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SOLUTIONS TO INTEGRO-DIFFERENTIAL PARABOLIC
PROBLEMS ARISING IN THE PRICING OF FINANCIAL

OPTIONS IN A LEVY MARKET

IONUŢ FLORESCU, MARIA CRISTINA MARIANI

Abstract. We study an integro-differential parabolic problem modelling a
process with jumps and stochastic volatility in financial mathematics. Under

suitable conditions, we prove the existence of solutions in a general domain

using the method of upper and lower solutions and a diagonal argument.

1. Introduction

In recent years there has been an increasing interest in solving PDE problems
arising in Financial Mathematics and in particular on option pricing. The standard
approach to this problem leads to the study of equations of parabolic type.

In financial mathematics, usually the Black-Scholes model ([6], [9], [14], [15],
[16], [21]) is used for pricing derivatives, by means of a backward parabolic partial
differential equation. A probability approach of the fundamental theorem of asset
pricing is given in [8]. In this model, an important quantity is the volatility which
is a measure of the fluctuation (risk) in the asset prices, and corresponds to the
diffusion coefficient in the Black-Scholes equation.

In the standard Black-Scholes model, a basic assumption is that the volatility is
constant. Several models proposed in recent years, however, allowed the volatility
to be non constant or a stochastic variable. For instance, in [13] a model with
stochastic volatility is proposed. In this model the underlying security S follows, as
in the Black-Scholes model, a stochastic process

dSt = µSt dt + σtSt dZt,

where Z is a standard Brownian motion.
Unlike the classical model, the variance v(t) = σ2(t) also follows a stochastic

process given by
dvt = κ(θ − v(t)) dt + γ

√
vt dWt,

where W is another standard Brownian motion. The correlation coefficient between
W and Z is denoted by ρ:

Cov(dZt, dWt) = ρ dt
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This leads to a generalized Black-Scholes equation:

1
2
vS2 ∂2U

∂S2
+ ργvS

∂2U

∂v∂S
+

1
2
vγ2 ∂2U

∂v2
+ rS

∂U

∂S

+ [κ(θ − v)− λv]
∂U

∂v
− rU +

∂U

∂t
= 0.

A similar model has been considered in [1], [3]. More general models with stochastic
volatility have been considered for example in [5], where the following problem is
derived using the Feynman-Kac lemma:

ut =
1
2
Tr

(
M(x, τ)D2u

)
+ q(x, τ) ·Du,

u(x, 0) = u0(x)

for some diffusion matrix M and a payoff function u0. In the above D denotes the
gradient vector and D2 the Hessian matrix, when x ∈ Rn.

The Black-Scholes models with jumps arise from the fact that the driving Brow-
nian motion is a continuous process, thus it has difficulties fitting the financial data
presenting large fluctuations. The necessity of taking into account the large market
movements, and a great amount of information arriving suddenly (i.e. a jump)
has led to the study of partial integro-differential equations (PIDE) in which the
integral term is modelling the jump.

In [2], [21] the following PIDE in the variables t and S is obtained:
1
2
σ2S2FSS + (r − λk)SFS + Ft − rF + λE{F (SY, t)− F (S, t)} = 0. (1.1)

Here r denotes the riskless rate, λ the jump intensity, and k = E(Y − 1), where E
is the expectation operator and the random variable Y −1 measures the percentage
change in the stock price if the jump – modelled by a Poisson process – occurs (for
details see [2], [21]).

The following problem is a generalization of (1.1) for N assets with prices
S1, . . . , SN :

N∑
i=1

1
2
σ2

i S2
i

∂2F

∂S2
i

+
∑
i 6=j

1
2
ρijσiσjSiSj

∂2F

∂Si∂Sj
+

N∑
i=1

(r − λki)Si
∂F

∂Si
+

∂F

∂t
− rF

+ λ

∫
[F (S1Y1, . . . , SdYd, t)− F (S1, . . . , Sd, t)]g(Y1, . . . , Yd)dY1 . . . dYd = 0

with
ρijdt = E{dzi, dzj}

the correlation coefficients and g the probability density function of the random
variable (Y1, . . . , Yn) modelling the jump sizes.

We recall that the case in which F is increasing and all jumps are negative
corresponds to the evolution of a call option near a crash, see [7] and the references
therein.

In applications when modelling high frequency data by a Levy –like stochastic
process appears to be the best fit (see [20] and its references). Jump-diffusion
models are a particular case of Levy processes and indeed stock evolution was soon
modelled using various classes of Levy processes (see [4], [19]). When using these
more general models, option prices are once again found by solving the resulting
partial integro-differential equations. For example, integro-differential equations
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appear in exponential Levy models, when the market price of an asset is represented
as the exponential of a Levy stochastic process. The exponential Levy models have
been discussed by several authors (see for example [7, 12]).

When the volatility is stochastic we may consider the process

dS = SσdZ + Sµdt,

dσ = βσdW + ασdt

where Z and W are two standard Brownian motion with correlation coefficient ρ.
If F (S, σ, t) is the price of an option depending on the price of the asset S, then by
Ito’s lemma [15], it holds:

dF (S, σ, t) = FSdS + Fσdσ + LFdt

where L is given by

L = ∂t +
1
2
σ2S2 ∂2

∂S2
+

1
2
β2σ2 ∂2

∂σ2
+ ρσ2Sβ

∂2

∂S∂σ

Under an appropriate choice of the portfolio the stochastic term of the equation
vanishes (for details, see [3]).

A generalized tree process has been developed in [10, 11] that approximates
any Stochastic Volatility model. Unlike the non-random volatility case the tree
construction is stochastic every time it is created, since that is the only way we are
able to deal with the huge complexity involved.

If in this model we add a jump component modelled by a compound Poisson
process to the process S, and we follow Merton [21] we obtain the following PIDE,
which is a generalization of the previous equation for stochastic volatility:

∂F

∂t
+

1
2
σ2S2 ∂2F

∂S2
+

1
2
σ2β2 ∂2F

∂σ2
+ ρσ2βS

∂2F

∂S∂σ
+ (r − λk)S

∂F

∂S

− 1
2
ρσ2β

∂F

∂σ
+ λ

∫
R
[F (SY, σ, t)− F (S, σ, t)]g(Y )dY − rF = 0

(1.2)

Here, r denotes the riskless rate, λ the jump intensity, and k = E(Y − 1), where
E is the expectation operator, g is the density of the Y random variable and the
quantity Y −1 measures the percentage change in the stock price if the jump occurs.
The jump times are modelled by a Poisson process, for details see [21, 9.2] .

The previous discussion motivates to consider more general integro-differential
parabolic problems. This work is devoted to the study of the solutions to the follow-
ing general partial integro-differential equation in an unbounded smooth domain:

Lu− ut = G(t, u) in Ω× (0, T )

u(x, 0) = u0(x) on Ω× {0}
u(x, t) = h(x, t) on ∂Ω× (0, T )

(1.3)

We shall assume that Ω ⊂ Rd is an unbounded smooth domain, L is a second order
elliptic operator in non divergence form, namely

Lu :=
d∑

i,j=1

aij(x, t)uxixj
+

d∑
i=1

bi(x, t)uxi
+ c(x, t)u,
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where the coefficients of L belong to the Hölder Space Cδ,δ/2(Ω× [0, T ]) and satisfy
the following two conditions

Λ|v|2 ≥
d∑

i,j=1

aij(x, t)vivj ≥ λ|v|2 (Λ ≥ λ > 0),

|bi(x, t)| ≤ C, c(x, t) ≤ 0.

The operator G is a completely continuous integral operator as the ones defined in
(1.1) and (1.2), modelling the jump. More precisely, we shall assume that G(t, u) =∫
Ω

g(x, t, u)dx, where g is a continuous function. In this general model, the case in
which g is increasing with respect to u and all jumps are positive corresponds to
the evolution of a call option near a crash.

Furthermore, we shall assume that u0 ∈ C2+δ(Ω), h ∈ C2+δ,1+δ/2(Ω× [0, T ]) and
satisfy the compatibility condition

h(x, 0) = u0(x) ∀ x ∈ ∂Ω (1.4)

We shall prove the existence of solutions of (1.3), using the method of upper
and lower solutions. We recall that a smooth function u is called an upper (lower)
solution of problem (1.3) if

Lu− ut ≤ (≥)G(t, u) in Ω× (0, T )

u(x, 0) ≥ (≤)u0(x) on Ω× {0}
u(x, t) ≥ (≤)h(x, t) on ∂Ω× (0, T )

Our main result reads as follows:

Theorem 1.1. Let L and G be the operators defined above. Assume that either:

• G is nonincreasing with respect to u, or
• there exist some continuous, and increasing one dimensional function f

such that G(t, u)− f(u) is nonincreasing with respect to u

Furthermore, assume there exist α and β a lower and an upper solution of the
problem with α ≤ β in Ω × (0, T ). Then (1.3) admits a solution u such that
α ≤ u ≤ β in Ω× (0, T ).

Remark 1.2. The existence result above is applicable for any sub-linear G, or more
generally, for any G that is bounded by a polynomial.

2. The method of upper and lower solutions

In this section we give a proof of Theorem 1.1. First we solve an analogous
problem in a bounded domain; with this aim, we extend the boundary data to the
interior of Ω× (0, T ):

Lemma 2.1. Let U be a smooth and bounded subset of Ω. Then there exists a
unique function ϕU ∈ C2+δ,1+δ/2(U × [0, T ]) such that

LϕU − (ϕU )t = 0,

ϕU (x, 0) = u0(x) x ∈ U

ϕU (x, t) = h(x, t) (x, t) ∈ ∂U × [0, T ]
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Moreover, if α and β are a lower and an upper solution of this reduced problem
with α ≤ β in Ω× (0, T ), then

α(x, t) ≤ ϕU (x, t) ≤ β(x, t)

for (x, t) ∈ U × [0, T ].

Proof. Existence and uniqueness follow immediately from [17, Thm. 10.4.1] and
the compatibility condition (1.4). By the maximum principle, it is clear that if
α ≤ β are a lower and an upper solution, then

α(x, t) ≤ ϕU (x, t) ≤ β(x, t)

�

Lemma 2.2. Let U ⊂ Rd a bounded smooth domain, let T̃ < T let ϕU be defined as
in Lemma 2.1. Furthermore assume that α, β are lower respectively upper solutions
of the initial problem (1.3). Then the problem

Lu− ut = G(t, u) in U × (0, T̃ )

u(x, 0) = u0(x) in U × {0}

u(x, t) = ϕU (x, t) in ∂U × (0, T̃ )

(2.1)

admits at least one solution u with α ≤ u(x, t) ≤ β for x ∈ U, 0 ≤ t ≤ T̃ .

Proof. Suppose first that G is nonincreasing with respect to u. Set u0 = α and
V = U × (0, T̃ ), observe that for simplicity, it is possible to assume that α = 0. By
the previous lemma, and using the fact that the problem

Lv − vt = G(t, un) in U × (0, T̃ )

v(x, 0) = u0(x) in U × {0}

v(x, t) = ϕU (x, t) in ∂U × (0, T̃ )

(2.2)

where un is a given function, has a unique solution v ∈ W 2,1
p (V ) (see [18] for

details); we may define un+1 ∈ W 2,1
p (V ) where

W 2,1
p (V ) = {v ∈ Lp : vxi

, vxixj
∈ Lp, vt ∈ Lp}

(see [17, 18]), as the unique solution of the problem

Lun+1 − un+1
t = G(t, un) in U × (0, T̃ )

un+1(x, 0) = u0(x) in U × {0}

un+1(x, t) = ϕU (x, t) in ∂U × (0, T̃ )

(2.3)

We claim that

α ≤ un(x, t) ≤ un+1(x, t) ≤ β ∀(x, t) ∈ U × [0, T̃ ], ∀n ∈ N

Indeed, by the maximum principle it follows that u1 ≥ α. For example assume that
there exists (x0, t0) ∈ U × [0, T̃ ] such that u1(x0, t0) < α(x0, t0). As u1|∂U×[0,T̃ ] ≥
α|∂U×[0,T̃ ], we deduce that (x0, t0) ∈ U × (0, T̃ ), and we may assume that (x0, t0) is
a maximum of α−u1. Therefore, ∇(α−u1)(x0, t0) = 0 (then (α−u1)t(x0, t0) = 0)
and ∆(α−u1)(x0, t0) < 0. Since L is strictly elliptic, L(α−u1)(x0, t0) < 0, but we
have that L(u1)− u1

t = G(t, α) ≤ L(α)− αt, contradiction.
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Moreover, as G is non-increasing, we have that

Lu1 − u1
t = G(t, α) ≥ G(t, β) ≥ Lβ − βt

and hence u1 ≤ β. Inductively, as un−1 ≤ un, it follows that:

Lun+1 − un+1
t = G(t, un) ≤ G(t, un−1) = Lun − un

t

and thus un+1 ≥ un.
We recall that in order to prove the previous claims we proceed by induction:

assume for example that u1(x0, t0) > β(x0, t0) for some (x0, t0) ∈ U × [0, T̃ ]. As
u1|∂U×[0,T̃ ] ≤ β|∂U×[0,T̃ ], we deduce that (x0, t0) ∈ U × (0, T̃ ), and we may assume
that (x0, t0) is a maximum of u1 − β. Therefore, ∇(u1 − β)(x0, t0) = 0 (then
(u1 − β)t(x0, t0) = 0) and ∆(u1 − β)(x0, t0) < 0, and as L is strictly elliptic,
L(u1 − β)(x0, t0) < 0.

We have that L(u1−β)−(u1−β)t = G(t, α)−(L(β)−(β)t) ≥ G(t, α)−G(t, β) ≥ 0.
Then L(u1 − β)(x0, t0) ≥ (u1 − β)t(x0, t0) = 0, which is a contradiction. Next,
we assume as inductive hypothesis that un ≥ un+1. As before, if un(x0, t0) −
un+1(x0, t0) > 0 is a maximum, we will obtain the same contradiction with L(un−
un+1)(x0, t0) ≥ (un − un+1)t(x0, t0) = 0. In the same way as before, it follows that
un+1 ≤ β.

We now define
u(x, t) = lim

n→∞
un(x, t).

In [18, Chapter 7] the Lp-estimates for this type of differential equations are given,
specifically that the W 2,1

p -norm of un − um can be controlled by its Lp-norm and
the Lp-norm of its image by the operator L− ∂t, what results in the following:

‖D2(un − um)‖Lp(V ) + ‖(un − um)t‖Lp(V )

≤ c
(
‖L(un − um)− (un − um)t‖Lp(V ) + ‖un − um‖Lp(V )

)
.

By construction,

L(un − um)− (un − um)t = G(·, un−1)− G(·, um−1).

As G is a completely continuous operator, using the fact that α ≤ un ≤ β and
Lebesgue’s dominated convergence theorem it follows that {un} is a Cauchy se-
quence in W 2,1

p (V ). Hence un → u in the W 2,1
p -norm, and then u is a strong

solution of the problem.
Suppose now that the only condition on G(t, u) is that there exist some increasing,

continuous function f such that G(t, u) − f(u) is nonincreasing with respect to u.
We define un+1 ∈ W 2,1

p (V ) as the unique solution of the problem

Lun+1 − un+1
t − f(un+1) = G(t, un)− f(un) in U × (0, T̃ )

un+1(x, 0) = u0(x) in U × {0}

un+1(x, t) = ϕU (x, t) in ∂U × (0, T̃ )

(2.4)

As before, we claim that

0 ≤ un(x, t) ≤ un+1(x, t) ≤ β(x, t) ∀(x, t) ∈ U × [0, T̃ ], ∀n ∈ N0

Indeed, by the maximum principle it follows that u1 ≥ 0; moreover,

Lu1 − u1
t − f(u1) = G(t, 0)− f(0) ≥ G(t, β)− f(β) ≥ Lβ − βt − f(β)
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and hence u1 ≤ β. Inductively,

Lun+1 − un+1
t − f(un+1) = G(t, un)− f(un)

≤ G(t, un−1)− f(un−1) = Lun − un
t − f(un)

Thus un+1 ≥ un. In the same way as before it follows that un+1 ≤ β. Proving any
of these claims is similar with what we did earlier. Indeed, assume that for some
(x0, t0) ∈ Ū×[0, T̃ ] we have un+1(x0, t0) < un(x0, t0). By continuity we may assume
that (x0, t0) is a maximum of un − un+1. As before, L(un − un+1)(x0, t0) < 0, but
from the induction hypothesis above:

L(un − un+1)(x0, t0) ≥ (un
t − un+1

t )(x0, t0) + f(un(x0, t0))− f(un+1(x0, t0)) ≥ 0,

contradiction. The expression is non-negative since (x0, t0) is a maximum point
and f is increasing.

The rest of the proof follows as in the other case. �

Proof of Theorem 1.1. We approximate the domain Ω by a non-decreasing se-
quence (ΩN )N∈N of bounded smooth sub-domains of Ω, which can be chosen in
such a way that ∂Ω is also the union of the non-decreasing sequence ΩN ∩ Ω.

Then, using Lemma 2.2 define uN as a solution of the problem

Lu− ut = G(t, u) in ΩN × (0, T − 1
N

)

u(x, 0) = u0(x) in ΩN × {0}

u(x, t) = h(x, t) in ∂ΩN × (0, T − 1
N

)

(2.5)

such that α = 0 ≤ uN ≤ β in ΩN × (0, T − 1
N ). Define VN = ΩN × (0, T − 1

N ) and
choose p > d. For M > N , we have that

‖D2(uM )‖Lp(VN ) + ‖(uM )t‖Lp(VN )

≤ c
(
‖LuM − (uM )t‖Lp(VN ) + ‖uM‖Lp(VN )

)
≤ c

(
‖G(t, uM )‖Lp(VN ) + ‖β‖Lp(VN )

)
≤ C

for some constant C depending only on N . By Morrey imbedding, there exists a
subsequence that converges uniformly on V N . Using a standard diagonal argument,
we may extract a subsequence (still denoted {uM}) such that uM converges uni-
formly to some function u over compact subsets of Ω× (0, T ). For V = U × (0, T̃ ),
U ⊂ Ω, T̃ < T , taking M,N large enough we have that

‖D2(uN − uM )‖Lp(V ) + ‖(uN − uM )t‖Lp(V )

≤ c
(
‖L(uN − uM )− (uN − uM )t‖Lp(V ) + ‖uN − uM‖Lp(V )

)
By construction,

L(uN − uM )− (uN − uM )t = G(t, uN−1)− G(t, uM−1)

As before, using that G is continuous, and that α ≤ uN ≤ β, by dominated conver-
gence it follows that {uN} is a Cauchy sequence in W 2,1

p (V ). Hence uN → u in the
W 2,1

p -norm, and then u is a classical solution in V . It follows that u satisfies the
equation on Ω× (0, T ). Furthermore, it is clear that u(x, 0) = u0(x). For M > N
we have that uM (x, t) = uN (x, t) for x ∈ ∂Ω∩∂ΩN , t ∈ (0, T − 1

N ). Thus, it follows
that u satisfies the boundary condition u(x, t) = h(x, t) on ∂Ω× [0, T ). �
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Example 2.3. Consider the problem

Lu− ut =
∫

R
(u(x, t)− u(xy, t)) ν(y)dy in Ω× (0, T )

u(x, 0) = u0(x) on Ω× {0}
u(x, t) = h(x, t) on ∂Ω× (0, T )

(2.6)

where ν(y) = M√
π
e−M2y2

, a Gaussian kernel, and Ω ⊆ Rd.

We shall verify that we can apply Theorem 1.1. To do so we need to show that
the operator G has the properties of the theorem and that the problem admits an
upper and a lower solution. Note that we can write G as:

G(t, x, u) = u(x, t)− E[u(xY, t)],

where the expectation is calculated with respect to some variable Y with density
ν(y). Now take f(u) = u which is obviously a continuous and increasing functional
and observe that:

G(t, x, u)− f(u) = −E[u(xY, t)],
which is clearly non-increasing with respect to u (the expectation is an increasing
operator).

Thus, the operator G satisfies the hypothesis of the theorem and we just need to
find upper and lower solutions for the problem. To do so, notice that G(t, x, 0) = 0,
thus α ≡ 0 is a lower solution of the problem (with suitable boundary conditions).
Let us define β(x, t) = k(T − t)−

d
2 e

θ
T−t |x|

2
, with k > 0, θ > 0. We will show that β

is an upper solution to the problem.
A straightforward computation shows that β satisfies

Lβ − βt = β
{( 2θ

T − t

)2
d∑

i,j=1

aijxixj +
2θ

T − t

d∑
i=1

aii

+
2θ

T − t

d∑
i=1

bixi −
[ d

2(T − t)
+

θ

(T − t)2
|x|2

]}
Using the fact that

∑d
i=1 aii ≤ Λ, and that 2

∑d
i=1 bixi ≤ ε|x|2 + 1

ε‖b‖
2
∞ for some

small ε, we deduce that

1
β

(Lβ − βt) ≤ (4θΛ− 1 + ε(T − t))
θ|x|2

(T − t)2
+

1
T − t

[2θΛ− d

2
+

1
ε
θ‖b‖2∞].

Taking ε < 1/T , and

θ ≤ min
{1− Tε

4Λ
,

dε

2‖b‖2∞ + 4Λ
}
,

it follows that with this particular choice of θ, the β defined above has the property
that

Lβ − βt ≤ 0.

Finally, if we show that G(t, x, β) ≥ 0 and if the boundary conditions are chosen so
that 0 ≤ u0(x) ≤ β(x, 0) and 0 ≤ h(x, t) ≤ β(x, t) for x ∈ ∂Ω, then we have that
α ≡ 0 and β are respectively a lower and an upper solution of the problem.

Let us show that G(t, x, β) ≥ 0 for our β. To simplify notation write β = ceαx2
,

with c = k(T − t)−
d
2 , α = θ

T−t and assume that x2 < M2

2α = M2

2θ2(T−t)2 , where M is



EJDE-2010/62 SOLUTIONS TO INTEGRO-DIFFERENTIAL PARABOLIC PROBLEMS 9

the positive constant from the definition of ν. For convenience, we work in a one
dimensional domain and we require that M > 4

√
2. We note that θ in the definition

of β may be chosen as small as we want so the restriction on the domain of x is
irrelevant. Then

G(t, x, β) =
∫

R

(
ceαx2

− ceαx2y2)
ν(y)dy = ceαx2

− c
M√

M2 − x2α
= f(x)

and
df

dx
(x) = cαx

(
2eαx2

− M√
(M2 − x2α)3

)
.

We note that c, α > 0, and the term within parentheses is always positive for any
x within the domain {x ∈ R : x2 < M2

2α } if M > 4
√

2. Indeed, since αx2 > 0 we
always have

2eαx2
− M√

(M2 − x2α)3
≥ 2− M√

(M2 − x2α)3
≥ 0

The last inequality holds for any x with property

x2 ≤ 1
α

(
M2 − M2/3

22/3

)
.

However, recall that the domain of x is x2 < M2

2α and note that if M > 4
√

2,

M2

2α
<

1
α

(
M2 − M2/3

22/3

)
,

thus the term within parentheses in df
dx is positive for all x within the domain.

Therefore, the sign of the derivative is the sign of x, which means that the
function f(x) attains its minimum at x = 0. As f(0) = 0, we conclude that f(x) ≥ 0
for all x in the domain and therefore β is an upper solution of the problem.

Finally, we note that we can use the procedure outlined within the proof of the
Lemma 2.2 to construct an approximate solution of the original problem. As this
construction is straightforward we do not insist on details.
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