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EXISTENCE AND CONCENTRATION OF POSITIVE
SOLUTIONS FOR A QUASILINEAR ELLIPTIC EQUATION IN R

ELISANDRA GLOSS

Abstract. We study the existence and concentration of positive solutions for

the quasilinear elliptic equation

−ε2u′′ − ε2(u2)′′u + V (x)u = h(u)

in R as ε → 0, where the potential V : R → R has a positive infimum and
inf∂Ω V > infΩ V for some bounded domain Ω in R, and h is a nonlinearity

without having growth conditions such as Ambrosetti-Rabinowitz.

1. Introduction

In this article, we consider the quasilinear elliptic equation

−ε2u′′ − ε2(u2)′′u+ V (x)u = h(u) in R (1.1)

where ε > 0 is a small real parameter. Here our goal is to prove, by a variational
approach, the existence and concentration of positive weak solutions. We say that
u ∈ H1(R) is a (weak) solution of (1.1) if

ε2
∫

RN

(1 + 2u2)u′ϕ′ dx+ 2ε2
∫

RN

|u′|2uϕ dx+
∫

RN

V (x)uϕ dx

=
∫

RN

h(u)ϕ dx for all ϕ ∈ C∞c (R).

Solutions of equations like (1.1) are related with existence of standing wave solutions
for quasilinear equations of the form

i
∂ψ

∂t
= −ε2ψ′′ +W (x)ψ − η(|ψ|2)ψ − ε2κ[ρ(|ψ|2)]′′ρ′(|ψ|2)ψ (1.2)

where ψ : R × R → C, κ is a positive constant, W : R → R is a given potential
and η, ρ : R+ → R are suitable functions. Quasilinear equations of the form (1.2)
arise in several areas of physics in correspondence to different type of functions ρ.
For physical motivations and developing of the physical aspects we refer to [20] and
references therein.
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Here we consider the case where ρ(s) = s. Looking for standing wave solutions
of (1.2) we set ψ(t, x) = e−iξtu(x), where ξ ∈ R and u > 0 is a real function. So one
obtains a corresponding equation of elliptic type which has the formal variational
structure given by (1.1), where without loss of generality we set κ = 1.

Motivated by the physical aspects, equation (1.1) has recently attracted a lot of
attention and existence results have been obtained in the case of a bounded potential
V (x) or in the coercive case. Direct variational methods by using constrained
minimization arguments were used in [20] to provide existence of positive solutions
up to an unknown Lagrange multiplier. The authors study the following problem

−u′′ + V (x)u− (u2)′′u = θ|u|p−1u, x ∈ R. (1.3)

Ambrosetti and Wang in [1], by using variational methods, proved the existence of
positive solutions for the following class of quasilinear elliptic equations

−u′′ + (1 + εa(x))u− (1 + εb(x))(u2)′′u = (1 + εc(x))up, u ∈ H1(R)

for p > 1 and ε > 0 sufficiently small, where a(x), b(x) and c(x) are real functions
satisfying certain hypotheses. Subsequently a general existence result for (1.1) was
derived in [19]. In this paper, which deals also with higher dimensions, to overcome
the undefiniteness of natural functional associated to the equation the idea is to
introduce a change of variable and to rewrite the functional with this new variable
which turns the problem into finding solutions of an auxiliary semilinear equation.
Then critical points are search in an associated Orlicz space and existence results are
given in the case of bounded, coercive or radial potentials. Following the strategy
developed in [10] on a related problem the authors in [11] also make use of a change
of unknown and define an associated equation that they call dual. A simple and
shorter proof of the results in [19] is presented for bounded potentials, which does
not use Orlicz spaces and permit to cover a different class of nonlinearities. We
observe that this change of variables is not necessary in dimension one because in
this case the functional associated is well defined. We mention some works that
study problem (1.1) without make this change of variables [2], [3] and [21]. In
[2] and [21] the authors study (1.3) for p-laplacian or more general operator and
θ = 1. In [3] the authors study existence and concentration of positive solutions for
equation (1.1) with h(t) = tp, p ≥ 3. There the potential V : R → R is a continuous
function satisfying the following conditions:

(V1) V is bounded from below by a positive constant; that is,

inf
x∈R

V (x) = V0 > 0;

(V2) there exists a bounded domain Ω in R such that

m ≡ inf
x∈Ω

V (x) < inf
x∈∂Ω

V (x).

We should also mention that equation (1.1) has been also considered in RN for
N ≥ 2, we refer the reader to the works of [9, 10, 11, 16, 19] among others and
references therein.

Here we also assume that V ∈ C(R,R) satisfies the assumptions (V1)-(V2).
Hereafter we use the following notation:

M≡ {x ∈ Ω : V (x) = m}
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and without loss of generality we may assume that 0 ∈ M. We emphasize that
besides the local condition (V2), introduced in [12] and so far well known for semi-
linear elliptic problems, we do not require any global condition other than (V1). We
also suppose that h : R+ → R is a locally Lipschitz continuous function satisfying:

(H1) limt→0+ h(t)/t = 0;
(H2) there exists T > 0 such that

h(T ) > mT, H(T ) =
m

2
T 2, H(t) <

m

2
t2 for all t ∈ (0, T )

where H(t) =
∫ t

0
h(s) ds.

Similar hypothesis on the nonlinearity were used in [7] for the semilinear case. Fol-
lowing the strategy developed there, using variational methods, we shall prove exis-
tence and concentration of positive solutions for (1.1) without assuming Ambrosetti-
Rabinowitz and monotonicity conditions on h. In particular we improve the results
in [3] where h is a pure power.

Next we state our main result.

Theorem 1.1. Suppose that (V1)–(V), (H1)-(H2) hold. Then there exists ε0 > 0
such that (1.1) has a positive solution uε ∈ C1,α

loc (R) for all 0 < ε < ε0, satisfying
the following:

(i) uε admits a maximum point xε such that limε→0 dist(xε,M) = 0 and for
any sequence εn → 0 there exist x0 ∈M and a solution u0 of

−u′′ − (u2)′′u+mu = h(u), u > 0, u ∈ H1(R) (1.4)

such that, up to subsequences,

xεn
→ x0 and uεn

(εn ·+xεn
) → u0 in H1(R) as n→∞.

(ii) There exist positive constants C and ζ such that

uε(x) ≤ C exp
(
− ζ

ε
(|x− xε|)

)
for all x ∈ R.

The proof of this theorem relies on the study of a semilinear equation obtained
after making the chance of variables introduced in [19]. In order to prove existence
of solutions for this equation we study some properties of the least energy solutions
for a limit equation obtained from (1.4) by the same change of variables. Using
these properties, after some technical lemmata, we can find a bounded Palais-Smale
sequence in a suitable space for the associated functional. Thus we obtain a solution
for the semilinear equation which gives us a solution for the original problem (1.1).

This paper is organized as follows: In Section 2 we a change of variables and study
some properties of the functional, Jε, associated to the new semilinear equation
obtained from (1.1), and of the space where it is defined. Section 3 is devoted to
prove that the mountain pass level of Jε is well defined and converges to the least
energy level of the functional associated to the limit problem. In Section 4 we prove
the existence of a nontrivial critical point for Jε and finally Section 5 brings the
results that complete the proof of Theorem 1.1.

2. Preliminaries results

Since we are looking for positive solutions we define h(t) = 0 for t < 0. Observe
that defining v(x) = u(εx) equation (1.1) becomes equivalent to

−v′′ − (v2)′′v + V (εx)v = h(v), v > 0 in R. (2.1)
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The natural energy functional associated with (2.1), namely

Iε(v) =
1
2

∫
R
[(1 + 2v2)|v′|2 + V (εx)v2] dx−

∫
R
H(v) dx,

is well defined on

Hε :=
{
v ∈ H1(R) :

∫
R
V (εx)v2 dx <∞

}
due the imbedding H1(R) ↪→ L∞(R) and (V1). Despite this, following the strategy
developed in [9], [11], [14] and [19] on a related problem for higher dimensions, we
introduce a change of variables u = f−1(v) where f is a C∞ function defined by

f ′(t) =
(
1 + 2f2(t)

)−1/2
if t > 0, f(0) = 0, and f(t) = −f(−t) if t < 0.

This change of variables allows us to consider more general nonlinearities. To make
easier the reference we list here some properties of f(t) whose proofs can be found
in [14, Lemma 2.1] (see also [11] and [19]). The proof of the last item is found in
[16].

Lemma 2.1. The function f(t) satisfies:
(1) f is C∞, invertible and uniquely defined;
(2) |f ′(t)| ≤ 1 for all t ∈ R;
(3) |f(t)| ≤ |t| for all t ∈ R;
(4) f(t)/t→ 1 as t→ 0;
(5) f(t)/

√
t→ 21/4 as t→ +∞;

(6) f(t)/2 ≤ tf ′(t) ≤ f(t) for all t ≥ 0;
(7) |f(t)| ≤ 21/4|t|1/2 for all t ∈ R;
(8) The function f2(t) is strictly convex;
(9) There exists a positive constant C such that

|f(t)| ≥

{
C|t|, |t| ≤ 1
C|t|1/2, |t| ≥ 1;

(10) |f(t)f ′(t)| ≤ 1/
√

2 for all t ∈ R;
(11) For each λ > 1 we have f2(λt) ≤ λ2f2(t) for all t ∈ R.

After this change of variable from Iε we obtain a new functional

Pε(u) = Iε(f(u)) =
1
2

∫
R
[|u′|2 + V (εx)f2(u)] dx−

∫
R
H(f(u)) dx,

which is well defined on

Eε :=
{
u ∈ H1(R) :

∫
R
V (εx)f2(u) dx <∞

}
.

Using the properties of f(t) we can see that Eε is a normed space with norm

‖u‖ε := ‖u′‖2 + inf
λ>0

λ
{
1 +

∫
R
V (εx)f2(λ−1u) dx

}
:= ‖u′‖2 + |‖u‖|ε. (2.2)

The following proposition is crucial to prove convergence results.

Proposition 2.2. There exists C > 0 independent of ε > 0 such that∫
R
V (εx)f2(u) dx ≤ C|‖u‖|ε

[
1 +

( ∫
R
V (εx)f2(u) dx

)1/2]
(2.3)

for all u ∈ Eε.
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The proof of the above proposition is the same as in [14, Proposition 2.1], since
the constant C that appearing there depends only on f .

From this result we obtain that Eε is a Banach space and the embedding Eε ↪→
H1(R) is continuous. Also can be proved that the space C∞c (R) is dense in Eε (see
[9], [13], [14] and [19] for details). Moreover due to the imbedding H1(R) ↪→ L∞(R)
we can see that the functional Pε is of class C1 on Eε. This does not occurs in general
for higher dimensions. For N ≥ 2 some regularity results can be found in [9, 13, 14]
where the authors prove that Pε is continuous in Eε and Gâteaux differentiable
with derivative given by

〈P ′ε(u), ϕ〉 =
∫

RN

∇u∇ϕ dx+
∫

RN

f ′(u) [V (εx)f(u)− h(f(u))]ϕ dx.

They also prove that P ′ε is continuous from the norm topology of Eε to the weak-*
topology of E′ε; i.e., if un → u strongly in Eε then

〈P ′ε(un), ϕ〉 → 〈P ′ε(u), ϕ〉 for each ϕ ∈ Eε.

In our case, for N = 1, we have Pε of class C1 and for each ϕ ∈ Eε it holds

〈P ′ε(u), ϕ〉 =
∫

R
u′ϕ′ dx+

∫
R
f ′(u) [V (εx)f(u)− h(f(u))]ϕdx.

We observe that nontrivial critical points for Pε are weak solutions for

−u′′ = f ′(u) [h(f(u))− V (εx)f(u)] in R. (2.4)

In Proposition 2.3 below we relate the solutions of (2.4) to the solutions of (2.1).
From now on, for any set A ⊂ R and ε > 0, we define Aε ≡ {x ∈ R : εx ∈ A}. We
define

χε(x) =

{
0 if x ∈ Ωε

ε−1 if x /∈ Ωε,

and

Qε(u) =
( ∫

R
χε(x)u2 dx− 1

)2

+
.

The functional Qε : H1(R) → R is of class C1 with Frechet derivative given by

〈Q′ε(u), ϕ〉 = 4
( ∫

R
χε(x)u2 dx− 1

)
+

∫
R
χε(x)uϕ dx.

It will act as a penalization to force the concentration phenomena to occur inside
Ω. This type of penalization was first introduced in [8] for the semilinear case in
RN with N ≥ 2. Finally let Jε : Eε → R be given by

Jε(u) = Pε(u) +Qε(u).

The next proposition relates solutions of (2.1) and (2.4).

Proposition 2.3. (i) If u ∈ Eε is a critical point of Pε then v = f(u) ∈ Eε is
a weak solution of (2.1);

(ii) If u is a classical solution of (2.4) then v = f(u) is a classical solution of
(2.1).
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Proof. The second claim was proved in [11] and to prove (i) we follow the same
idea. If v = f(u) by Lemma 2.1 we have |v| ≤ |u| and |v′| = f ′(u)|u′| ≤ |u′| which
imply v ∈ Eε. Since u is a critical point for Pε, u is a weak solution for (2.4). So∫

R
u′ϕ′ dx =

∫
R
f ′(u) [h(f(u))− V (εx)f(u)]ϕ dx for all ϕ ∈ Eε. (2.5)

Since (f−1)′(t) = [f ′(f−1(t))]−1, it follows that

(f−1)′(t) =
[
1 + 2f2(f−1(t))

]1/2
= (1 + 2t2)1/2, (f−1)′′(t) =

2t
(1 + 2t2)1/2

which yields
u′ = (f−1)′(v)v′ = (1 + 2v2)1/2v′.

For each ψ ∈ C∞c (R) we have ϕ := (f ′(u))−1ψ = (f−1)′(v)ψ ∈ Eε with

ϕ′ =
2vψ

(1 + 2v2)1/2
v′ + (1 + 2v2)1/2ψ′.

Hence by (2.5) we obtain∫
R

[
2|v′|2vψ + (1 + 2v2)1/2v′ψ

]
dx =

∫
R

[h(v)− V (εx)v]ψ dx

and concludes the proof of (i). �

Following this result, to prove existence of solutions for (1.1), we shall look for
critical points to Jε for which ones Qε is zero. Initially we will study the limiting
problem (1.4).

2.1. The limiting problem. In this subsection we shall study some properties of
the solutions of (1.4), namely

−v′′ − (v2)′′v +mv = h(v), v > 0 in R.

Using the same change of variables f , we will do it dealing with classical solutions
for the problem

−u′′ = g(u), lim
|x|→∞

u(x) = 0, u(x0) > 0 for some x0 ∈ R, (2.6)

where g(t) = f ′(t)[h(f(t)) −mf(t)] for t ≥ 0 and g(t) = −g(−t) for t < 0. Like
in Proposition 2.3 we see that if u ∈ H1(R) is a classical solution of (2.6) then
v = f(u) is a classical solution for (1.4). From assumptions on h and Lemma 2.1
we can see that the function g(t) is locally Lipschitz continuous and satisfies:

(G1) limt→0 g(t)/t = −m < 0;
(G2) for T̃ = f−1(T ) and G(t) =

∫ t

0
g(s) ds it holds T̃ > 0 and

G(T̃ ) = 0, g(T̃ ) > 0, G(t) < 0 for all t ∈ (0, T̃ ). (2.7)

In [4, Theorem 5], the authors prove that (2.7) is a necessary and sufficient condition
for the existence of a solution of (2.6). They also show some properties of this
solutions when they there exist. Thus from [4, Theorem 5 and Remark 6.3] we
have the following result.

Theorem 2.4. Assume (H1), (H2). Then (2.6) has a solution U ∈ C2(R), which
is unique up to translation, positive and satisfies:

(i) U(0) = T̃ , U is radially symmetric and decreases with respect to |x|;
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(ii) U together with its derivatives up to order 2 have exponential decay at
infinity

0 ≤ U(x) + |U ′(x)|+ |U ′′(x)| ≤ C exp (−c|x|) for all x ∈ R;

(iii) −[U ′(x)]2 = 2G(U(x)) for all x ∈ R.

Now we consider Lm : H1(R) → R, the functional associated to equation (2.6),

Lm(u) =
1
2

∫
R

(
|∇u|2 +mf2(u)

)
dx−

∫
R
H(f(u)) dx

which is well defined and of class C1. Let

Em := Lm(U).

Since U is unique up to translation we have Lm(w) = Em for each solution w of
(2.6). By a result of Jeanjean and Tanaka [17] we know that these solutions have
a mountain pass characterization, that is

Lm(w) = cm := inf
γ∈Γ

max
t∈[0,1]

Lm(γ(t)) (2.8)

where Γ = {γ ∈ C([0, 1],H1(R)) : γ(0) = 0 and Lm(γ(1)) < 0}. Using the same
arguments as in [7, Proposition 2] we prove the next result.

Proposition 2.5. There exist t0 > 1 and a continuous path θ : [0, t0] → H1(R)
satisfying:

(i) θ(0) = 0, Lm(θ(t0)) < −1 and maxt∈[0,t0] Lm(θ(t)) = Em;
(ii) θ(1) = U and Lm(θ(t)) < Em for all t 6= 1;
(iii) there exist C, c > 0 such that for any t ∈ [0, t0] it holds

|θ(t)(x)|+ |[θ(t)]′(x)| ≤ C exp(−c|x|) x ∈ R.

3. The mountain pass level

For the rest of this article, we fix β = dist(M,RN\Ω)/10 and choose a cut-off
function ϕ ∈ C∞c (R) such that 0 ≤ ϕ ≤ 1, ϕ(x) = 1 for |x| ≤ β and ϕ(x) = 0 for
|x| ≥ 2β. We define ϕε(x) = ϕ(εx) and for z ∈Mβ

Uz
ε (x) := ϕε(x− z/ε)U(x− z/ε), x ∈ R.

For sufficiently small ε we will find a solution near the set

Xε := {Uz
ε : z ∈Mβ}.

Remark 3.1. For ε ∈ (0, 10) we have Xε uniformly bounded and moreover for
each ε it is compact in Eε. Indeed, let Uz

ε ∈ Xε for some z ∈Mβ . So

‖Uz
ε ‖ε ≤

[ ∫
R
|(ϕεU)′|2 dx

]1/2

+
[
1 +

∫
R
V (εx+ z)f2(ϕεU) dx

]
≤

[
2

∫
R

(
ε2|ϕ′(εx)|2U2 + ϕ2

ε|U ′|2
]
dx

]1/2

+ 1 + sup
x∈Ω

V (x)
∫

R
(ϕεU)2 dx

≤ c‖U‖+ c̃‖U‖2 + 1 ≤ C

independently of z ∈ Mβ and ε ∈ (0, 10). This proves the uniform boundedness
of Xε. Now let {Uzn

ε } be a sequence in Xε. The compactness of Mβ implies the
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existence of z0 ∈Mβ such that zn → z0 in R, up to subsequences. Hence Uz0
ε ∈ Xε

and due to the exponential decay of U + |U ′| and the boundedness of {zn} we get∫
R
V (εx)f2 (Uzn

ε − Uz0
ε ) dx ≤ sup

Ω
V (x)

∫
R
|Uzn

ε − Uz0
ε |2 dx→ 0,∫

R
| (Uzn

ε − Uz0
ε )′ |2 dx→ 0 as n→∞.

Now for λ ∈ (0, 1) it follows from (ii) in Lemma 2.1 that

λ
{
1 +

∫
R
V (εx)f2(λ−1(Uzn

ε − Uz0
ε )) dx

}
≤ λ+ λ−1

∫
R
V (εx)f2 (Uzn

ε − Uz0
ε ) dx.

Thus |‖Uzn
ε − Uz0

ε ‖|ε ≤ 2λ for large n which proves that Uzn
ε → Uz0

ε in Eε as
n→∞.

Lemma 3.2. We have

sup
t∈[0,t0]

|Jε(ϕεθ(t))− Lm(θ(t))| → 0 as ε→ 0.

Proof. Since supp(ϕεθ(t)) ⊂ Ωε and supp(χε) ⊂ R\Ωε we have Qε(ϕεθ(t)) = 0 and
Jε(ϕεθ(t)) = Pε(ϕεθ(t)). Then for t ∈ (0, t0] we get

|Pε(ϕεθ(t))− Lm(θ(t))|

≤ 1
2

∣∣∣ ∫
R

[
| (ϕεθ(t))

′ |2 − |θ(t)′|2 + V (εx)f2(ϕεθ(t))−mf2(θt)
]
dx

∣∣∣
+

∫
R
|H(f(ϕεθ(t)))−H(f(θ(t)))|dx.

At first, using a change of variables and the exponential decay of θ(t), θ(t)′, we get∫
R
| (ϕεθ(t))

′ − θ(t)′|2 dx ≤ C

∫
R

[
ε2 + (1− ϕε)2

]
exp(−c|x|) dx

for all t ∈ (0, t0]. Now since f(t)f ′(t) < 2−1/2 for all t ∈ [0, t0] we obtain∫
R

∣∣V (εx)f2(ϕεθ(t))−mf2(θ(t))
∣∣ dx

≤
∫

R
|V (εx)−m| f2(ϕεθ(t)) dx+m

∫
R

∣∣f2(ϕεθ(t))− f2(θ(t))
∣∣ dx

≤ 21/2C

∫
R

[
|V (εx)−m|χ{|x|≤2β/ε} +m(1− ϕε)

]
exp(−c|x|) dx.

Recalling that

H(f(a+ b))−H(f(a)) = b

∫ 1

0

f ′(a+ sb)h(f(a+ sb)) ds (3.1)

due to the imbedding H1(R) ↪→ L∞(R) and the boundedness of {θ(t)} in L∞(R)
it follows from (H1) that∫

R
|H(f(ϕεθ(t)))−H(f(θ(t)))|dx ≤ C

∫
R
|ϕεθ(t)− θ(t)| [θ(t) + ϕεθ(t)] dx

≤ C

∫
R

(1− ϕε) exp (−c|x|) dx

for t ∈ (0, t0]. Therefore, Jε(ϕεθ(t)) → Lm(θ(t)) as ε → 0, uniformly in t ∈ [0, t0].
This is the end of the proof. �
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For Lemma 3.2 there exists ε0 sufficiently small such that

|Jε(ϕεθ(t0))− Lm(θ(t0))| ≤ −Lm(θ(t0))− 1

and so Jε(ϕεθ(t0)) < −1 for all ε ∈ (0, ε0). From now on we consider ε ∈ (0, ε0).
We define the minimax level

Cε = inf
γ∈Γε

max
s∈[0,1]

Jε(γ(s)),

where
Γε = {γ ∈ C([0, 1], Eε) : γ(0) = 0, γ(1) = ϕεθ(t0)}.

Proposition 3.3. Cε converges to Em as ε goes to zero.

Proof. At first we will prove that

lim sup
ε→0

Cε ≤ Em.

Since θ : [0, t0] → H1(R) is a continuous function using arguments as in Remark
3.1 we prove that γε : [0, 1] → Eε given by

γε(s) := ϕεθ(st0) for s ∈ [0, 1] (3.2)

is continuous. So γε ∈ Γε and by Lemma 3.2 and Proposition 2.5 we obtain

lim sup
ε→0

Cε ≤ lim sup
ε→0

max
s∈[0,1]

Jε(γε(s))

= lim sup
ε→0

max
t∈[0,t0]

Jε(ϕεθ(t))

≤ max
t∈[0,t0]

Lm(θ(t)) = Em

which concludes the first part of the proof. Next we are going to prove that

lim inf
ε→0

Cε ≥ Em. (3.3)

Let us assume lim infε→0 Cε < Em instead. Then there exist α > 0, εn → 0 and
γn ∈ Γεn satisfying maxs∈[0,1] Jεn(γn(s)) < Em − α. Take εn such that

m

2
εn

[
1 + (1 + Em)1/2

]
< min{α, 1}.

Denoting εn by ε and γn by γ, since Pε(γ(0)) = 0 and Pε(γ(1)) = Jε(ϕεθ(t0)) < −1
we can find s0 ∈ (0, 1) such that

Pε(γ(s0)) = −1 and Pε(γ(s)) ≥ −1 for s ∈ [0, s0].

Then
Qε(γ(s)) ≤ Jε(γ(s)) + 1 < Em − α+ 1 < Em + 1

which implies∫
R\Ωε

f2(γ(s)) dx ≤
∫

R\Ωε

|γ(s)|2 dx ≤ ε
[
1 + (1 + Em)1/2

]
,

for all s ∈ [0, s0]. So it follows that

Pε(γ(s)) ≥ Lm(γ(s))− m

2

∫
R\Ωε

f2(γ(s)) dx

≥ Lm(γ(s))− m

2
ε
[
1 + (1 + Em)1/2

]
for all s ∈ [0, s0].
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In particular for s0, we have

Lm(γ(s0)) ≤
m

2
ε[1 + (1 + Em)1/2]− 1 < 0.

Recalling that the mountain pass level for equation (2.6) corresponds to the least
energy level (see [17]) we have maxs∈[0,s0] Lm(γ(s)) ≥ Em. Since

Em − α > max
s∈[0,1]

Jε(γ(s)) ≥ max
s∈[0,s0]

Pε(γ(s)),

by the estimates above we obtain

Em − α > Em − m

2
ε[1 + (1 + Em)1/2] > Em − α.

This contradiction completes the proof. �

At this point, denoting
Dε ≡ max

s∈[0,1]
Jε(γε(s))

where γε was defined in (3.2), we see that Cε ≤ Dε and also limε→0Dε = Em.

4. Existence of a critical point for Jε

We define

Jα
ε ≡ {u ∈ Eε : Jε(u) ≤ α}, Aα ≡ {u ∈ Eε : inf

v∈A
‖u− v‖ε ≤ α}

for any A ⊂ Eε and α > 0. Moreover in the next propositions, for any ε > 0
and R > 0, we consider the functional Jε restricted to the space H1

0 ((−R/ε,R/ε))
endowed with the norm

‖v‖ε = ‖v′‖L2((−R/ε,R/ε)) + inf
λ>0

λ
{

1 +
∫ R/ε

−R/ε

V (εx)f2(λ−1v) dx
}
.

We will denote this space by ER
ε . We can see that ER

ε is a Banach space and Jε is
of class C1 on ER

ε .

Proposition 4.1. There exist d > 0 sufficiently small such that if εn → 0, Rn →∞
and un ∈ Xd

εn
∩ ERn

εn
satisfy

lim
n→∞

Jεn
(un) ≤ Em, lim

n→∞
‖J ′εn

(un)‖(ERn
εn )′ = 0

then, up to subsequences, there exist {yn} ⊂ R and z0 ∈M satisfying

lim
n→∞

|εnyn − z0| = 0, lim
n→∞

‖un − ϕεn(· − yn)U(· − yn)‖εn = 0.

Proof. From now on we suppose d ∈ (0, 10). Since un ∈ Xd
εn

by definition of Xd
εn

there exists vn ∈ Xεn
such that

‖un − vn‖εn
≤ d. (4.1)

We have vn(x) = ϕεn(x − zn/εn)U(x − zn/εn), x ∈ R, for {zn} ⊂ Mβ . From
Remark 3.1 we have

‖un‖εn
≤ C for all n ∈ N, d ∈ (0, 10).

By compactness of Mβ , up to subsequences, we may assume that zn → z0 in R for
some z0 ∈Mβ . We divide the proof of this proposition in five steps.
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Step 1: For small d > 0, defining A(y; r1, r2) = {x ∈ R : r1 ≤ |y − x| ≤ r2} for
0 < r1 < r2 and y ∈ R, we obtain

lim
n→∞

sup
z∈A( zn

εn
; β
2εn

, 3β
εn

)

∫ z+R

z−R

|un|2 dx = 0 for any R > 0.

Indeed, suppose that there exist R > 0 and a sequence {z̃n} satisfying

z̃n ∈ A
(zn

εn
;
β

2εn
,
3β
εn

)
, lim

n→∞

∫ z̃n+R

z̃n−R

|un|2 dx > 0.

Since Remark 3.1 implies that Xd
ε is uniformly bounded on ε ∈ (0, ε0) and d ∈

(0, 10), due to Proposition 2.2 and the imbedding H1(R) ↪→ L4(R) we get {u′n}n

bounded in L2(R) and∫
R
|un|2 dx ≤ C

∫
R

[
f2(un) + f4(un)

]
dx

≤ C

∫
R
V (εx)f2(un) dx+ C‖f(un)‖4H1

≤ C
{
‖un‖εn

+
[ ∫

R

(
|u′n|2 + V (εx)f2(un)

)
dx

]2}
≤ C

(
‖un‖εn

+ ‖un‖2εn
+ ‖un‖4εn

)
≤ C̃.

Consequently {un} is bounded inH1(R). Hence we may assume that εnz̃n → z̃0 and
that w̃n := un(·+ z̃n) ⇀ w̃ in H1(R) for some z̃0 ∈ A (z0;β/2, 3β) and w̃ ∈ H1(R).
By the compactness of the imbedding H1((−R,R)) ↪→ C([−R,R]) we get∫ R

−R

|w̃|2 dx = lim
n→∞

∫ R

−R

|w̃n|2 dx = lim
n→∞

∫ z̃n+R

z̃n−R

|un|2 dx > 0

and so w̃ 6= 0. Now given φ ∈ C∞c (R) let φn(x) = φ(x − z̃n), n ∈ N. We have
εnz̃n ∈ M4β and so we obtain φn ∈ ERn

εn
for large n. Since ‖J ′εn

(un)‖(ERn
εn )′ → 0

and ‖φn‖εn ≤ C we have
lim

n→∞
〈J ′εn

(un), φn〉 = 0.

Consequently the boundedness of supp(φ) implies that∫
R

[w̃′φ′ + V (z̃0)f ′(w̃)f(w̃)φ]) dx =
∫

R
f ′(w̃)h(f(w̃))φdx.

Since φ is arbitrary it follows that w̃ satisfies

−w̃′′ = f ′(w̃)[h(f(w̃))− V (z̃0)f(w̃)] = g0(w̃), w̃ ≥ 0 in R. (4.2)

By assumptions on h we get g0 locally Lipschitz continuous, g0(0) = 0 and so
due to ([4], Theorem 5) we know that the function g0 must satisfy (2.7) for some
T > 0. Thus Theorem 2.4 hods for problem (4.2) and w̃(x) = w0(x + c) where
w0 is radial. Then for LV (z̃0) defined as Lm with V (x̃0) instead of m we denote
EV (z̃0) = LV (z̃0)(w̃). By ([5], Theorem 2.1) we obtain w̃′n(x) → w̃′(x) a.e. in A for
any set A ⊂ R. So using the Fatou’s Lemma for R > 0 sufficiently large we get

1
2

∫
R
|w̃′|2 dx ≤

∫ R

−R

|w̃′|2 dx ≤ lim inf
n→∞

∫ R

−R

|w̃′n|2 dx = lim inf
n→∞

∫ z̃n+R

z̃n−R

|u′n|2 dx.
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Since V (z̃0) ≥ m and the least energy levels for equations (2.6) and (4.2) are equal
to the mountain pass levels (see [17]) we have EV (z̃0) ≥ Em. Using item (iii) in
Theorem 2.4 we see that ∫

R
|w̃′|2 dx = LV (z̃0)(w̃).

Thus we obtain

lim inf
n→∞

∫ z̃n+R

z̃n−R

|u′n|2 dx ≥ 1
2
LV (z̃0)(w̃) ≥ 1

2
Em > 0.

On the other hand, from (4.1) we have∫ z̃n+R

z̃n−R

|u′n|2 dx ≤ 4d2

for large n (n ≥ n0(d)). Then

1
2
Em ≤ lim inf

n→∞

∫ z̃n+R

z̃n−R

|u′n|2 dx ≤ 4d2

which is impossible for d ∈ (0,
√
Em/8). This proves Step 1.

Step 2: Defining un,1 = ϕεn
(· − zn/εn)un and un,2 = un − un,1 we have

Jεn
(un) ≥ Jεn

(un,1) + Jεn
(un,2) + o(1) (4.3)

where o(1) indicates the quantity that vanishes as n→∞.
Indeed, we can see that Qεn(un,1) = 0 and Qεn(un) = Qεn(un,2). Then the

boundedness of {un} and the convexity of f2 imply that

Jεn(un,1) + Jεn(un,2)

= Jεn(un) +
1
2

∫
R

{
ϕ2

εn
(x− zn/εn) + [1− ϕεn(x− zn/εn)]2 − 1

}
|u′n|2 dx

+
1
2

∫
R
V (εnx)

[
f2(un,1) + f2(un,2)− f2(un)

]
dx

+
∫

R
[H(f(un))−H(f(un,1))−H(f(un,2))] dx+ o(1)

≤ Jεn
(un) +

∫
R

[H(f(un))−H(f(un,1))−H(f(un,2))] dx+ o(1).

To conclude Step 2 we need to estimate this last integral. We have∫
R
[H(f(un))−H(f(un,1))−H(f(un,2))] dx

=
∫

A( zn
εn

; β
εn

, 2β
εn

)
[H(f(un))−H(f(un,1))−H(f(un,2))] dx.

Choose ψ ∈ C∞c (R) such that 0 ≤ ψ ≤ 1, ψ ≡ 1 on A(0;β, 2β) and ψ ≡ 0 on
R\A(0;β/2, 3β). Setting ψn(x) = ψ(εnx− zn)un(x), for large n we get

sup
y∈A( zn

εn
; β
2εn

, 3β
εn

)

∫ y+R

y−R

|un|2 dx ≥ sup
y∈A( zn

εn
; β
2εn

, 3β
εn

)

∫ y+R

y−R

|ψn|2 dx

= sup
y∈R

∫ y+R

y−R

|ψn|2 dx.
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Using Step 1 and a result of Lions [18, Lemma 1.1], we see that ψn → 0 in Lp(R)
as n→∞ for all p ∈ (2,∞). Since ψn = un in A(zn/εn;β/εn, 2β/εn) we obtain

lim
n→∞

∫
A( zn

εn
; β

εn
, 2β

εn
)
|un|p dx = 0.

Thus for p > 2 fixed using the fact that |un,1|, |un,2| ≤ |un| and (H1) we see that
given σ > 0 there exists c = c(σ, p) > 0 such that∫

A( zn
εn

; β
εn

, 2β
εn

)
|H(f(un))−H(f(un,1))−H(f(un,2))|dx

≤ σ‖un‖L2 + c

∫
A( zn

εn
; β

εn
, 2β

εn
)
|un|p dx ≤ Cσ

for large n. So (4.3) is proved.

Step 3: Given d > 0 sufficiently small there exists n0 = n0(d) such that

Jεn
(un,2) ≥

1
8

[ ∫
R

(
|u′n,2|2 + V (εnx)f2(un,2)

)
dx

]
for all n ≥ n0.

In fact, using (4.1) we can see that there exists n0 = n0(d) such that

‖u′n,2‖L2 ≤ ‖[1− ϕεn
(· − zn/εn)]′un‖L2 + ‖u′n − v′n‖L2 + ‖(1− ϕεn

)(ϕεn
U)′‖L2

≤ o(1) + d ≤ 2d for all n ≥ n0

where vn = ϕεn
(· − zn/εn)U(· − zn/εn). Moreover by Proposition 2.2 we get∫

R
V (εnx)f2(un,2) dx ≤ c0d for all n ≥ n0

for large n0. Since {un,2} is bounded in H1(R) it is also bounded in L∞(R). So by
(H1) we get

H(f(un,2)) ≤ (V0/4)f2(un,2) + Cf4(un,2).

Due to the imbedding H1(R) ↪→ L4(R) and (V1) we see that∫
R
H(f(un,2)) ≤

1
4

∫
R
V (εx)f2(un,2) dx+ C

[ ∫
R

(
|u′n,2|2 + V (εx)f2(un,2)

)
dx

]2

.

Hence we obtain

Jεn(un,2) ≥
1
2
‖u′n,2‖2L2 +

1
4

∫
R
V (εnx)f2(un,2) dx− C‖f(un,2)‖4H1

≥
(1
2
− C(2d)2

)
‖u′n,2‖2L2 +

(1
4
− C(c0d)

) ∫
R
V (εnx)f2(un,2) dx

for n ≥ n0. This proves Step 3 for small d > 0.

Step 4: We have limn→∞ Jεn
(un,1) = Em and z0 ∈M.

Indeed, let wn := un,1(· + zn/εn). After extracting a subsequence, we may
assume wn ⇀ w in H1(R), wn(x) → w(x) for almost every x ∈ R and wn → w in



14 E. GLOSS EJDE-2010/61

L2((0, 1)). As we see in Step 3 using (8) and (11) of Lemma 2.1 and (2.3) it follows
from (4.1)

V0

2

∫ 1

0

f2(ϕεn
U) dx− V0

∫ 1

0

f2(wn) dx

≤ V0

∫ 1

0

f2(wn − ϕεn
U) dx

≤
∫

R
V (εnx)f2(un,1 − vn) dx

≤ 2
∫

R
V (εnx)

[
f2(un − vn) + f2(un,2)

]
dx ≤ c0d

for large n. Since ϕεn
U = U in [0, 1] for large n, we obtain∫ 1

0

f2(w) dx = lim
n→∞

∫ 1

0

f2(wn) dx ≥ c

∫ 1

0

f2(U) dx− cd > 0

for small d. Consequently w 6= 0. Moreover for any r > 0 it follows that

un,1(x+ zn/εn) = un(x+ zn/εn) in (−r, r)

for large n. Then as in Step 1, we can see that w satisfies

−w′′ = f ′(w) [h(f(w))− V (z0)f(w)] , w > 0 in R.

Now we shall consider two cases:
Case 1: limn→∞ supz∈R

∫ z+1

z−1
|wn − w|2 dx = 0.

Case 2: limn→∞ supz∈R
∫ z+1

z−1
|wn − w|2 dx > 0.

If Case 1 occurs we have that wn → w in Lp(R) for all p ∈ (2,∞). By (H1),
(3.1) and the boundedness of ‖wn‖∞, given σ > 0 there exists C = C(σ) such that∫

R
|H(f(wn))−H(f(w))|dx

≤
∫

R
|wn − w|

[
σ (|w|+ |wn|) + C

(
|w|3 + |wn − w|3

)]
dx

≤ cσ + C
(
‖wn − w‖L4 + ‖wn − w‖4L4

)
≤ (c+ 1)σ

for large n. Thus ∫
R
H(f(wn)) dx→

∫
R
H(f(w)) dx as n→∞. (4.4)

Now if Case 2 occurs there exists {ẑn} ⊂ R such that

lim
n→∞

∫ ẑn+1

ẑn−1

|wn − w|2 dx > 0.

Since wn ⇀ w in H1(R) we have

|ẑn| → ∞. (4.5)

Therefore,

lim
n→∞

∫ ẑn+1

ẑn−1

|w|2 dx = 0 and so lim
n→∞

∫ ẑn+1

ẑn−1

|wn|2 dx > 0.
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Since wn(x) = ϕεn
(x)un(x+ zn/εn), it is easily seen that |ẑn| ≤ 3β/εn for large n.

If |ẑn| ≥ β/2εn for a subsequence from Step 1, we would have

0 < lim
n→∞

∫ ẑn+1

ẑn−1

|wn|2 dx ≤ lim
n→∞

sup
z∈A( zn

εn
; β
2εn

, 3β
εn

)

∫ z+1

z−1

|un|2 dx = 0

which is impossible. So |ẑn| ≤ β/2εn for large n. We may assume that

εnẑn → ẑ0 and un,1(·+ ẑn + zn/εn) ⇀ ŵ,

and we see that |ẑ0| ≤ β/2 and ŵ ∈ H1(R)\{0}. Then, given any r > 0 we have

un,1(·+ ẑn + zn/εn) = un(·+ ẑn + zn/εn) in [−r, r]

for large n. Consequently as in Step 1 it follows that ŵ satisfies

−ŵ′′ = f ′(ŵ) [h(f(ŵ))− V (ẑ0 + z0)f(ŵ)] , ŵ > 0 in R.

Analogous to Step 1, (4.5) leads us to a contradiction with (4.1) if d > 0 is suffi-
ciently small. At this point we have proved that Case 2 does not hold and so Case
1 takes place. Now from ([5], Theorem 2.1) we see that w′n(x) → w′(x) a.e. in R.
Then by (4.4) and Fatou’s Lemma we have

lim inf
n→∞

Jεn
(un,1)

= lim inf
n→∞

{1
2

∫
R

[
|w′n|2 + V (εnx+ zn)f2(wn)

]
dx−

∫
R
H(f(wn)) dx

}
≥ 1

2

∫
R

[
|w′|2 + V (z0)f2(w)

]
dx−

∫
R
H(f(w)) dx

≥ LV (z0)(w) ≥ EV (z0) ≥ Em.

On the other hand, since limn→∞ Jεn
(un) ≤ Em and Jεn

(un,2) ≥ 0 because of (4.3)
we get

lim sup
n→∞

Jεn(un,1) ≤ Em.

Hence EV (z0) = Em and limn→∞ Jεn
(un,1) = Em. Moreover from the mountain

pass characterization to the least energy solution and Proposition 2.5 we can see
that a > b implies Ea > Eb. So V (z0) = m and this concludes the proof of Step 4.

Step 5: Conclusion. From Step 4, we have

lim
n→∞

∫
R

[
|w′n|2 + V (εnx+ zn)f2(wn)

]
dx =

∫
R

(
|w′|2 +mf2(w)

)
dx.

Since w is a solution for (2.6) there exists ζ ∈ R such that w = U(· − ζ). We have
wn(x) → w(x) and w′n(x) → w′(x) a.e. in R which imply the following convergence
results∫

A

|w′n|2 dx→
∫

A

|w′|2 dx,
∫

A

V (εnx+ zn)f2(wn) dx→
∫

A

mf2(w) dx,∫
A

V (εnx+ zn)f2(ϕεn
(x− ζ)w) dx→

∫
A

mf2(w) dx

for any A ⊂ R. Then given σ > 0 there exist R > 0 and n0 ∈ N such that∫
{|x|≥R}

V (εnx+ zn)
[
f2(wn) + f2(ϕεn

(x− ζ)w)
]

dx ≤ σ

4
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for all n ≥ n0. On the other hand, due the convergence wn → w in L2((−R,R))
we obtain∫ R

−R

V (εnx+ zn)f2(wn − ϕεn(x− ζ)w) dx ≤ σ

2
for all n ≥ n0

for large n0 . This implies∫
R
V (εnx+ zn)f2(wn − ϕεn

(x− ζ)w) dx ≤ σ for all n ≥ n0.

By the definition of |‖ · ‖|εn
(see also Remark 3.1), we obtain

|‖un,1 − ϕεn
(· − ζ − zn/εn)w(· − zn/εn)‖|εn

→ 0.

Now let yn := zn/εn + ζ. Since w′n(x) → w′(x) a.e. in R and ‖w′n‖L2 → ‖w′‖L2

from Brezis-Lieb Lemma (see [6]) it follows that w′n → w′ in L2(R). Consequently
[un,1 − ϕεn(· − yn)U(· − yn)]′ → 0 in L2(R). Hence

‖un,1 − ϕεn(· − yn)U0(· − yn)‖εn → 0 as n→∞.

On the other hand, using Steps 2, 3, and 4, we obtain

Em ≥ lim
n→∞

Jεn
(un) ≥ Em +

1
8

lim sup
n→∞

∫
R
[|u′n,2|2 + V (εnx)f2(un,2)] dx,

which implies that ‖un,2‖εn
→ 0. This completes the proof. �

We observe that the result of Proposition 4.1 holds for d ∈ (0, d0), with d0 > 0
sufficiently small, independently of the sequences satisfying the assumptions.

Corollary 4.2. For any d ∈ (0, d0) there exist constants ωd, Rd, εd > 0 such that

‖J ′ε(u)‖(ER
ε )′ ≥ ωd

for any u ∈ ER
ε ∩ JDε

ε ∩ (Xd0
ε \Xd

ε ), R ≥ Rd and ε ∈ (0, εd).

Proof. By contradiction we suppose that for some d ∈ (0, d0) there exist sequences
{εn}, {Rn} and {un} such that

Rn ≥ n, εn ≤ 1/n, un ∈ ERn
εn

∩ JDεn
εn ∩ (Xd0

εn
\Xd

εn
), ‖J ′εn

(un)‖(ERn
εn )′ <

1
n
.

By Proposition 4.1 there exist {yn} ⊂ R and z0 ∈M such that

lim
n→∞

|εnyn − z0| = 0, lim
n→∞

‖un − ϕεn(· − yn)U(· − yn)‖εn = 0.

So for sufficiently large n, we have εnyn ∈ Mβ and then, by the definition of Xεn

and Xd
εn

, we obtain ϕεn
(· − yn)U(· − yn) ∈ Xεn

and un ∈ Xd
εn

. This contradicts
un ∈ Xd0

εn
\Xd

εn
and completes the proof. �

The next lemmas are necessary to obtain a suitable bounded Palais-Smale se-
quence in ER

ε .

Lemma 4.3. Given λ > 0 there exist ε0 and d0 > 0 small enough such that

Jε(u) > Em − λ for all u ∈ Xd0
ε ε ∈ (0, ε0).
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Proof. For u ∈ Xε we have u(x) = ϕε(x−z/ε)U(x−z/ε), x ∈ R, for some z ∈Mβ .
Since Lm(U) = Em by (V2) we obtain

Jε(u)− Em ≥ 1
2

∫
R

[(
|(ϕεU)′|2 − |U ′|2

)
+m

(
f2(ϕεU)− f2(U)

)]
dx

−
∫

R
|H(f(ϕεU))−H(f(U))| dx

independently of z ∈ Mβ . It is easily seen that ϕεU → U in H1(R) as ε → 0.
Hence using (3.1) we can see that there exists ε0 > 0 such that

Jε(u)− Em > −λ
2

for all u ∈ Xε, ε ∈ (0, ε0).

Now, if v ∈ Xd
ε there exists u ∈ Xε such that ‖u − v‖ε ≤ d. We have v = u + w

with ‖w‖ε ≤ d. Since Qε(u) = 0 we see that

Jε(v)− Jε(u) ≥
1
2

∫
R

[
|(u+ w)′|2 − |u′|2 + V (εx)

(
f2(u+ w)− f2(u)

)]
dx

−
∫

R
[H(f(u+ w))−H(f(u))] dx.

From (2.3) and Lemma 2.1 we obtain∫
R
V (εx)

∣∣f2(u+ w)− f2(u)
∣∣ dx

≤
∫
{|w|≤1}

V (εx) |f(u+ w)− f(u)| |f(u+ w) + f(u)| dx

+
∫
{|w|>1}

V (εx)
∣∣f2(u+ w)− f2(u)

∣∣ dx

≤ C(|‖w‖|1/2
ε + |‖w‖|ε)

≤ Cd ≤ λ

6

provided d is small enough. With the same arguments as used before we see that
there exists small d0 > 0 such that

Jε(v) > Jε(u)−
λ

2
> Em − λ for all v ∈ Xd0

ε , ε ∈ (0, ε0).

This completes the proof. �

Following Corollary 4.2 and Lemma 4.3, we fix d0 > 0, d1 ∈ (0, d0/3) and
corresponding ω > 0, R0 > 0 and ε0 > 0 satisfying

‖J ′ε(u)‖(ER
ε )′ ≥ ω for all u ∈ ER

ε ∩ JDε
ε ∩ (Xd0

ε \Xd1
ε ),

Jε(u) > Em/2 for all u ∈ Xd0
ε

(4.6)

for any R ≥ R0 and ε ∈ (0, ε0). Thus we obtain the following result.

Lemma 4.4. There exists α > 0 such that |s− 1/t0| ≤ α implies γε(s) ∈ Xd1
ε for

all ε ∈ (0, ε0), where γε is given by (3.2).
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Proof. At first we observe that

‖ϕεv‖ε ≤ ‖(ϕεv)′‖L2 + ‖v‖L2

{
1 +

∫
R
V (εx)f2

(
‖v‖−1

L2ϕεv
)

dx
}

≤ ‖εϕ′(ε·)v + ϕεv
′‖L2 + ‖v‖L2

(
1 + sup

Ω
V (x)

)
≤ C0‖v‖H1 for all ε ∈ (0, ε0), v ∈ H1(R).

Since the function θ : [0, t0] → H1(R) given by Proposition 2.5 is continuous and
θ(1) = U there exists σ > 0 such that

|t− 1| ≤ σ ⇒ ‖θ(t)− U‖H1 <
d1

C0
.

So if |st0 − 1| ≤ σ, which means |s− 1/t0| ≤ σ/t0 =: α, this inequality yields

‖γε(s)− ϕεU‖ε = ‖ϕε[θ(st0)− U ]‖ε ≤ C0‖θ(st0)− U‖ < d1 for ε ∈ (0, ε0).

Since ϕεU ∈ Xε we have γε(s) ∈ Xd1
ε . �

Lemma 4.5. For α given in Lemma 4.4 there exist ρ > 0 and ε0 > 0 such that

Jε(γε(s)) < Em − ρ for any ε ∈ (0, ε0), |s− 1/t0| ≥ α.

Proof. By Proposition 2.5 we have Lm(θ(t)) < Em for all t 6= 1. So there exists
ρ > 0 satisfying

Lm(θ(t)) < Em − 2ρ for all t ∈ [0, t0] such that |t− 1| ≥ t0α.

From Lemma 3.2 we know that there exists ε0 > 0 such that

sup
t∈[0,t0]

|Jε(ϕεθ(t))− Lm(θ(t))| < ρ for ε ∈ (0, ε0).

So for |t− 1| ≥ t0α and ε ∈ (0, ε0) we obtain

Jε(ϕεθ(t)) ≤ Lm(θ(t)) + |Jε(ϕεθ(t))− Lm(θ(t))| < Em − 2ρ+ ρ = Em − ρ .

The proof is complete. �

Proposition 4.6. For sufficiently small ε > 0 and large R > 0 there exists a
sequence {uR

n } ⊂ ER
ε ∩Xd0

ε ∩ JDε
ε such that J ′ε(u

R
n ) → 0 in

(
ER

ε

)′ as n→∞.

Proof. We take R0 > 0 such that Ω ⊂ B(0, R0). Then γε([0, 1]) ⊂ ER
ε for all

R ≥ R0. Suppose that the statement of Proposition 4.6 does not hold. Then for
small ε > 0 and large R > R0 there exists a(ε,R) > 0 such that

‖J ′ε(u)‖(ER
ε )′ ≥ a(ε,R) on ER

ε ∩Xd0
ε ∩ JDε

ε .

From (4.6) that there exists ω independent of ε ∈ (0, ε0) and R > R0 satisfying

‖J ′ε(u)‖(ER
ε )′ ≥ ω on ER

ε ∩ (Xd0
ε \Xd1

ε ) ∩ JDε
ε .

So there exists a pseudo-gradient vector field, TR
ε , for Jε on a neighborhood ZR

ε ⊂
ER

ε of ER
ε ∩Xd0

ε ∩ JDε
ε . We refer to [22] for details. Let Z̃R

ε ⊂ ZR
ε for which one

‖J ′ε(u)‖(ER
ε )′ > a(ε,R)/2 and take a Lipschitz continuous function on ER

ε , ηR
ε , such

that

0 ≤ ηR
ε ≤ 1, ηR

ε ≡ 1 on ER
ε ∩Xd0

ε ∩ JDε
ε , and ηR

ε ≡ 0 on ER
ε \Z̃R

ε .

Letting ξ : R → R+ be a Lipschitz continuous function such that

ξ ≤ 1, ξ(a) = 1 if |a− Em| ≤ Em/2, and ξ(a) = 0 if |a− Em| ≥ Em
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and defining

eR
ε (u) =

{
−ηR

ε (u)ξ(Jε(u))TR
ε (u) if u ∈ ZR

ε

0 if u ∈ ER
ε \ZR

ε ,

there exists a global solution ΨR
ε : ER

ε × R → ER
ε , which is unique, of the initial

value problem

d

dt
ΨR

ε (u, t) = eR
ε (ΨR

ε (u, t))

ΨR
ε (u, 0) = u.

(4.7)

Since limε→0Dε = Em, we have Dε ≤ Em + (1/2) min
{
Em, ω

2d1

}
for small ε > 0.

Hence, by the choice of d0 and d1, ΨR
ε has the following properties:

(i) ΨR
ε (u, t) = u if t = 0 or u ∈ ER

ε \ZR
ε or Jε(u) /∈ (0, 2Em).

(ii) ‖ d
dtΨ

R
ε (u, t)‖ ≤ 2 for all (u, t).

(iii) d
dt

(
Jε

(
ΨR

ε (u, t)
))
≤ 0 for all (u, t).

(iv) d
dt

(
Jε(ΨR

ε (u, t))
)
≤ −ω2 if ΨR

ε (u, t) ∈ ER
ε ∩ (Xd0

ε \Xd1
ε ) ∩ JDε

ε .
(v) d

dt (Jε(ΨR
ε (u, t))) ≤ −(a(ε,R))2 if ΨR

ε (u, t) ∈ ER
ε ∩Xd1

ε ∩ JDε
ε .

Due to Lemmas 4.4 and 4.5, there exist α and ρ > 0 such that

|s− 1/t0| ≤ α =⇒ γε(s) ∈ Xd1
ε and |s− 1/t0| > α =⇒ Jε(γε(s)) < Em − ρ

for all ε ∈ (0, ε0). Defining γR
ε (s) = ΨR

ε (γε(s), tRε ) we shall prove that

Jε(γR
ε (s)) ≤ Em −min

{
ρ,
ω2d1

2
}

for all s ∈ [0, 1], (4.8)

for tRε sufficiently large. Note that by (iii) above if |s− 1/t0| > α it follows that

Jε(ΨR
ε (γε(s), t)) ≤ Jε(γε(s)) < Em − ρ for any t > 0.

So (4.8) holds for any tRε . Now, if s ∈ I := [1/t0 − α, 1/t0 + α], we get γε(s) ∈ Xd1
ε

and two distinct cases are considered:

(a) ΨR
ε (γε(s), t) ∈ Xd0

ε for all t ∈ [0,∞).
(b) ΨR

ε (γε(s), ts) /∈ Xd0
ε for some ts > 0.

If s ∈ I satisfies (a), then (i), (iv) and (v) yield

Jε(ΨR
ε (γε(s), t)) = Jε(γε(s)) +

∫ t

0

d

dτ

(
Jε(ΨR

ε (γε(s), τ))
)
dτ

≤ Dε −min
{
ω2, (a(ε,R))2

}
t

and so Jε(ΨR
ε (γε(s), t)) → −∞ as t→∞ which is in contradiction with (4.6). Thus

any s ∈ I satisfies (b). We fix s0 and a neighborhood Is0 = Is0(ε,R) ⊂ I such that
ΨR

ε (γε(s), ts0) /∈ Xd0
ε for all s ∈ Is0 . Since γε(s) ∈ Xd1

ε for any s ∈ Is0 , we can
observe from (i)− (v) that there exists an interval [t1s, t

2
s] ⊂ [0, ts0 ] for which one

ΨR
ε (γε(s), t) ∈ Xd0

ε \Xd1
ε for t ∈ [t1s, t

2
s] and |t1s − t2s| ≥ d1.
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So (i), (iii) and (iv) lead to

Jε

(
ΨR

ε (γε(s), ts0)
)
≤ Jε (γε(s)) +

∫ t2s

t1s

d

dτ

(
Jε(ΨR

ε (γε(s), τ))
)

dτ

≤ Dε − ω2
(
t2s − t1s

)
≤ Em − 1

2
ω2d1 for all s ∈ Is0 .

By compactness there exist s1, · · · , sl, l = l(ε,R), such that I =
⋃l

i=1 I
si . Let

tRε = max1≤i≤l tsi
. Then for any s ∈ I we have s ∈ Isi for some i and so

Jε(ΨR
ε (γε(s), tRε )) ≤ Jε(ΨR

ε (γε(s), tsi
)) ≤ Em − 1

2
ω2d1.

Therefore, (4.8) holds. Since γR
ε ∈ Γε we obtain

Cε ≤ max
s∈[0,1]

Jε(γR
ε (s)) ≤ Em −min

{
ρ,
ω2d1

2
}
,

which is in contradiction with Proposition 3.3. This completes the proof. �

Proposition 4.7. There exists a critical point uε ∈ Xd0
ε ∩ JDε

ε of Jε if ε > 0 is
sufficiently small.

Proof. From Proposition 4.6 there exist ε0 > 0 and R0 > 0 for which ones we can
find {un}n ⊂ ER

ε ∩ Xd0
ε ∩ JDε

ε such that J ′ε(un) → 0 in
(
ER

ε

)′ as n → ∞, for
each R ≥ R0 and ε ∈ (0, ε0). Since {un}n is bounded in ER

ε it is also bounded
in H1

0 ((−R/ε,R/ε)) with the usual norm. So we may assume that un ⇀ u in
H1

0 ((−R/ε,R/ε)), un → u in Lr((−R/ε,R/ε)) for r = 2 and 4 and un(x) → u(x)
a.e. in R where u = uε,R. Because ‖J ′ε(un)‖(ER

ε )′ → 0 we see that u is a nonnegative
solution for

−u′′ = f ′(u) [h(f(u))− V (εx)f(u)]− gε,R(u)χεu in (−R/ε,R/ε) (4.9)

where

gε,R(u) = 4
( ∫ R/ε

−R/ε

χε|u|2 dx− 1
)

+
.

Then we can see that un → u in H1
0 ((−R/ε,R/ε)) which implies∫

B(0,R/ε)

[
|u′n − u′|2 + V (εx)f2(un − u)

]
dx→ 0 as n→∞

and so un → u in Eε. Thus u ∈ Xd0
ε ∩JDε

ε . Due to boundedness of {uε,R} in H1(R)
we get ‖uε,R‖∞ ≤ C0 for all R ≥ R0 and ε ∈ (0, ε0). So from (H1) and Lemma 2.1
there exists C > 0 depending on C0 such that

−u′′ ≤ Cf ′(u)f(u)2 ≤ Cu in (−R/ε,R/ε).
Hence by [15, Theorem 9.26], there exists C0 = C0(N,C) such that

sup
B(y,1)

u ≤ C0 ‖u‖L2(B(y,2)) for all y ∈ R. (4.10)

Due to the boundedness of {‖uε,R‖ε} and {Jε(uε,R)} we get {Qε(uε,R)} uniformly
bounded on R ≥ R0 and ε ∈ (0, ε0). So there is C1 > 0 such that∫

{|x|≥R0/ε}
|uε,R|2 dx ≤ ε

∫
R
χε|uε,R|2 dx ≤ εC1 (4.11)
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for any R ≥ R0 and ε ∈ (0, ε0). Hence for sufficiently small ε0 and ε ∈ (0, ε0) fixed,
it follows from (4.10), (4.11) and by (H1)

h(f(uε,R(x))) ≤ V0

2
f(uε,R(x)) for any |x| ≥ R0

ε
+ 2, R ≥ R0.

Then after some calculations we obtain

lim
A→∞

∫
RN\B(0,A)

[
|u′ε,R|2 + V (εx)f2(uε,R)

]
dx = 0 (4.12)

uniformly on R ≥ R0. We take Rk → ∞ and denote uk = uε,Rk
. We may assume

uk ⇀ uε in H1(R) as k →∞. Since uk is a solution for (4.9), using (4.12) and ([5],
Theorem 2.1) we see that∫

R
|u′k|2 dx→

∫
R
|u′ε|2 dx and

∫
R
V (εx)f2(uk − uε) dx→ 0

as k → ∞, up to subsequences. From this result we get uk → uε in Eε which
implies that uε ∈ Xd0

ε ∩ JDε
ε and J ′ε(uε) = 0 in E′ε. This completes the proof. �

5. Proof of Theorem 1.1

Until now we have proved the existence of a critical point for Jε, uε ∈ Xd0
ε ∩JDε

ε ,
for ε ∈ (0, ε0) with ε0 > 0 and d0 > 0 sufficiently small. We also have uε ≥ 0 and
Jε(uε) ≥ (Em/2) which imply uε 6= 0. The function uε satisfies

−u′′ε = f ′(uε) [h(f(uε))− V (εx)f(uε)]− 4
( ∫

R
χε|u|2 dx− 1

)
+
χεuε in R. (5.1)

Since uε ∈ C1,α
loc (R) by the Maximum Principle we get uε > 0. Moreover from (5.1)

we can see that there exists ρ > 0 such that ‖uε‖L∞ ≥ ρ for small ε > 0. We
observe that by Proposition 4.1 there exists {yε} ⊂ R such that εyε ∈M2β and for
any sequence εn → 0 there exists z0 ∈M satisfying

εnyεn
→ z0 and ‖uεn

− ϕεn
(· − yεn

)U(· − yεn
)‖εn

→ 0,

and so
‖uεn(·+ yεn)− U‖H1 → 0.

Consequently given σ > 0 there exist A > 0 and ε0 > 0 such that

sup
ε∈(0,ε0)

∫
{|x|≥A}

u2
ε(x+ yε) dx ≤ σ. (5.2)

Denoting wε = uε(·+ yε), the equation (5.1) and the uniform boundedness of {uε}
in L∞(RN ) give us

−w′′ε ≤ Cwε in R.
Hence from [15, Theorem 8.17], there exists C0 = C0(C) such that

sup
(y−1,y+1)

wε(x) ≤ C0 ‖wε‖L2((y−2,y+2)) for all y ∈ R.

From this inequality and by (5.2) we have lim|x|→∞ wε(x) = 0 uniformly on ε. So
we can prove the exponential decay of wε

wε(x) ≤ C exp(−c|x|) for all x ∈ R, ε ∈ (0, ε0)

for some C, c > 0. Now we consider ζε ∈ R a maximum point of wε. Since

wε(x) → 0 as |x| → ∞ and ‖wε‖∞ ≥ ρ for all ε ∈ (0, ε0)
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we conclude that {ζε} is bounded. Hence xε := ζε + yε is a maximum point for uε

and the following exponential decay holds

uε(x) = wε(x− yε) ≤ C exp (−c|x− xε|) for all x ∈ R. (5.3)

So Qε(uε) = 0 for small ε and uε is a critical point for Pε. From Proposition 2.3
we have vε = f(uε) a positive solution for (2.1). Since f is increasing, xε is also a
maximum point for vε. Moreover by the choice of {yε} for any sequence εn → 0
there are z0 ∈M and ζ0 ∈ R such that

ζεn
→ ζ0, εnxεn

→ z0 and ‖uεn
(·+ xεn

)− U(·+ ζ0)‖H1 → 0, (5.4)

up to subsequences. We observe that U(· + ζ0) is also a solution of (2.6) and so
v0 = f(U(·+ ζ0)) is a solution of (1.4). We have

‖vεn(·+ xεn)− v0‖2H1 ≤ 2‖uεn(·+ xεn)− U(·+ ζ0)‖2H1

+ 2
∫

R
|f ′ (uεn

(x+ xεn
))− f ′(U(x+ ζ0))|2|U ′(x+ ζ0)|2 dx

and by (5.4) and properties of f we get

vεn
(·+ xεn

) → v0 in H1(R) as n→∞.

At this point we have proved that, for small ε, ũε(x) := vε(x/ε) is a solution for
the quasilinear equation (1.1) and satisfies (i)-(ii) in Theorem 1.1 with maximum
point x̃ε = εxε.
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