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FUNCTIONAL EXPANSION - COMPRESSION FIXED POINT
THEOREM OF LEGGETT-WILLIAMS TYPE

DOUGLAS R. ANDERSON, RICHARD I. AVERY, JOHNNY HENDERSON

ABSTRACT. This paper presents a fixed point theorem of compression and
expansion of functional type in the spirit of the original fixed point work of
Leggett-Williams. Neither the entire lower nor the entire upper boundary is
required to be mapped inward or outward.

1. INTRODUCTION

The spirit of the original Leggett-Williams fixed point theorem [I0] is to take
a subset of the elements in the cone in which a(z) = a and map these outward
in the sense that a(T'z) > a, where « is a concave positive functional defined on
the cone. The subset that Leggett-Williams considered can be thought of as the
set of all elements of the cone in which ||z|| < b and a(x) = a. There were no
outward conditions on the operator T in the Leggett-Williams fixed point theorem
concerning those elements with ||z|| > b and a(x) = a, and hence they avoided any
invariance-like conditions with respect to one boundary. The entire upper boundary
was mapped inward (Leggett-Williams had invariance-like conditions with respect
to only the outer boundary). That is, all of the elements in the cone for which
lz]] = ¢ were mapped inward in the sense that ||Tz|| < c. Leggett-Williams created
only a compression result; Leggett-Williams did not create an expansion result.

In this paper we use techniques similar to those of Leggett-Williams that will
require only subsets of both boundaries to be mapped inward and outward, re-
spectively. We thus provide more general results than those obtained by using the
Krasnosel’skii fixed point theorem [8], prior functional compression-expansion re-
sults which mapped at least one boundary inward or outward [I, [ [5] [6, 10} [I1],
or the topological generalizations of fixed point theorems introduced by Kwong
[9] which require both boundaries to be mapped inward or outward (invariance-
like conditions). Moreover, conditions involving the norm in the original Leggett-
Williams fixed point theorem are replaced by more general conditions on a convex
functional.
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2. PRELIMINARIES

In this section we will state the definitions that are used in the remainder of the
paper.
Definition 2.1. Let E be a real Banach space. A nonempty closed convex set
P C F is called a cone if it satisfies the following two conditions:
(i) x € P,A > 0 implies \x € P;
(ii) = € P,—z € P implies x = 0.
Every cone P C E induces an ordering in F given by

r<y ifandonlyif y—ze€P.

Definition 2.2. An operator is called completely continuous if it is continuous and
maps bounded sets into precompact sets.

Definition 2.3. A map « is said to be a nonnegative continuous concave functional
on a cone P of a real Banach space E if a : P — [0, 00) is continuous and
a(te + (1 —t)y) > ta(z) + (1 — t)a(y)

for all z,y € P and t € [0,1]. Similarly we say the map § is a nonnegative
continuous convex functional on a cone P of a real Banach space Eif 3 : P — [0, 00)
is continuous and

Btz + (1 —t)y) <tB(x) + (1 —1)B(y)
for all z,y € P and t € [0, 1].

Let ¢ and § be nonnegative continuous functionals on P; then, for positive real
numbers a and b, we define the sets:

P(1,b) = {z € P:¢(x) < b}, (2.1)
P(y,d,a,b) ={z € P:a<y(x)and 6(z) < b}. (2.2)
Definition 2.4. Let D be a subset of a real Banach space E. If r : E — D is

continuous with r(x) = x for all € D, then D is a retract of E, and the map r is
a retraction. The convex hull of a subset D of a real Banach space X is given by

conv(D) = {Z)\lxl rx; €D, A\ €10,1], Z/\i =1, andn € N}.
i=1 =1
The next theorem is due to Dugundji and its proof can be found in [4, p. 44].

Theorem 2.5. For Banach spaces X and Y, let D C X be closed and let F : D —
Y be continuous. Then F has a continuous extension F': X — Y such that

F(X) C conv(F(D)).

Corollary 2.6. Every closed convez set of a Banach space is a retract of the Banach
space.

3. FIXED POINT INDEX

The following theorem, which establishes the existence and uniqueness of the
fixed point index, is from [7, pp. 82-86]; an elementary proof can be found in [4]
pp. 58 & 238]. The proof of our main result in the next section will invoke the
properties of the fixed point index.
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Theorem 3.1. Let X be a retract of a real Banach space E. Then, for every
bounded relatively open subset U of X and every completely continuous operator
A :U — X which has no fized points on OU (relative to X ), there exists an integer
i(A,U, X) satisfying the following conditions:
(G1) Normality: i(A,U,X) =1 if Ax =yo € U for any x € U;
(G2) Additivity: i(A, U, X) =i(A, U1, X) +i(A,Us, X) whenever Uy and Uy are
disjoint open subsets of U such that A has no fized points on U — (U UUy);
(G3) Homotopy Invariance: i(H(t,-),U, X) is independent of t € [0, 1] whenever
H :[0,1] x U — X is completely continuous and H(t,z) # x for any
(t,z) € [0,1] x U;
(G4) Permanence: i(A,U, X) = i(A,UNY,Y) if Y is a retract of X and A(U) C
Y;
(G5) Excision: i(A,U, X) =i(A, Uy, X) whenever Uy is an open subset of U such
that A has no fized points in U — Up;
(G6) Solution: If i(A,U,X) # 0, then A has at least one fived point in U.

Moreover, i(A,U, X) is uniquely defined.

4. MAIN RESULT

Theorem 4.1. Suppose P is a cone in a real Banach space E, o is a nonnegative
continuous concave functional on P, [ is a nonnegative continuous convex func-
tional on P and T : P — P is a completely continuous operator. If there exists
nonnegative numbers a, b, ¢ and d such that

(A1) {x € P:a < a(z) and B(z) < b} £0;
(A2) if x € P with B(x) = b and o(x) > a, then B(Tx) < b;
(A3) if x € P with B(x) =b and o(Tx) < a ,then (Tx) < b;
(A4) {z € P:c< a(z) and B(x) < d} #0;
(A5) if x € P with a(z) = ¢ and B(z) < d, then a(Tx) > ¢;

) if x € P with a(x) = ¢ and B(Tx) > d, then a(Tx) > ¢;

(Hl) a<c¢,b<d, {x € P:b< B(x) and ax) < c} #0, P(3,b) C P(a,c),
and P(a,c) is bounded then T has a fixed point * in P(8,a,b,c);

(H2) c<a,d<b, {zr€P:a<alx) and B(z) <d} #0, P(a,a) C P(B,d),
and P(B3,d) is bounded then T has a fixed point z* in P(«,3,a,d).

Proof. We will prove the expansion result (H1). The proof of the compression result
(H2) is nearly identical; moreover, a topological proof can be found in [2] for the
compression result. If we let

U={xzeP:p(x)<b},
V={xeP:alx)<c}

then the interior of V—-Uisgiven by W = (V-U)° ={zx € V : b < B(x) and a(z) <
c}. Thus U, V and W are bounded (they are subsets of V' which is bounded by
condition (H1)), non-empty (by conditions (A1), (A4) and (H1)) and open subsets
of P. To prove the existence of a fixed point for our operator T in P(3, a, b, ¢), it
is enough for us to show that (T, W, P) # 0 since W is the interior of P(3, a, b, c).
By Corollary 2.6 P is a retract of the Banach space E since it is convex and closed.
Claim 1: Tz # z for all x € 9U.
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Let 29 € OU, then ((z9) = b. We want to show that z is not a fixed point of
T; so suppose to the contrary that T'(zg) = zo. If a(Tz9) < a then 5(Tz) < b
by condition (A3), and if a(z9) = a(T29) > a then 3(T'z) < b by condition (A2).
Hence in either case we have that Tzy # zg, thus T' does not have any fixed points
on OU.

Claim 2: Tz # z for all x € 9V

Let z; € 9V, then a(z;) = ¢. We want to show that z; is not a fixed point of
T; so suppose to the contrary that T(z1) = 2z1. If 8(T%) > d then o(Tz) > ¢
by condition (A6), and if B(z1) = 3(T21) < d then a(T'21) > ¢ by condition (A5).
Hence in either case we have that Tz, # 21, thus T does not have any fixed points
on V.

Let w; € {z € P:a < a(z) and B(x) < b} (see condition (Al)) and let H; :
[0,1] x U — P be defined by

Hy(t,z) = (1 —t)Tx + tw;.

Clearly, H; is continuous and H;([0, 1] x U) is relatively compact.
Claim 3: H(t,z) # « for all (¢,z) € [0,1] x 9U.
Suppose not; that is, there exists (¢1,x1) € [0,1] x U such that H(t1,x1) = z1.
Since x; € OU we have that S(z1) = b. Either a(Tz1) < a or a(Tx1) > a.
Case 1: a(Tz1) < a. By condition (A3) we have §(Tz1) < b, which is a
contradiction since
b= pB(z1) = B((1 —t1)Tx1 + t1w1)
< (1 — tl)ﬁ(Tﬂi‘l) + tlﬁ(wl) <b.

Case 2: a(Tx1) > a. We have that a(x1) > a since
04(1‘1) = a((l - tl)TCCl + tlwl)
> (1 —t1)a(Tz1) + tia(wr) > a,

and thus by condition (A2) we have 3(Tx1) < b, which is the same contradiction
we arrived at in the previous case.

Therefore, we have shown that H;(¢,x) # « for all (¢,x) € [0,1] x U, and thus
by the homotopy invariance property (G3) of the fixed point index

i(T,U, P) =i(wy,U, P),
and by the normality property (G1) of the fixed point index
i(T,U, P) =i(wy,U,P) = 1.
Let wy € {z € P: ¢ < a(z) and B(z) < d} (see condition (A4)) and let
Hy:[0,1]xV — P

be defined by
Hy(t,z) = (1 — t)Tx + tws.
Clearly, Hy is continuous and Hz ([0, 1] x V) is relatively compact.
Claim 4: Hy(t,z) # « for all (¢t,z) € [0,1] x 9V
Suppose not; that is, there exists (t2,z2) € [0,1] x OV such that H(t2,xz2) = 2.
Since x5 € OV we have that a(z2) = ¢. Either f(Tx2) < d or B(Tz2) > d.
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Case 1: ((Txzy) > d. By condition (A6) we have a(Tz3) > ¢, which is a
contradiction since
¢ = a(ze) = a((1 — ta) Tz + taws)
> (1 —to)a(Twz2) + toa(ws) > c.
Case 2 : 3(Tz2) < d. We have that 3(x3) < d since

ﬁ((EQ) = ,6((1 — tQ)TSEQ + thQ)
< (1 —t2)B(Tz2) + t28(we) < d,
and thus by condition (A5) we have «(Tz2) > ¢, which is the same contradiction
we arrived at in the previous case.
Therefore, we have shown that Ha(t,2) # « for all (¢,z) € [0,1] x OV and thus
by the homotopy invariance property (G3) of the fixed point index
i(T,V,P) = i(ws,V, P),
and by the solution property (G6) of the fixed point index (since wo € V' the index
cannot be nonzero) we have
i(T, V. P) = i(ws, V, P) = 0,

_ Since U and W are disjoint open subsets of V' and T" has no fixed points in
V —(UUW) (by claims 1 and 2), by the additivity property (G2) of the fixed point
index

i(T,V,P) =i(T,U, P) +i(T, W, P).

Consequently, we have

i(T,W,P) = -1,
and thus by the solution property (G6) of the fixed point index the operator T has
a fixed point z* € W C P(8,a, b, ¢). O

5. APPLICATION

In this section we will illustrate the key techniques for verifying the existence of a
positive solution for a boundary value problem using our main result. In particular,
under the expansion condition (H1) we apply the properties of a Green’s function,
bound the nonlinearity by constants over some intervals, and use concavity to deal
with a singularity. To proceed, consider the second-order nonlinear focal boundary
value problem

() + f(z(t)) =0, te(0,1), (5.1)
z(0) =0=2a'(1), (5.2)
where f: R — [0,00) is continuous. If z is a fixed point of the operator T defined

by
Tx(t) ::/0 G(t,s)f(z(s))ds,

where
G(t,s) = min{t, s}, (¢,8) €]0,1] x [0,1]
is the Green’s function for the operator L defined by Lx(t) := —z” with right-focal

boundary conditions x(0) = 0 = z/(1), then it is well known that x is a solution
of the boundary value problem (5.1)), (5.2). Throughout this section of the paper
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we will use the facts that G(¢,s) is nonnegative, and for each fixed s € [0,1], the
Green’s function is nondecreasing in ¢.
Let 7 € (0,1) and define the cone P C E = C[0,1] by

P :={z € E : x is nonnegative, nondecreasing, concave and z(7) > 72(1)};
for x € P, define the concave functional & on P by

a(z) = tgi%] z(t) = z(71)

and the convex functional 5 on P by

B(z) = tren[g)l(] z(t) = z(1).

In the following theorem, we demonstrate how to apply the expansive condition of
Theorem to prove the existence of at least one positive solution to (5.1)), (5.2).

Theorem 5.1. If 7 € (0,1) is fized, b and ¢ are positive real numbers with 3b < ¢,
and f : [0,00) — [0,00) is a continuous function such that

(a) f(w) > ﬁ forw € [c, £],

(b) f(w) is decreasing for w € [0,br] with f(br) > f(w) for w € [br,b], and

c) fOT sf(bs)ds < %2)(1772),
then the focal problem , has at least one positive solution x* € P(83, a, b, ¢).

Proof. If we let a = br and d = ¢/7, then we have that a < ¢ and b < d since
3b < ¢. Forxz € P(B,a,b,¢), if t € (0,1), then by the properties of the Green’s
function (Tx)"(t) = —f(x(t)) and Tz(0) = 0 = (Tx)'(1). For any y,w € [0,1] with
y < w we have the following important property of the Green’s function,

. Glys) _y
> = .
selo] G(w, ) G(w,s) ~ w’ (5:3)

thus for any « € P we have that

o(Tz) = / G(r.s) f(x(s)) ds

_/O TG(1,5)f(x(s))ds = 7Tx(1) = 75(Tx).

Therefore we have that T': P — P. By the Arzela-Ascoli Theorem it is a standard
exercise to show that T is a completely continuous operator using the properties of
G and f. We also point out that P(«,c) is a bounded subset of the cone P, since
it x € P(a, ¢), then

and so

c
S —
T T
Also, if x € P(3,b), then
alz) < px) <b<e,
and hence P(S3,b) C P(a,c).
For any M € (2b, ¢) the function x,; defined by

/ 16(t,s)ds = MC=0 ¢ p(g.a.b.0)
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since
azar) = 2ag(7) = MT%_ T) < CT(22— T) <e
and
Blan) = ar(1) = 3 > b

Consequently we have that {x € P : b < 8(z) and a(z) < ¢} # 0.
Similarly, for any L € (%7 2b) the function xj, defined by

xp(t) = /0 LG(t,s)ds = w e{reP:a<alx)and f(z) < b},
alzr) =ap(r) = w >br=a
and

ﬂ(l’L) = LEL(].) = g <b.

Likewise, for any J € (7(2227)’ 2¢), the function z; defined by
1
t(2—t
xy(t) = / JG(t,s)ds = # €{x € P:c<a(r)and B(x) < d},
0
since
alzy)=z5(1) = JT(227 ™) >c
and ;
c
ﬂ(.rj)zxj(l)=§ <—-=d
T

We have that both

{z € P:a< ax)and f(z) < b} # 0,
and

{zr € P:c< a(z) and f(z) < d} # 0,

and hence conditions (Al) and (A4) of Theorem are satisfied.
Claim 1: 3(Tx) < b for all x € P with 8(z) = b and «(z) > a. Let x € P with
B(x) = b and a(x) > a. By the concavity of z, for s € [0, 7] we have

x(s) > (@)s > bs,

and for all s € [1,1], we have br < z(s) < b. Hence by properties (b) and (c), it
follows that

B(Tx):/o G, s) f(x(s))dSZ/O sf(x(s)) ds
= [ stnas+ [ srets)as

< /()Tsf(bs)ds+f(b7)/Tlsd$

2= fOm)(A =) L L) - )

2 2 =0
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Claim 2: If x € P and a(Tx) < a, then f(Tx) < b. Let z € P with a(Tz) < a.
Thus by the properties of G(t,s) given in (5.3)),

1
B(Tx) :/0 G(1,s) f(z(s))ds

<(2) | Gtrasa)as
1

a

= (;)a(Tx) < (;) =b.

Claim 3: a(Tz) > c for all x € P with a(z) = c and §(z) < d. Let x € P with
a(z) = c and B(x) < d. Then for s € [r,1] we have

ch(s)gdzf.
T

Hence by property (a),

o(Tz) = /0 G(r. 8)f(a(s)) ds > / G(r,s) f(a(s)) ds

= [rsnas> [ 5

Claim 4: If x € P and §(Tx) > d, then a(Tx) > ¢. Let x € P with §(Tz) > d.
Again by the properties of G given in (5.3)),

a(Tx):/O G(t,s)f(x(s))ds

ds = c.

> 7 [ G fals) ds
=76(Tx) > 1d =c.

Therefore, the expansion hypotheses of Theorem [{.I] have been satisfied; thus the
operator T has at least one fixed point * € P(3, a, b, ¢), which is a desired solution

of €1). {3, 0

Example. Let b =1 c¢=5, and 7 = 1/2. Then the boundary value problem

1
I//_’_i_’_e;c—Q :0,

NG

with right-focal boundary conditions
x(0) =0 =2'(1),

has at least one positive solution x* which can be verified by the above theorem,
with 1 < 2*(1) and z*(7) < 5.
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