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FUNCTIONAL EXPANSION - COMPRESSION FIXED POINT
THEOREM OF LEGGETT-WILLIAMS TYPE

DOUGLAS R. ANDERSON, RICHARD I. AVERY, JOHNNY HENDERSON

Abstract. This paper presents a fixed point theorem of compression and
expansion of functional type in the spirit of the original fixed point work of

Leggett-Williams. Neither the entire lower nor the entire upper boundary is
required to be mapped inward or outward.

1. Introduction

The spirit of the original Leggett-Williams fixed point theorem [10] is to take
a subset of the elements in the cone in which α(x) = a and map these outward
in the sense that α(Tx) ≥ a, where α is a concave positive functional defined on
the cone. The subset that Leggett-Williams considered can be thought of as the
set of all elements of the cone in which ‖x‖ ≤ b and α(x) = a. There were no
outward conditions on the operator T in the Leggett-Williams fixed point theorem
concerning those elements with ‖x‖ > b and α(x) = a, and hence they avoided any
invariance-like conditions with respect to one boundary. The entire upper boundary
was mapped inward (Leggett-Williams had invariance-like conditions with respect
to only the outer boundary). That is, all of the elements in the cone for which
‖x‖ = c were mapped inward in the sense that ‖Tx‖ ≤ c. Leggett-Williams created
only a compression result; Leggett-Williams did not create an expansion result.

In this paper we use techniques similar to those of Leggett-Williams that will
require only subsets of both boundaries to be mapped inward and outward, re-
spectively. We thus provide more general results than those obtained by using the
Krasnosel’skii fixed point theorem [8], prior functional compression-expansion re-
sults which mapped at least one boundary inward or outward [1, 3, 5, 6, 10, 11],
or the topological generalizations of fixed point theorems introduced by Kwong
[9] which require both boundaries to be mapped inward or outward (invariance-
like conditions). Moreover, conditions involving the norm in the original Leggett-
Williams fixed point theorem are replaced by more general conditions on a convex
functional.
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2. Preliminaries

In this section we will state the definitions that are used in the remainder of the
paper.

Definition 2.1. Let E be a real Banach space. A nonempty closed convex set
P ⊂ E is called a cone if it satisfies the following two conditions:

(i) x ∈ P, λ ≥ 0 implies λx ∈ P ;
(ii) x ∈ P,−x ∈ P implies x = 0.

Every cone P ⊂ E induces an ordering in E given by

x ≤ y if and only if y − x ∈ P.

Definition 2.2. An operator is called completely continuous if it is continuous and
maps bounded sets into precompact sets.

Definition 2.3. A map α is said to be a nonnegative continuous concave functional
on a cone P of a real Banach space E if α : P → [0,∞) is continuous and

α(tx+ (1− t)y) ≥ tα(x) + (1− t)α(y)

for all x, y ∈ P and t ∈ [0, 1]. Similarly we say the map β is a nonnegative
continuous convex functional on a cone P of a real Banach space E if β : P → [0,∞)
is continuous and

β(tx+ (1− t)y) ≤ tβ(x) + (1− t)β(y)
for all x, y ∈ P and t ∈ [0, 1].

Let ψ and δ be nonnegative continuous functionals on P ; then, for positive real
numbers a and b, we define the sets:

P (ψ, b) = {x ∈ P : ψ(x) ≤ b}, (2.1)

P (ψ, δ, a, b) = {x ∈ P : a ≤ ψ(x) and δ(x) ≤ b}. (2.2)

Definition 2.4. Let D be a subset of a real Banach space E. If r : E → D is
continuous with r(x) = x for all x ∈ D, then D is a retract of E, and the map r is
a retraction. The convex hull of a subset D of a real Banach space X is given by

conv(D) =
{ n∑

i=1

λixi : xi ∈ D, λi ∈ [0, 1],
n∑

i=1

λi = 1, and n ∈ N
}
.

The next theorem is due to Dugundji and its proof can be found in [4, p. 44].

Theorem 2.5. For Banach spaces X and Y , let D ⊂ X be closed and let F : D →
Y be continuous. Then F has a continuous extension F̃ : X → Y such that

F̃ (X) ⊂ conv(F (D)).

Corollary 2.6. Every closed convex set of a Banach space is a retract of the Banach
space.

3. Fixed point index

The following theorem, which establishes the existence and uniqueness of the
fixed point index, is from [7, pp. 82-86]; an elementary proof can be found in [4,
pp. 58 & 238]. The proof of our main result in the next section will invoke the
properties of the fixed point index.
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Theorem 3.1. Let X be a retract of a real Banach space E. Then, for every
bounded relatively open subset U of X and every completely continuous operator
A : U → X which has no fixed points on ∂U (relative to X), there exists an integer
i(A,U,X) satisfying the following conditions:

(G1) Normality: i(A,U,X) = 1 if Ax ≡ y0 ∈ U for any x ∈ U ;
(G2) Additivity: i(A,U,X) = i(A,U1, X) + i(A,U2, X) whenever U1 and U2 are

disjoint open subsets of U such that A has no fixed points on U − (U1∪U2);
(G3) Homotopy Invariance: i(H(t, ·), U,X) is independent of t ∈ [0, 1] whenever

H : [0, 1] × U → X is completely continuous and H(t, x) 6= x for any
(t, x) ∈ [0, 1]× ∂U ;

(G4) Permanence: i(A,U,X) = i(A,U ∩Y, Y ) if Y is a retract of X and A(U) ⊂
Y ;

(G5) Excision: i(A,U,X) = i(A,U0, X) whenever U0 is an open subset of U such
that A has no fixed points in U − U0;

(G6) Solution: If i(A,U,X) 6= 0, then A has at least one fixed point in U .
Moreover, i(A,U,X) is uniquely defined.

4. Main Result

Theorem 4.1. Suppose P is a cone in a real Banach space E, α is a nonnegative
continuous concave functional on P , β is a nonnegative continuous convex func-
tional on P and T : P → P is a completely continuous operator. If there exists
nonnegative numbers a, b, c and d such that

(A1) {x ∈ P : a < α(x) and β(x) < b} 6= ∅;
(A2) if x ∈ P with β(x) = b and α(x) ≥ a, then β(Tx) < b;
(A3) if x ∈ P with β(x) = b and α(Tx) < a ,then β(Tx) < b;
(A4) {x ∈ P : c < α(x) and β(x) < d} 6= ∅;
(A5) if x ∈ P with α(x) = c and β(x) ≤ d, then α(Tx) > c;
(A6) if x ∈ P with α(x) = c and β(Tx) > d, then α(Tx) > c;

and if
(H1) a < c, b < d, {x ∈ P : b < β(x) and α(x) < c} 6= ∅, P (β, b) ⊂ P (α, c),

and P (α, c) is bounded then T has a fixed point x∗ in P (β, α, b, c);
(H2) c < a, d < b, {x ∈ P : a < α(x) and β(x) < d} 6= ∅, P (α, a) ⊂ P (β, d),

and P (β, d) is bounded then T has a fixed point x∗ in P (α, β, a, d).

Proof. We will prove the expansion result (H1). The proof of the compression result
(H2) is nearly identical; moreover, a topological proof can be found in [2] for the
compression result. If we let

U = {x ∈ P : β(x) < b},
V = {x ∈ P : α(x) < c},

then the interior of V −U is given byW = (V −U)◦ = {x ∈ V : b < β(x) and α(x) <
c}. Thus U , V and W are bounded (they are subsets of V which is bounded by
condition (H1)), non-empty (by conditions (A1), (A4) and (H1)) and open subsets
of P . To prove the existence of a fixed point for our operator T in P (β, α, b, c), it
is enough for us to show that i(T,W,P ) 6= 0 since W is the interior of P (β, α, b, c).
By Corollary 2.6, P is a retract of the Banach space E since it is convex and closed.
Claim 1: Tx 6= x for all x ∈ ∂U .
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Let z0 ∈ ∂U , then β(z0) = b. We want to show that z0 is not a fixed point of
T ; so suppose to the contrary that T (z0) = z0. If α(Tz0) < a then β(Tz0) < b
by condition (A3), and if α(z0) = α(Tz0) ≥ a then β(Tz0) < b by condition (A2).
Hence in either case we have that Tz0 6= z0, thus T does not have any fixed points
on ∂U .
Claim 2: Tx 6= x for all x ∈ ∂V .

Let z1 ∈ ∂V , then α(z1) = c. We want to show that z1 is not a fixed point of
T ; so suppose to the contrary that T (z1) = z1. If β(Tz1) > d then α(Tz1) > c
by condition (A6), and if β(z1) = β(Tz1) ≤ d then α(Tz1) > c by condition (A5).
Hence in either case we have that Tz1 6= z1, thus T does not have any fixed points
on ∂V .

Let w1 ∈ {x ∈ P : a < α(x) and β(x) < b} (see condition (A1)) and let H1 :
[0, 1]× U → P be defined by

H1(t, x) = (1− t)Tx+ tw1.

Clearly, H1 is continuous and H1([0, 1]× U) is relatively compact.
Claim 3: H1(t, x) 6= x for all (t, x) ∈ [0, 1]× ∂U .

Suppose not; that is, there exists (t1, x1) ∈ [0, 1]× ∂U such that H(t1, x1) = x1.
Since x1 ∈ ∂U we have that β(x1) = b. Either α(Tx1) < a or α(Tx1) ≥ a.

Case 1: α(Tx1) < a. By condition (A3) we have β(Tx1) < b, which is a
contradiction since

b = β(x1) = β((1− t1)Tx1 + t1w1)

≤ (1− t1)β(Tx1) + t1β(w1) < b.

Case 2: α(Tx1) ≥ a. We have that α(x1) ≥ a since

α(x1) = α((1− t1)Tx1 + t1w1)

≥ (1− t1)α(Tx1) + t1α(w1) ≥ a,

and thus by condition (A2) we have β(Tx1) < b, which is the same contradiction
we arrived at in the previous case.

Therefore, we have shown that H1(t, x) 6= x for all (t, x) ∈ [0, 1]× ∂U , and thus
by the homotopy invariance property (G3) of the fixed point index

i(T,U, P ) = i(w1, U, P ),

and by the normality property (G1) of the fixed point index

i(T,U, P ) = i(w1, U, P ) = 1.

Let w2 ∈ {x ∈ P : c < α(x) and β(x) < d} (see condition (A4)) and let

H2 : [0, 1]× V → P

be defined by
H2(t, x) = (1− t)Tx+ tw2.

Clearly, H2 is continuous and H2([0, 1]× V ) is relatively compact.
Claim 4: H2(t, x) 6= x for all (t, x) ∈ [0, 1]× ∂V .

Suppose not; that is, there exists (t2, x2) ∈ [0, 1]× ∂V such that H(t2, x2) = x2.
Since x2 ∈ ∂V we have that α(x2) = c. Either β(Tx2) ≤ d or β(Tx2) > d.



EJDE-2010/63 FUNCTIONAL COMPRESSION-EXPANSION 5

Case 1: β(Tx2) > d. By condition (A6) we have α(Tx2) > c, which is a
contradiction since

c = α(x2) = α((1− t2)Tx2 + t2w2)

≥ (1− t2)α(Tx2) + t2α(w2) > c.

Case 2 : β(Tx2) ≤ d. We have that β(x2) ≤ d since

β(x2) = β((1− t2)Tx2 + t2w2)

≤ (1− t2)β(Tx2) + t2β(w2) ≤ d,

and thus by condition (A5) we have α(Tx2) > c, which is the same contradiction
we arrived at in the previous case.

Therefore, we have shown that H2(t, x) 6= x for all (t, x) ∈ [0, 1]× ∂V and thus
by the homotopy invariance property (G3) of the fixed point index

i(T, V, P ) = i(w2, V, P ),

and by the solution property (G6) of the fixed point index (since w2 6∈ V the index
cannot be nonzero) we have

i(T, V, P ) = i(w2, V, P ) = 0.

Since U and W are disjoint open subsets of V and T has no fixed points in
V − (U ∪W ) (by claims 1 and 2), by the additivity property (G2) of the fixed point
index

i(T, V, P ) = i(T,U, P ) + i(T,W,P ).
Consequently, we have

i(T,W,P ) = −1,
and thus by the solution property (G6) of the fixed point index the operator T has
a fixed point x∗ ∈W ⊂ P (β, α, b, c). �

5. Application

In this section we will illustrate the key techniques for verifying the existence of a
positive solution for a boundary value problem using our main result. In particular,
under the expansion condition (H1) we apply the properties of a Green’s function,
bound the nonlinearity by constants over some intervals, and use concavity to deal
with a singularity. To proceed, consider the second-order nonlinear focal boundary
value problem

x′′(t) + f(x(t)) = 0, t ∈ (0, 1), (5.1)

x(0) = 0 = x′(1), (5.2)

where f : R → [0,∞) is continuous. If x is a fixed point of the operator T defined
by

Tx(t) :=
∫ 1

0

G(t, s)f(x(s))ds,

where
G(t, s) = min{t, s}, (t, s) ∈ [0, 1]× [0, 1]

is the Green’s function for the operator L defined by Lx(t) := −x′′ with right-focal
boundary conditions x(0) = 0 = x′(1), then it is well known that x is a solution
of the boundary value problem (5.1), (5.2). Throughout this section of the paper
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we will use the facts that G(t, s) is nonnegative, and for each fixed s ∈ [0, 1], the
Green’s function is nondecreasing in t.

Let τ ∈ (0, 1) and define the cone P ⊂ E = C[0, 1] by

P := {x ∈ E : x is nonnegative, nondecreasing, concave and x(τ) ≥ τx(1)} ;

for x ∈ P , define the concave functional α on P by

α(x) := min
t∈[τ,1]

x(t) = x(τ)

and the convex functional β on P by

β(x) := max
t∈[0,1]

x(t) = x(1).

In the following theorem, we demonstrate how to apply the expansive condition of
Theorem 4.1 to prove the existence of at least one positive solution to (5.1), (5.2).

Theorem 5.1. If τ ∈ (0, 1) is fixed, b and c are positive real numbers with 3b ≤ c,
and f : [0,∞) → [0,∞) is a continuous function such that

(a) f(w) > c
τ(1−τ) for w ∈

[
c, c

τ

]
,

(b) f(w) is decreasing for w ∈ [0, bτ ] with f(bτ) ≥ f(w) for w ∈ [bτ, b], and
(c)

∫ τ

0
sf(bs) ds < 2b−f(bτ)(1−τ2)

2 ,
then the focal problem (5.1), (5.2) has at least one positive solution x∗ ∈ P (β, α, b, c).

Proof. If we let a = bτ and d = c/τ , then we have that a < c and b < d since
3b ≤ c. For x ∈ P (β, α, b, c), if t ∈ (0, 1), then by the properties of the Green’s
function (Tx)′′(t) = −f(x(t)) and Tx(0) = 0 = (Tx)′(1). For any y, w ∈ [0, 1] with
y ≤ w we have the following important property of the Green’s function,

min
s∈[0,1]

G(y, s)
G(w, s)

≥ y

w
; (5.3)

thus for any x ∈ P we have that

α(Tx) = Tx(τ) =
∫ 1

0

G(τ, s) f(x(s)) ds

≥
∫ 1

0

τG(1, s)f(x(s)) ds = τTx(1) = τβ(Tx).

Therefore we have that T : P → P . By the Arzela-Ascoli Theorem it is a standard
exercise to show that T is a completely continuous operator using the properties of
G and f . We also point out that P (α, c) is a bounded subset of the cone P , since
if x ∈ P (α, c), then

τβ(x) ≤ α(x) ≤ c,

and so

‖x‖ = β(x) ≤ α(x)
τ

≤ c

τ
.

Also, if x ∈ P (β, b), then
α(x) ≤ β(x) ≤ b < c,

and hence P (β, b) ⊂ P (α, c).
For any M ∈ (2b, c) the function xM defined by

xM (t) ≡
∫ 1

0

MG(t, s)ds =
Mt(2− t)

2
∈ P (β, α, b, c),
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since

α(xM ) = xM (τ) =
Mτ(2− τ)

2
<
cτ(2− τ)

2
≤ c

and

β(xM ) = xM (1) =
M

2
> b.

Consequently we have that {x ∈ P : b < β(x) and α(x) < c} 6= ∅.
Similarly, for any L ∈

(
2b

2−τ , 2b
)

the function xL defined by

xL(t) ≡
∫ 1

0

LG(t, s)ds =
Lt(2− t)

2
∈ {x ∈ P : a < α(x) and β(x) < b},

since

α(xL) = xL(τ) =
Lτ(2− τ)

2
> bτ = a

and

β(xL) = xL(1) =
L

2
< b.

Likewise, for any J ∈
(

2c
τ(2−τ) ,

2c
τ

)
, the function xJ defined by

xJ(t) ≡
∫ 1

0

JG(t, s)ds =
Jt(2− t)

2
∈ {x ∈ P : c < α(x) and β(x) < d},

since

α(xJ) = xJ(τ) =
Jτ(2− τ)

2
> c

and

β(xJ) = xJ(1) =
J

2
<
c

τ
= d.

We have that both

{x ∈ P : a < α(x) and β(x) < b} 6= ∅,

and
{x ∈ P : c < α(x) and β(x) < d} 6= ∅,

and hence conditions (A1) and (A4) of Theorem 4.1 are satisfied.
Claim 1: β(Tx) < b for all x ∈ P with β(x) = b and α(x) ≥ a. Let x ∈ P with
β(x) = b and α(x) ≥ a. By the concavity of x, for s ∈ [0, τ ] we have

x(s) ≥
(x(τ)

τ

)
s ≥ bs,

and for all s ∈ [τ, 1], we have bτ ≤ x(s) ≤ b. Hence by properties (b) and (c), it
follows that

β(Tx) =
∫ 1

0

G(1, s) f(x(s)) ds =
∫ 1

0

sf(x(s)) ds

=
∫ τ

0

sf(x(s)) ds+
∫ 1

τ

sf(x(s)) ds

≤
∫ τ

0

sf(bs) ds+ f(bτ)
∫ 1

τ

s ds

<
2b− f(bτ)(1− τ2)

2
+
f(bτ)(1− τ2)

2
= b.



8 D. R. ANDERSON, R. I. AVERY, J. HENDERSON EJDE-2010/63

Claim 2: If x ∈ P and α(Tx) < a, then β(Tx) < b. Let x ∈ P with α(Tx) < a.
Thus by the properties of G(t, s) given in (5.3),

β(Tx) =
∫ 1

0

G(1, s) f(x(s)) ds

≤
(1
τ

) ∫ 1

0

G(τ, s)f(x(s)) ds

=
(1
τ

)
α(Tx) <

(a
τ

)
= b.

Claim 3: α(Tx) > c for all x ∈ P with α(x) = c and β(x) ≤ d. Let x ∈ P with
α(x) = c and β(x) ≤ d. Then for s ∈ [τ, 1] we have

c ≤ x(s) ≤ d =
c

τ
.

Hence by property (a),

α(Tx) =
∫ 1

0

G(τ, s)f(x(s)) ds ≥
∫ 1

τ

G(τ, s) f(x(s)) ds

=
∫ 1

τ

τf(x(s)) ds >
∫ 1

τ

c

1− τ
ds = c.

Claim 4: If x ∈ P and β(Tx) > d, then α(Tx) > c. Let x ∈ P with β(Tx) > d.
Again by the properties of G given in (5.3),

α(Tx) =
∫ 1

0

G(τ, s)f(x(s)) ds

≥ τ

∫ 1

0

G(1, s)f(x(s)) ds

= τβ(Tx) > τd = c.

Therefore, the expansion hypotheses of Theorem 4.1 have been satisfied; thus the
operator T has at least one fixed point x∗ ∈ P (β, α, b, c), which is a desired solution
of (5.1), (5.2). �

Example. Let b = 1 c = 5, and τ = 1/2. Then the boundary value problem

x′′ +
1√
x

+ ex−2 = 0,

with right-focal boundary conditions

x(0) = 0 = x′(1),

has at least one positive solution x∗ which can be verified by the above theorem,
with 1 ≤ x∗(1) and x∗(τ) ≤ 5.
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