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MAXIMUM PRINCIPLE AND EXISTENCE RESULTS FOR
ELLIPTIC SYSTEMS ON RN

LIAMIDI LEADI, ABOUBACAR MARCOS

Abstract. In this work we give necessary and sufficient conditions for having

a maximum principle for cooperative elliptic systems involving p-Laplacian
operator on the whole RN . This principle is then used to yield solvability for

the cooperative elliptic systems by an approximation method.

1. Introduction

This work is mainly concerned with the elliptic system

−∆pu = am(x)|u|p−2u + bm1(x)|v|βv + f in RN ,

−∆qv = cn1(x)|u|αu + dn(x)|v|q−2v + g in RN ,

u(x) → 0, v(x) → 0 as |x| → +∞.

(1.1)

Here ∆pu := div(|∇u|p−2∇u), 1 < p < +∞, is the so-called p-Laplacian operator;
a, b, c, d, α and β are reals parameters; f, g,m, n,m1 and n1 are weights whose
properties will be specified later.

We are concerned with the existence of positive solutions and with the following
form of maximum principle: If f, g ≥ 0 in RN then u, v ≥ 0 in RN for any solution
(u, v) of (1.1). It is well known that maximum principle plays an important role
in the theory on nonlinear equations. For instance, it is used to access existence
results and qualitative properties of solutions for linear and nonlinear differential
equations, (see for instance [14] and [18] for a survey).

Many works have been devoted to the study of linear and nonlinear elliptic
systems either on a bounded domain or an unbounded domain of RN (in particular
the whole Rn) (cf.[3, 5, 6, 7, 8, 9, 19]). In [12, 13] for the linear case (i.e p = q = 2),
it was presented necessary and sufficient conditions for having maximum principle
and existence of positive solutions. These results have been later extended in [9] to
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the nonlinear system

−∆pui =
n∑

j=1

aij |uj |p−2uj + fi in Ω

ui = 0 on ∂Ω, i = 1, 2, . . . n

where Ω is a bounded domain of RN .
For specific interest for our purposes is the work in [19] where a study of problems

such as (1.1) was carried out in the case of RN in the presence of some weight
functions. In our work we consider problem (1.1) with coefficients b, c > 0, and the
weight functions m(x), n(x), m1(x), n1(x) positive. Here m belongs to LN/p(RN )∩
L∞loc(RN ) and n belongs to LN/q(RN ) ∩ L∞loc(RN ). Then we state necessary and
sufficient conditions for a maximum principle to hold. Moreover our technique can
be developed to get a related result for the following class of cooperative systems

−∆pu = am(x)|u|p−2u + bm1(x)|u|α|v|βv + f in RN ,

−∆qv = cn1(x)|v|β |u|αu + dn(x)|v|q−2v + g in RN ,

u(x) → 0, v(x) → 0 as |x| → +∞
(1.2)

where the coefficients a, b, c, d, and the weights m(x), n(x),m1(x), n1(x) are as
above. When a = b = c = d = 1, problem (1.2) is relaxed to the particular case of
system considered in [19] where the necessary condition for the maximum principle
to hold given by the authors is depend on x. The arguments developed in this
paper enable us to obtain a non dependance on x necessary condition.

The remainder of the paper is organized as follows: In Section 3, the maximum
principle for (1.1) is given and is shown to be proven full enough to yield existence
results of solutions for (1.1) in Section 4. In section 5, we briefly give a version of our
result for the cooperative systems (1.2). In the preliminary Section 2, we collect
some known results relative to the principal positive eigenvalue and to various
Sobolev imbeddings.

2. Preliminaries

Throughout this work, we will assume that 1 < p, q < N and
(H1) m,n > 0;m ∈ L∞loc(RN ) ∩ LN/p(RN ) and n ∈ L∞loc(RN ) ∩ LN/q(RN )
(H2) 0 < m1(x) ≤ [m(x)]

1
p [n(x)]

β+1
q and 0 < n1(x) ≤ [n(x)]

1
q [m(x)]

α+1
p a.e. in

RN

(H3) f ≥ 0 and f ∈ L(p∗)′(RN ); g ≥ 0 and g ∈ L(q∗)′(RN )
(H4) b, c ≥ 0; α, β ≥ 0; α+1

p + 1
q = 1 and β+1

q + 1
p = 1

Here p∗ = Np
N−p , q∗ = Nq

N−q denote the critical Sobolev exponent of p and q respec-
tively; p′ is the Hölder conjugate of p. It is clear that 1

p′ = β+1
q and 1

q′ = α+1
p .

We denote by D1,s(RN ) (with 1 < s < N) the completion of C∞0 (RN ) with
respect to the norm

‖u‖D1,s(RN ) =
( ∫

RN

|∇u|s
)1/s

.

It can be shown that (cf [16])

D1,s(RN ) = {u ∈ Ls∗(RN ) : ∇u ∈ (Ls(RN ))N}
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and for any positive weight g ∈ L∞loc(RN ) ∩ LN/s(RN ) the following embeddings
hold (cf.[10, 11, 15])

D1,s(RN ) ↪→ Ls∗(RN ) and D1,s(RN ) ↪→↪→ Ls(g, RN )

where Ls(g, RN ) is the Ls space on RN with the weight g (cf. [11]).
By solution (u, v) of (1.1) (or related equations), we mean a weak solution; i.e.,

(u, v) ∈ D1,p(RN )×D1,q(RN ) with∫
RN

|∇u|p−2∇u.∇w =
∫

RN

[am(x)|u|p−2uw + bm1(x)|v|βvw + fw]∫
RN

|∇v|q−2∇v.∇z =
∫

RN

[cn1(x)|u|αuz + dn(x)|v|q−2vz + gz]
(2.1)

for all (w, z) ∈ D1,p(RN ) ×D1,q(RN ). Note that by the above embeddings, every
integral in (2.1) is well-defined. Regularity results from [20, 21] on general quasilin-
ear equations imply that such a weak solution (u, v) belong to C1(RN )× C1(RN ).
It is also known that a weak solution of (1.1) decays to zero at infinity (cf. [4, 10]).

To conclude this introduction, let us briefly recall some properties of the spec-
trum of −∆p with weight to be used later (cf. [1, 11]). We denote by

λ1(m, p) := min
{ ∫

RN

|∇u|p : u ∈ D1,p(RN ) and
∫

RN

m|u|p = 1
}

(2.2)

the unique principal eigenvalue of

−∆pu = λm(x)|u|p−2u in RN

u(x) → 0 as |x| → +∞; u > 0 in RN
(2.3)

and by ϕ1(m) = ϕ1(m, p) ∈ D1,p(RN )∩C1(RN ) the associated positive eigenvalue
such that

∫
RN m|ϕ1(m)|p = 1. It is well known that λ1(m, p) is simple and isolated.

Here and henceforth, we will denote by Φ = ϕ1(m, p) (respectively by Ψ =
ϕ1(n, q)) the positive eigenfunction associated to λ1(m, p) (respectively λ1(n, q))
and normalized by ∫

RN

mΦ(x)p =
∫

RN

nΨ(x)q = 1 (2.4)

3. Maximum principle

We assume that 1 < p, q < N and that hypothesis (H1), (H2), (H3) and (H4)
are satisfied. We begin by consider the problem

−∆pu = µm(x)|u|p−2u + h(x) in RN

u(x) → 0 as |x| → +∞
(3.1)

The following results were proved in [10, 11]

Proposition 3.1. (1) Let h ∈ L(p∗)′(RN ) and assume that (H1) is satisfied. If
µ < λ1(m, p) then (3.1) admits a solution in D1,p(RN ).

(2) Let h ∈ L(p∗)′(RN ) with h ≥ 0 a.e. in RN and h 6≡ 0.
(a) If µ ∈ [0, λ1(m, p)[, then any solution u of (3.1) is positive in RN .
(b) If µ = λ1(m, p) then (3.1) has no solution
(c) If µ > λ1(m, p) then (3.1) has no positive solution.

Using [20, 21], one also has a regularity result.
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Proposition 3.2. For all r > 0, any solution (u, v) of (1.1)) belongs to C1,γ(Br)×
C1,γ(Br), where γ = γ(r) ∈]0, 1[ and Br is the ball of radius r centered at the origin.

Let
a1(r) := inf

Br

k1(x), a2(r) := sup
Br

k2(x), (3.2)

where

k1(x) :=
[n1(x)

n(x)
] β+1

q
[Φ(x)p

Ψ(x)q

]α+1
p

β+1
q ,

k2(x) :=
[ m(x)
m1(x)

]α+1
p

[Φ(x)p

Ψ(x)q

]α+1
p

β+1
q .

We denote a1∞ = limr→+∞ a1(r) and a2∞ = limr→+∞ a2(r). Let

Θ =
a1∞

a2∞
. (3.3)

One can easily prove that

Θ ≤ a1(r)
a2(r)

for all r > 0 and 0 ≤ Θ ≤ 1 (3.4)

We say that (1.1) satisfies the maximum principle (in short (MP)) if for f, g ≥ 0
a.e in RN , any solution (u, v) of (1.1) is such that u > 0, v > 0 a.e. in RN .

We now turn to our first main result, i.e., the validity of the (MP) which is stated
as follows

Theorem 3.3. Assume that hypothesis (H1)–(H) are satisfied. Then the (MP)
holds for (1.1) if

(C1) λ1(m, p) > a
(C2) λ1(n, q) > d

(C3) [λ1(m, p)− a]
α+1

p [λ1(n, q)− d]
β+1

q > b
α+1

p c
β+1

q

Conversely, if the (MP) holds, then (C1), (C2) and (C4) are satisfied, where

(C4) [λ1(m, p)− a]
α+1

p [λ1(n, q)− d]
β+1

q > Θb
α+1

p c
β+1

q .

Corollary 3.4. If p = q and m ≡ n a.e. in RN , then the (MP) holds for (1.1) if
only if (C1), (C2) and (C4) are satisfied

Proof of Theorem 3.3. The condition is necessary. The proof of (C1) or (C2) is
standard (cf. for instance [2, 3, 19]). We give here the sketch of this proof.

If λ1(m, p) ≤ a, then the functions f := [a− λ1(m, p)]mΦp−1 and g := cn1Φα+1

are nonnegative and (−Φ, 0) is a solution of (1.1), which contradicts the (MP).
Similarly, if λ1(n, q) ≤ d, then the functions f := bm1Ψβ+1 and g := [d −

λ1(n, q)]nΨq−1 are nonnegative and (0,−Ψ) is a solution of (1.1), a contradiction.
The proof of (C4) can be adapted from [19] as follow. We assume that λ1(m, p) >

a and λ1(n, q) > d. If one of the coefficients Θ, b or c vanishes, then (C4) is satisfied.
We will then assume that Θ 6= 0, b 6= 0, c 6= 0 and that (C4) does not hold, i.e.

[λ1(m, p)− a]
α+1

p [λ1(n, q)− d]
β+1

q ≤ Θb
α+1

p c
β+1

q (3.5)

Set A =
(λ1(m,p)−a

b

)α+1
p and B =

(λ1(n,q)−d
c

) β+1
q . Then, by (3.5), one has AB ≤ Θ,

which clear implies that Aa2∞ ≤ 1
B a1∞. One deduces that there exists ξ ∈ R∗+

such that
Aa2∞ ≤ ξ ≤ 1

B
a1∞.
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Since the function a1(r) (respectively a2(r)) is decreasing (respectively increasing)
on R∗+, one has

Aa2(r) ≤ Aa2∞ ≤ ξ ≤ 1
B

a1∞ ≤ 1
B

a1(r), for all r > 0.

But for any x ∈ RN , there exists r > 0 such that

Ak2(x) ≤ Aa2(r) and
1
B

a1(r) ≤
1
B

k1(x).

Consequently we set

Ak2(x) ≤ Aa2(r) ≤ ξ ≤ 1
B

a1(r) ≤
1
B

k1(x)

for all x ∈ RN , i.e.,

Ak2(x) ≤ ξ ∀x ∈ RN (3.6)
B

k1(x)
≤ 1

ξ
∀x ∈ RN . (3.7)

Next let we set ξ = ( cq
1

cp
2
)

α+1
p

β+1
q , where c1 and c2 are positive constants.

From (3.6) and (H4), one easily gets,

−[λ1(m, p)− a]m(x)[c2Φ(x)]p−1 + bm1(x)[c1Ψ(x)]β+1 ≥ 0 for all x ∈ RN .

Similarly, using (3.7) and (H4), one has

−[λ1(n, q)− d]n(x)[c1Ψ(x)]q−1 + cn1(x)[c2Φ(x)]α+1 ≥ 0 for all x ∈ RN .

Hence

f := −[λ1(m, p)− a]m(x)[c2Φ(x)]p−1 + bm1(x)[c1Ψ(x)]β+1 ≥ 0 for all x ∈ RN

and

g := −[λ1(n, q)− d]n(x)[c1Ψ(x)]q−1 + cn1(x)[c2Φ(x)]α+1 ≥ 0 for all x ∈ RN

are nonnegative functions and (−c2Φ,−c1Ψ) is a solution of (1.1). This is a con-
tradiction with the (MP).

The condition is sufficient. A detailed proof of this part can be found in [3, 20].
We give a sketch here. Assume that the conditions (C1), (C2) and (C3) are satisfied.
Let (u, v) be a solution of (1.1) for f, g ≥ 0. Moreover, suppose that u− 6≡ 0 and
v− 6≡ 0 and taking those functions as test function in (1.1), we find by Hölder
inequality that

[(λ1(m, p)− a)
α+1

p (λ1(n, q)− d)
β+1

q − b
α+1

p c
β+1

q ]

×
[( ∫

RN

m|u−|p
)( ∫

RN

n|v−|q
)]α+1

p
β+1

q ≤ 0,

which contradicts assumption (C4). By applying regularity results of [20, 21] and
the maximum principle of [22], one has in fact u > 0 and v > 0 a.e in RN . �
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4. Existence of positive solutions

In this section, we prove the existence of positive solutions for (1.1) under condi-
tions (C1), (C2) and (C3), by an approximation method used in [2, 3]. For ε ∈]0, 1[,
we define the following expression

Xk :=
|uk|p−2uk

1 + |ε1/puk|p−1
, X :=

|u|p−2u

1 + |ε1/pu|p−1
,

Yk :=
|uk|αuk

1 + |ε1/puk|α+1
, Y :=

|u|αu

1 + |ε1/pu|α+1
,

X ′
k :=

|vk|q−2vk

1 + |ε1/qvk|q−1
, X ′ :=

|v|q−2v

1 + |ε1/qv|q−1
,

Y ′
k :=

|vk|βvk

1 + |ε1/qvk|β+1
, Y ′ :=

|v|βv

1 + |ε1/qv|β+1
.

On has the following result which will be useful later.

Lemma 4.1. If (uk, vk) converges to (u, v) in Lp∗(RN )× Lq∗(RN ) then

(i) Xk → X in L
p∗

p−1 (RN ), Yk → Y in L
p∗

α+1 (RN ) and in Lq′(m, RN ).

(ii) X ′
k → X ′ in L

q∗
q−1 (RN ), Y ′

k → Y ′ in L
q∗

β+1 (RN ) and in Lp′(n, RN ).

Proof. We give the proof for (i) and indicate that the same arguments hold for
(ii). If uk → u in Lp∗(RN ), then there exists a subsequence denoted (uk) such that
uk → u almost every where in RN and |uk(x)| ≤ l1(x) for some l1 ∈ Lp∗(RN ).
Hence

Xk(x) → X(x) a.e. in RN ,

|Xk(x)| ≤ |uk(x)|p−1 ≤ |l1(x)|p−1 in L
p∗

p−1 ,

which implies, by dominated convergence Theorem, that Xk → X in L
p∗

p−1 .
Similarly, on deduces from the convergence of Yk to Y in L

p∗
α+1 that

Yk(x) → Y (x) a.e in RN ,

|Yk(x)| ≤ |uk(x)|α+1 ≤ |l2(x)|α+1 in L
p∗

α+1 ,

and the conclusion follows. Moreover, using Hölder inequality, we have

‖Yk − Y ‖q′

Lq′ (m,RN )
=

∫
RN

m|Yk − Y |q
′
≤ ‖m‖LN/p(RN )‖Yk − Y ‖q′

L
p∗

α+1
.

�

We are now in position to give the main result of this section.

Theorem 4.2. Assume that (H1), (H2), (H3), (C1), (C2), (C3) are satisfied. Then
for all f ∈ L(p∗)′(RN ) and g ∈ L(q∗)′(RN ), the system (1.1) has at least one solution
(u, v) ∈ D1,p(RN )×D1,q(RN ).
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The proof is partly adapted from [2, 3]. We choose r > 0 such that a + r > 0
and d + r > 0. The system (1.1) is then equivalent to

−∆pu + rm|u|p−2u = (a + r)m|u|p−2u + bm1|v|βv + f in RN

−∆qv + rn|v|q−2v = cn1|u|αu + (d + r)n|v|q−2v + g in RN

u(x) → 0, v(x) → 0 as |x| → +∞
(4.1)

For ε ∈]0, 1[, let us introduce the system

−∆puε + rm|uε|p−2uε = mh(uε) + m1h1(vε) + f in RN

−∆qvε + rn|vε|q−2vε = n1k1(uε) + nk(vε) + g in RN

uε(x) → 0, vε(x) → 0 as |x| → +∞
(4.2)

where

h(u) := (a + r)
|u|p−2u

1 + |ε1/pu|p−1
, h1(v) := b

|v|βv

1 + |ε1/qv|β+1
,

k1(u) := c
|u|αu

1 + |ε1/pu|α+1
, k(v) := (d + r)

|v|q−2v

1 + |ε1/qv|q−1
.

Lemma 4.3. Under hypothesis of Theorem 4.2, system (4.2) admits at least a
couple of solution (u, v) in D1,p(RN )×D1,q(RN ).

Proof. We give the proof in several steps.
Step 1. Construction of sub-super solution for (4.2): Since the functions h, h1, k

and k1 are bounded, there exists a constant M > 0 such that

|h(u)| ≤ M, |h1(v)| ≤ M, |k1(u)| ≤ M, |k(v)| ≤ M

for all (u, v) ∈ D1,p(RN ) × D1,q(RN ). Let ξ0 ∈ D1,p(RN ) (respectively η0 ∈
D1,q(RN )) be a solution of

−∆pu + rm|u|p−2u = (m + m1)M + f

(respectively −∆qv + rm|v|q−2v = (n + n1)M + g), and let ξ0 ∈ D1,p(RN ) (respec-
tively η0 ∈ D1,q(RN )) be solution of

−∆pu + rm|u|p−2u = −(m + m1)M + f

(respectively −∆qv + rm|v|q−2v = −(n + n1)M + g). Then (ξ0, η0) (respectively
(ξ0, η0)) is a super solution (respectively sub solution) of system (4.2) since

−∆pξ
0 + rm|ξ0|p−2ξ0 −mh(ξ0)−m1h1(η)− f

≥ −∆pξ
0 + rm|ξ0|p−2ξ0 − (m + m1)M − f = 0 ∀η ∈ [η0, η

0],

−∆qη
0 + rn|η0|q−2η0 − n1k1(ξ)− nk(η0)− g

≥ −∆qη
0 + rn|η0|q−2η0 − (n + n1)M − g = 0 ∀η ∈ [ξ0, ξ

0],

−∆pξ0 + rm|ξ0|p−2ξ0 −mh(ξ0)−m1h1(η)− f

≤ −∆pξ0 + rm|ξ0|p−2ξ0 − (m + m1)M − f = 0 ∀η ∈ [η0, η
0],

−∆qη0 + rn|η0|q−2η0 − n1k1(ξ)− nk(η0)− g

≤ −∆qη0 + rn|η0|q−2η0 − (n + n1)M − g = 0 ∀η ∈ [ξ0, ξ
0] .
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Step 2. Definition of operator T . Denote by K = [ξ0, ξ
0] × [η0, η

0] and define
the operator T : (u, v) → (w, z) such that

−∆pw + rm|w|p−2w = mh(u) + m1h1(v) + f in RN

−∆qz + rm|z|q−2z = n1k1(u) + nk(v) + g in RN

w(x) → 0, z(x) → 0 as |x| → +∞
(4.3)

Step 3. Let us prove that T (K) ⊂ K. If (u, v) ∈ K then we have

− (∆pw −∆pξ
0) + rm(|w|p−2w − |ξ0|p−2ξ0)

= m[h(u)−M ] + m1[h1(v)−M ])
(4.4)

Taking (w − ξ0)+ as test function in (4.4), we have∫
RN

(|∇w|p−2∇w − |∇ξ0|p−2∇ξ0)∇(w − ξ0)+

+ r

∫
RN

m(|w|p−2w − |ξ0|p−2ξ0)(w − ξ0)+

=
∫

RN

[m(h(u)−M) + m1(h1(v)−M)](w − ξ0)+ ≤ 0.

Hence by the monotonicity of the function x 7→ ‖x‖p−2x and by the monotonicity
of the p-Laplacian, we deduce that (w − ξ0)+ = 0 and then w ≤ ξ0. Similarly we
get ξ0 ≤ w by taking (w − ξ0)− as test function in (4.4). So we have ξ0 ≤ w ≤ ξ0

and η0 ≤ z ≤ η0 and the step is complete.
Step 4. T is completely continuous:
• We will first prove that T is continuous. Indeed let (uk, vk) → (u, v) ∈

D1,p(RN )×D1,q(RN ), we will prove that (wk, zk) = T (uk, vk) converges to (w, z) =
T (u, v).

(−∆pwk + rm|wk|p−2wk)− (−∆pw + rm|w|p−2w)

= m[h(uk)− h(u)] + m1[h1(vk)− h1(v)]

= (a + r)m(Xk −X) + bm1(Y ′
k − Y ′),

(4.5)

where Xk, X, Y ′
k and Y ′ are previously define in Lemma 4.1. Then taking (wk−w)

as test function in (4.5), we get∫
RN

(|∇wk|p−2∇wk − |∇w|p−2w)∇(wk − w)

≤
∫

RN

(|∇wk|p−2∇wk − |∇w|p−2w)∇(wk − w)

+ r

∫
RN

m(|wk|p−2wk − |w|p−2w)(wk − w)

= (a + r)
∫

RN

m(Xk −X)(wk − w) + b

∫
RN

m1(Y ′
k − Y ′)(wk − w).

Using Hölder inequality, we obtain∫
RN

m(Xk −X)(wk − w) ≤ ‖m‖LN/p(RN )‖Xk −X‖Lp∗/(p−1)(RN ).‖wk − w‖Lp∗ (RN )
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and ∫
RN

m1(Y ′
k − Y ′)(wk − w) ≤

∫
RN

[m1/p(wk − w)][n(β+1)/q(Y ′
k − Y ′)]

≤ ‖wk − w‖Lp(m,RN ).‖Y ′
k − Y ′‖Lp′ (n,RN ),

since β+1
q = 1

p′ . Consequently

0 ≤
∫

RN

(|∇wk|p−2∇wk − |∇w|p−2w)∇(wk − w)

≤ (a + r)‖m‖LN/p(RN )‖Xk −X‖Lp∗/(p−1)(RN )‖wk − w‖Lp∗ (RN )

+ b‖Y ′
k − Y ′‖Lp′ (n,RN ).‖wk − w‖Lp(m,RN )

Using then the inequality

‖x− y‖p ≤ c[(‖x‖p−2x− ‖y‖p−2y)(x− y)]s/2[‖x‖p + ‖y‖p]1−s/2, (4.6)

where x, y ∈ RN , c = c(p) > 0 and s = 2 if p ≥ 2, s = p if 1 < p < 2 (cf. e.g.
[17]), one easily obtains that wk → w in D1,p(RN ). Similarly, we have zk → z in
D1,q(RN ).
• We now prove that operator T is compact. Let (uk, vk) be a bounded sequence

in D1,p(RN )×D1,q(RN ) and set (wk, zk) = T (uk, vk). We have

−∆pwk + rm|wk|p−2wk = mh(uk) + m1h1(vk) + f (4.7)

Taking wk as test function in (4.7), we get∫
RN

|∇wk|p + r

∫
RN

m|wk|p

=
∫

RN

mh(uk)wk +
∫

RN

m1h1(vk)wk +
∫

RN

fwk

≤ (a + r)
∫

RN

m|uk|p−1|wk|+ b

∫
RN

m1|vk|β+1|wk|+
∫

RN

|f‖wk|

≤
[
(a + r)‖uk‖p−1

Lp(m,RN )
+ b‖vk‖β+1

Lq(n,RN )

]
.‖wk‖Lp(m,RN )

+ ‖f‖L(p∗)′ (RN )‖wk‖Lp∗ (RN ).

Hence wk is bounded in D1,p(RN ) and consequently, up to a subsequence wk con-
verges to w weakly in D1,p(RN ) and strongly in Lp(m, RN ). Now taking (wk−wq)
as test function in (4.7), we have∫

RN

|∇wk|p−2∇wk∇(wk − wq) + r

∫
RN

m|wk|p−2wk(wk − wq)

=
∫

RN

[mh(uk) + m1h1(vk)](wk − wq) +
∫

RN

f(wk − wq)



10 L. LEADI, A. MARCOS EJDE-2010/60

and consequently∫
RN

(|∇wk|p−2∇wk − |∇wq|p−2∇wq)∇(wk − wq)

≤
∫

RN

(|∇wk|p−2∇wk − |∇wq|p−2∇wq)∇(wk − wq)

+ r

∫
RN

m(|wk|p−2wk − |wq|p−2wq)(wk − wq)

=
∫

RN

m[h(uk)− h(uq)](wk − wq) +
∫

RN

m1[h1(vk)− h1(vq)](wk − wq)

≤
[
‖uk‖p−1

Lp(m,RN )
+ ‖uq‖p−1

Lp(m,RN )
+ ‖vk‖β+1

Lq(n,RN )

+ ‖vq‖β+1
Lq(n,RN )

]
‖wk − wq‖Lp(m,RN ).

We then deduce that∫
RN

(|∇wk|p−2∇wk − |∇wq|p−2∇wq)∇(wk − wq) → 0.

From (4.6), we conclude that wk converges to w in D1,p(RN ). Similarly, we prove
that zk converges to z in D1,q(RN ).

Since the set K is convex, bounded and closed in D1,q(RN )×D1,q(RN ), applying
Schauder’s fixed point theorem, then there exists a fixed point for T which gives
the existence of solution of system (4.2). �

Proof of Theorem 4.2. The proof will be given by three steps.
Step 1. We show that (uε, vε) is bounded in D1,p(RN ) × D1,q(RN ). Indeed

denoting by tε = max(‖uε‖p
D1,p(RN )

, ‖vε‖q
D1,q(RN )

), zε = t
−1/p
ε uε and wε = t

−1/q
ε vε.

Since (uε, vε) is solution of (4.2), we have

−∆pzε + rm|zε|p−2zε =
(a + r)m|zε|p−2zε

1 + t
1/p′
ε |ε1/pzε|p−1

+
bm1|wε|βwε

1 + t
1/p′
ε |ε1/qwε|β+1

+ t−1/p′

ε f ,

−∆qwε + rm|wε|q−2wε =
cn1|zε|αzε

1 + t
1/q′
ε |ε1/pzε|α+1

+
(d + r)n|wε|q−2wε

1 + t
1/q′
ε |ε1/qwε|q−1

+ t−1/q′

ε g.

Hence taking zε as test function in the first equation, we get∫
RN

|∇zε|p + r

∫
RN

m|zε|p

≤ (a + r)
∫

RN

m|zε|p + b

∫
RN

m1|wε|β+1|zε|+ t−1/p′

ε

∫
RN

|f‖zε|,

which implies, by Hölder inequality and (H2),∫
RN

|∇zε|p ≤ a

∫
RN

m|zε|p + b
( ∫

RN

m|zε|p
)1/p( ∫

RN

n|wε|q
)(β+1)/q

+ t−1/p′

ε ‖f‖L(p∗)′ (Rn)

( ∫
RN

|zε|p
∗
)1/p∗
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By the imbedding of D1,p(RN ) in Lp∗(RN ), we deduce that

‖zε‖p
D1,p ≤

a

λ1(m, p)
‖zε‖p

D1,p + b
‖zε‖D1,p

[λ1(m, p)]1/p

‖wε‖β+1
D1,q

[λ1(n, q)](β+1)/q

+ c1t
−1/p′

ε ‖f‖L(p∗)′‖zε‖D1,p ,

where c1 = c1(p, N) is the constant of the imbedding of D1,p(RN ) into Lp∗(RN ),
and consequently( ‖zε‖D1,p

[λ1(m, p)]1/p

)p−1

≤ b
( ‖wε‖D1,q

[λ1(n, q)]1/q

)β+1

+ c1t
−1/p′

ε [λ1(m, p)]1/p‖f‖L(p∗)′ .

(4.8)

Similarly, we obtain( ‖wε‖D1,q

[λ1(n, q)]1/q

)q−1

≤ c
( ‖zε‖D1,p

[λ1(m, p)]1/p

)α+1

+ c2t
−1/q′

ε [λ1(n, q)]1/q‖g‖L(q∗)′

(4.9)

Now assume that uε (or vε)is unbounded in D1,p(RN ) ( in D1,q(RN )). Then tε →
+∞ and it follows from (4.8) and (4.9), that

[λ1(m, p)− a]
α+1

p [λ1(n, q)− d]
β+1

q

( ‖zε‖D1,p

[λ1(m, p)]1/p

) (α+1)(β+1)
q

×
( ‖wε‖D1,q

[λ1(n, q)]1/q

) (α+1)(β+1)
p

≤ b
α+1

p c
β+1

q

( ‖zε‖D1,p

[λ1(m, p)]1/p

) (α+1)(β+1)
q

( ‖wε‖D1,q

[λ1(n, q)]1/q

) (α+1)(β+1)
p

,

which implies

[(λ1(m, p)− a)
α+1

p (λ1(n, q)− d)
β+1

q − b
α+1

p c
β+1

q ]

×
( ‖zε‖D1,p

λ1(m, p)1/p

‖wε‖D1,q

λ1(n, q)1/q

) (α+1)(β+1)
p ≤ 0.

But this is a contradiction since conditions (C1), (C2) and (C3) hold.
Step 2. Using the same arguments as in [19], we easily prove that (ε

1
p uε, ε

1
q vε) →

(0, 0) in D1,p(RN )×D1,q(RN ).
Step 3. Now we prove that (uε, vε) converges strongly in D1,p(RN )×D1,q(RN )

as ε → 0. Indeed from Step 1 and Step 2, we have (uε, vε) is bounded in D1,p(RN )×
D1,q(RN ) and ε

1
p uε → 0 a.e in Rn. So up to a subsequence (uε, vε) → (u0, v0) in

Lp(m, RN )× Lq(n, RN ) and consequently∣∣ |uε|p−2uε

1 + |ε
1
p uε|p−1

∣∣ ≤ |uε|p−1 ≤ lp−1
1 in Lp′(m, RN ),

|uε(x)|p−2uε(x)

1 + |ε
1
p uε(x)|p−1

→ |u0(x)|p−2u0(x) a.e. in RN .

From the dominated convergence theorem, we have h(uε) → h(u0) in Lp′(m, RN )
as ε → 0. Similarly, we get h1(vε) → h1(v0) in Lq′(n, RN ), k1(uε) → k1(u0) in
Lp′(m, RN ) and k(vε) → k(v0) in Lq′(n, RN ). We finally use (4.6) to deduce that
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(uε, vε) → (u0, v0) in D1,p(RN ) × D1,q(RN ) as ε → 0. Therefore, passing to the
limit in (4.2), we obtain

−∆pu0 = am|u0|p−2u0 + bm1|v0|βv0 + f in RN ,

−∆qv0 = cn1|u0|αu0 + dn|v0|q−2v0 + g in RN

which implies that (u0, v0) is solution of (1.1). �

We remark that when α = β = 0 and p = q = 2, we obtain the results presented
in [12, 13].

5. Related results

The tools used to establish the above results can be easily adapted for the prob-
lem

−∆pu = am(x)|u|p−2u + bm1(x)|u|α|v|βv + f in Rn

−∆qv = cn1(x)|u|αu|v|β + dn(x)|v|q−2v + g in Rn

u(x) → 0, v(x) → 0 as |x| → +∞
(5.1)

where we assume that the conditions (H1),(H2’),(H3) and (H4’) hold, with

(H2’) 0 < m1(x) ≤ m(x)
α+1

p n(x)
β+1

q and 0 < n1(x) ≤ m(x)
α+1

p n(x)
β+1

q a.e. in
RN

(H4’) b, c ≥ 0; α, β ≥ 0; α+1
p + β+1

q = 1.

Under these assumptions, one has the following results.

Theorem 5.1. Assume that hypothesis (H1), (H2’), (H3), (H4’) are satisfied. Then
the (MP) holds for (5.1) if

(C1’) λ1(m, p) > a;
(C2’) λ1(n, q) > d;
(C3’) [λ1(m, p)− a]

α+1
p [λ1(n, q)− d]

β+1
q > b

α+1
p c

β+1
q ;

Conversely, if the (MP) holds, then (C1’), (C2’) and (C4’) are satisfied, where

(C4’) [λ1(m, p)− a]
α+1

p [λ1(n, q)− d]
β+1

q > Θb
α+1

p c
β+1

q .

Theorem 5.2. Assume that (H1), (H2’), (H3), (C1’), (C2’), (C3’) hold. Fur-
thermore assume that m ∈ L(p∗)′(RN ) and m ∈ L(q∗)′(RN ). Then for all f ∈
L(p∗)′(RN ) and g ∈ L(q∗)′(RN ), the system (5.1) has at least one solution (u, v) ∈
D1,p(RN )×D1,q(RN ).

The proofs of theorems 5.1 and 5.2 can be adapted from those of theorems 3.3
and 4.2 respectively.
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sor F. de Thélin for his constructive remarks and suggestions. L. Leadi is grateful
to the International Centre for Theoretical Physics (ICTP) for financial support
during his visit



EJDE-2010/60 MAXIMUM PRINCIPLE AND EXISTENCE RESULTS 13

References

[1] W. Allegretto and Y. X. Huang; Eigenvalues of the indefinite weight p-Laplacian in weighted
spaces, Funck.Ekvac., 8 (1995), pp 233-242.
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