Lemma 2.2 and the Definition 2.1 that x∗(t) is globally
exponentially stable.

3. Main Results

In this section,we present our main result that there exists the exponentially
stable anti-periodic solution of (1.1).

Theorem 3.1. Assume that (H1)–(H3) are satisfied. Then (1.1) has exactly one T -
anti-periodic solution x∗(t). Moreover, this solution is globally exponentially stable.

Proof. Let v(t) = (v1(t), v2(t), . . . , vn(t))T is a solution of (1.1) with initial condi-
tions

vi(s) = ϕv
i (s), |ϕv

i (s)| < ξi
u + 1

η
, s ∈ (−τ, 0], i = 1, 2, . . . , n. (3.1)
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Thus according to Lemma 2.1, the solution v(t) is bounded and

|vi(t)| < ξi
u + 1

η
, for all t ∈ R, i = 1, 2, . . . , n. (3.2)

From (2.1), we obtain

((−1)m+1vi(t + (m + 1)T ))′

= (−1)m+1{−ci(t + (m + 1)T )vi(t + (m + 1)T )

+
n∑

j=1

aij(t + (m + 1)T )fj(vj(t + (m + 1)T − τ̃j(t + (m + 1)T )))

+
n∑

j=1

n∑
k=1

bijk(t + (m + 1)T )gj(vj(t + (m + 1)T − τj(t + (m + 1)T )))

× gk(vk(t + (m + 1)T − τk(t + (m + 1)T ))) + ui(t + (m + 1)T )}

= −ci(t)[(−1)m+1vi(t + (m + 1)T )] +
n∑

j=1

aij(t)

× fj [(−1)m+1vj((t + (m + 1)T )− τ̃j(t + (m + 1)T ))]

+
n∑

j=1

n∑
k=1

bijk(t)gj [(−1)m+1vj((t + (m + 1)T )− τj(t + (m + 1)T ))]

× gk[(−1)m+1vk((t + (m + 1)T )− τk(t + (m + 1)T ))] + ui(t)

(3.3)

where i = 1, 2, . . . , n. Thus (−1)m+1v(t+(m+1)T ) are the solutions of (1.1) on R
for any natural number m. Then, from Lemma 2.2, there exists a constant M > 0
such that

|(−1)m+1vi(t + (m + 1)T )− (−1)mvi(t + mT )|

≤ Me−λ(t+mT ) sup
−τ≤s≤0

max
1≤i≤n

|vi(s + T ) + vi(s)|

≤ 2e−λ(t+mT )M max
1≤i≤n

{ξi
u + 1

η
}, ∀t + mT > 0, i = 1, 2, . . . , n.

(3.4)

Thus, for any natural number m, we have

(−1)m+1vi(t + (m + 1)T ) = vi(t) +
m∑

k=0

[(−1)k+1vi(t + (k + 1)T )− (−1)kvi(t + kT )].

(3.5)
Hence,

|(−1)m+1vi(t+(m+1)T )| ≤ |vi(t)|+
m∑

k=0

|(−1)k+1vi(t+(k+1)T )−(−1)kvi(t+kT )|,

(3.6)
where i = 1, 2, . . . , n. In view of (3.4), we can choose a sufficiently large constant
N > 0 and a positive constant α such that

|(−1)m+1vi(t + (m + 1)T )− (−1)mvi(t + mT )| ≤ α(e−λT )m, (3.7)

for all m > N , i = 1, 2, . . . , n, on any compact set of R. Obviously, together
with (3.5), (3.6) and (3.7), {(−1)mv(t + mT )} uniformly converges to a continuous
function x∗(t) = (x∗1(t), x

∗
2(t), . . . , x

∗
n(t))T on any compact set of R.
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Now we show that x∗(t) is T -anti-periodic solution of (1.1). Firstly, x∗(t) is
T -anti-periodic, since

x∗(t + T ) = lim
m→∞

(−1)mv(t + T + mT )

= − lim
(m+1)→∞

(−1)m+1v(t + (m + 1)T ) = −x∗(t).

secondly, we prove that x∗(t) is a solution of (1.1). Because of the continuity of the
right-hand side of (1.1), (3.3) implies that {((−1)m+1v(t + (m + 1)T ))′} uniformly
converges to a continuous function on any compact subset of R. Thus, letting
m →∞, we can easily obtain

d

dt
{x∗i (t)} = −ci(t)x∗i (t) +

n∑
j=1

aij(t)fj(x∗j (t− τ̃j(t)))

+
n∑

j=1

n∑
k=1

bijk(t)gj(x∗j (t− τj(t)))gk(x∗k(t− τk(t))) + ui(t),

(3.8)

where i = 1, 2, . . . , n. Therefore, x∗(t) is a solution of (1.1).
Finally, by applying Lemma 2.2, it is easy to check that x∗(t) is globally expo-

nentially stable. This completes the proof. �

4. An Example

In this section, a simple example is provided to illustrate our results. Consider
the high-order cellular neural network with delays

x′1(t) = −x1(t) +
1
4
| sin t|f1(x1(t− 1)) +

1
36
| cos t|f2(x2(t− 2))

+
1
72

sin tg2
1(x1(t− 1)) +

1
36

cos tg1(x1(t− 1))g2(x2(t− 2))

+
1
72

cos tg2
2(x2(t− 2)) +

1
9

sin t,

x′2(t) = −x2(t) +
1
36
| cos t|f1(x1(t− 1)) +

1
4
| sin t|f2(x2(t− 2))

+
1
72

cos tg2
1(x1(t− 1)) +

1
36

cos tg1(x1(t− 1))g2(x2(t− 2))

+
1
72

sin tg2
2(x2(t− 2)) +

1
9

sin t ,

(4.1)

where f1(x) = f2(x) = x, g1(x) = g2(x) = arctanx, c1(t) = c2(t) = 1, u1(t) =
1
9 sin t, u2(t) = 1

9 sin t, a11(t) = a22(t) = 1
4 | sin t|, a12(t) = a21(t) = 1

36 | cos t|,
b111(t) = b222(t) = 1

72 sin t, b112(t) = b121(t) = b122(t) = b211(t) = b212(t) =
b221(t) = 1

72 cos t. Noting that

L1 = L2 = M1 = M2 = 1, g1 = g2 =
π

2
.

Therefore, there exist constants η = 1
2 , λ = 1

1800 and ξ1 = ξ2 = 1, such that for all
t > 0, i = 1, 2, there holds

[λ− ci(t)]ξi + [
2∑

j=1

aij(t)Ljξj +
2∑

j=1

2∑
k=1

bijk(t)(gkMjξj + gjMkξk)]eλτ < −η,
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which implies that system (4.1) satisfy all the conditions in Theorem 3.1. Hence,
(4.1) has exactly one π-anti-periodic solution. Moreover, this solution is globally
exponentially stable.

This fact is verified in the numerical simulation in Figure 1.
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Figure 1. Numerical solution (x1(t), x2(t)) of system (4.1) for
(ϕ1(s), ϕ2(s)) = (0.5, 0.8).

We remark that (4.1) is a very simple form of high-order cellular neural networks
with delays. However, the results in the references can not be applicable for obtain-
ing existence and exponential stability of the anti-periodic solutions. This makes
our results new.
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