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GROWTH OF SOLUTIONS OF HIGHER-ORDER LINEAR
DIFFERENTIAL EQUATIONS

KARIMA HAMANI

Abstract. In this article, we study the growth of solutions of the linear dif-
ferential equation

f (k) +(Ak−1(z)ePk−1(z) +Bk−1(z))f (k−1) + · · ·+(A0(z)eP0(z) +B0(z))f = 0,

where k ≥ 2 is an integer, Pj(z) are nonconstant polynomials and Aj(z), Bj(z)
are entire functions, not identically zero. We determine the hyper-order of

these solutions, under certain conditions.

1. Introduction and statement of results

In this article, we assume that the reader is familiar with the fundamental results
and standard notation of the Nevanlinna value distribution theory of meromorphic
functions [7]. Let σ(f) denote the order of growth of an entire function f(z) and
σ2(f) the hyper-order of f(z), which as in [8, 11] is defined by

σ2(f) = lim sup
r→+∞

log log T (r, f)
log r

= lim sup
r→+∞

log log log M(r, f)
log r

, (1.1)

where M(r, f) = max|z|=r |f(z)|.
We define the linear measure of a set E ⊂ [0,+∞) by m(E) =

∫ +∞
0

χE(t)dt and
the logarithmic measure of a set H ⊂ [1,+∞) by lm(H) =

∫ +∞
1

χH(t)
t dt, where χE

is the characteristic function of a set E .
Several authors [2, 6, 8] have studied the second-order linear differential equation

f ′′ + h1(z)eP (z)f ′ + h0(z)eQ(z)f = 0, (1.2)

where P (z) and Q(z) are nonconstant polynomials, h1(z) and h0(z) 6≡ 0 are entire
functions satisfying σ(h1) < deg P and σ(h0) < deg Q. Gundersen showed in [6, p.
419] that if deg P 6= deg Q, then every nonconstant solution of (1.2) is of infinite
order. If deg P = deg Q, then (1.2) can have nonconstant solutions of finite order.
Indeed, f(z) = z satisfies f ′′−z3ezf ′+z2ezf = 0. Kwon [8] studied the case where
deg P = deg Q and proved the following result:
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Theorem 1.1 ([8]). Let P (z) and Q(z) be nonconstant polynomials such that

P (z) = anzn + · · ·+ a1z + a0, (1.3)

Q(z) = bnzn + · · ·+ b1z + b0, (1.4)

where ai, bi (i = 0, 1, . . . , n) are complex numbers, an 6= 0 and bn 6= 0. Let hj(z)
(j = 0, 1) be entire functions with σ(hj) < n. Suppose that arg an 6= arg bn or
an = cbn (0 < c < 1). Then every nonconstant solution f of (1.2) is of infinite
order and satisfies σ2(f) ≥ n.

Chen [3] also studied the growth of solutions of second-order linear differential
equations and obtained the following result:

Theorem 1.2 ([3]). Let Aj(z) ( 6≡ 0), Dj(z) (j = 0, 1) be entire functions with
σ(Aj) < 1, σ(Dj) < 1, a, b be complex constants such that ab 6= 0 and arg a 6= arg b
or a = cb (0 < c < 1). Then every solution f (6≡ 0) of the equation

f ′′ + (A1(z)eaz + D1(z))f ′ + (A0(z)ebz + D0(z))f = 0 (1.5)

is of infinite order.

Belaidi [1] extended Theorem 1.2 for higher-order linear differential equations as
follows.

Theorem 1.3 ([1]). Let k ≥ 2 and Pj(z) =
∑n

i=0 ai,jz
i (j = 0, 1, . . . , k − 1)

be nonconstant polynomials, where a0,j , . . . , an,j (j = 0, . . . , k − 1) are complex
numbers such that an,j 6= 0 (j = 0, 1, . . . , k− 1). Let Aj(z) ( 6≡ 0), Bj(z) ( 6≡ 0) (j =
0, 1, . . . , k−1) be entire functions. Suppose that arg an,j 6= arg an,0 or an,j = cjan,0

(0 < cj < 1) (j = 1, . . . , k − 1) and σ(Aj) < n, σ(Bj) < n (j = 0, 1, . . . , k − 1).
Then every solution f (6≡ 0) of the differential equation

f (k) +(Ak−1(z)ePk−1(z) +Bk−1(z))f (k−1) + · · ·+(A0(z)eP0(z) +B0(z))f = 0 (1.6)

is of infinite order and satisfies σ2(f) = n.

Chen [4] also considered the growth of solutions of higher-order linear differential
equations and proved the following result:

Theorem 1.4 ([4]). Let hj(z) (j = 0, 1, . . . , k − 1) (k ≥ 2) be entire functions
with σ(hj) < 1, and Hj(z) = hj(z)eajz, where aj (j = 0, 1, . . . , k − 1) are complex
numbers. Suppose that there exists as such that hs 6≡ 0, for j 6= s, if Hj 6≡ 0,
aj = cjas (0 < cj < 1); if Hj ≡ 0, we define cj = 0. Then every transcendental
solution f of the equation

f (k) + Hk−1(z)f (k−1) + · · ·+ Hs(z)f (s) + · · ·+ H0(z)f = 0 (1.7)

is of infinite order.
Furthermore, if max{c1, . . . cs−1} < c0, then every solution of (1.7) is of infinite

order.

Recently, Tu and Yi [10] obtained the following result which is an extension of
Theorem 1.1.

Theorem 1.5 ([10]). Let hj(z) (j = 0, 1, . . . , k−1) (k ≥ 2) be entire functions with
σ(hj) < n (n ≥ 1), and let Pj(z) =

∑n
i=0 ai,jz

i (j = 0, 1, . . . , k − 1) be polynomials
with degree n , where an,j (j = 0, 1, . . . , k − 1) are complex numbers such that
an,0 = |an,0|eiθ0 , an,s = |an,s|eiθs , an,0an,s 6= 0 (0 < s ≤ k − 1), θ0, θs ∈ [0, 2π),
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θ0 6= θs, h0hs 6≡ 0; for j 6= 0, s, an,j satisfies either an,j = cjan,0 (cj < 1) or
arg an,j = θs. Then every solution f (6≡ 0) of the equation

f (k) + hk−1(z)ePk−1(z)f (k−1) + · · ·+ h1(z)eP1(z)f ′ + h0(z)eP0(z)f = 0 (1.8)

is of infinite order and satisfies σ2(f) = n.

The main purpose of this article is to investigate the growth of solutions of (1.6),
and determine the hyper-order of these solutions. We shall prove the following
results:

Theorem 1.6. Let k ≥ 2 be an integer and Pj(z) =
∑n

i=0 ai,jz
i (j = 0, 1, . . . , k −

1) be nonconstant polynomials, where a0,j , a1,j , . . . , an,j (j = 0, 1, . . . , k − 1) are
complex numbers such that an,j 6= 0 (j = 0, 1, . . . , k − 1). Let Aj(z) ( 6≡ 0), Bj(z)
(6≡ 0) (j = 0, 1, . . . , k − 1) be entire functions with σ(Aj) < n and σ(Bj) < n.
Suppose that there exists s ∈ {1, . . . , k − 1} such that arg an,j 6= arg an,s (j 6=
s). Then every transcendental solution f of (1.6) is of infinite order and satisfies
σ2(f) = n.

Theorem 1.7. Let k ≥ 2 be an integer and Pj(z) =
∑n

i=0 ai,jz
i (j = 0, 1, . . . , k −

1) be nonconstant polynomials, where a0,j , a1,j , . . . , an,j (j = 0, 1, . . . , k − 1) are
complex numbers such that an,j 6= 0 (j = 0, 1, . . . , k − 1). Let Aj(z) ( 6≡ 0), Bj(z)
(6≡ 0) (j = 0, 1, . . . , k − 1) be entire functions with σ(Aj) < n and σ(Bj) < n.
Suppose that there exists s ∈ {1, . . . , k − 1} such that an,j = cjan,s (0 < cj < 1)
(j 6= s). Then every transcendental solution f of (1.6) is of infinite order and
satisfies σ2(f) = n.

Furthermore, if max{c1, . . . cs−1} < c0, then every solution of (1.6) is of infinite
order and satisfies σ2(f) = n.

Theorem 1.8. Let k ≥ 2 be an integer and Pj(z) =
∑n

i=0 ai,jz
i (j = 0, 1, . . . , k −

1) be nonconstant polynomials, where a0,j , a1,j , . . . , an,j (j = 0, 1, . . . , k − 1) are
complex numbers such that an,j 6= 0 (j = 0, 1, . . . , k − 1) and an,0 = |an,0|eiθ0 ,
θ0 ∈ [0, 2π). Let Aj(z) (6≡ 0), Bj(z) (6≡ 0) (j = 0, 1, . . . , k − 1) be entire functions
with σ(Aj) < n and σ(Bj) < n (j = 0, 1, . . . , k − 1). Suppose that there exists
s ∈ {1, . . . , k − 1} such that an,s = |an,s|eiθs , θs ∈ [0, 2π), θs 6= θ0 and for j ∈
{1, . . . , s−1, s+1, . . . , k−1}, an,j satisfies either an,j = cjan,0 (cj < 1) or arg an,j =
θs. Then every solution f (6≡ 0) of (1.6) is of infinite order and satisfies σ2(f) = n.

Theorem 1.9. Let k ≥ 2 be an integer and Pj(z) =
∑n

i=0 ai,jz
i (j = 0, 1, . . . , k −

1) be nonconstant polynomials, where a0,j , a1,j , . . . , an,j (j = 0, 1, . . . , k − 1) are
complex numbers such that an,j 6= 0 (j = 0, 1, . . . , k − 1) . Let Aj(z) (6≡ 0), Bj(z)
(6≡ 0) (j = 0, 1, . . . , k − 1) be entire functions with σ(Aj) < n and σ(Bj) < n
(j = 0, 1, . . . , k − 1). Suppose that there exist d, s ∈ {1, . . . , k − 1} such that
an,d = |an,d|eiθd , an,s = |an,s|eiθs , θd, θs ∈ [0, 2π), θd 6= θs and for j ∈ {0, . . . , k −
1}�{d, s}, an,j satisfies either an,j = cjan,d (cj < 1) or arg an,j = θs. Then every
transcendental solution f of (1.6) is of infinite order and satisfies σ2(f) = n.

2. Preliminaries

Lemma 2.1 ([5]). Let f(z) be a transcendental meromorphic function and let α > 1
and ε > 0 be given constants. Then there exist a set E1 ⊂ [1,+∞) having finite
logarithmic measure and a constant B > 0 that depends only on α and (i, j) (i, j
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positive integers with i > j) such that for all z satisfying |z| = r /∈ [0, 1] ∪ E1, we
have ∣∣ f (i)(z)

f (j)(z)

∣∣ ≤ B
[T (αr, f)

r
(logα r) log T (αr, f)

]i−j
. (2.1)

Lemma 2.2 ([4]). Let f(z) be a transcendental entire function Then there exists a
set E2 ⊂ [1,+∞) that has finite logarithmic measure such that for all z satisfying
|z| = r /∈ [0, 1] ∪ E2 and |f(z)| = M(r, f), we have∣∣ f(z)

f (s)(z)

∣∣ ≤ 2rs, (2.2)

where s ≥ 1 is an integer.

Lemma 2.3 ([9]). Let P (z) = (α+iβ)zn+. . . (α, β are real numbers, |α|+|β| 6= 0)
be a polynomial with degree n ≥ 1 and A(z) be an entire function with σ(A) < n.
Set g(z) = A(z)eP (z), z = reiθ, δ(P, θ) = α cos nθ − β sinnθ. Then for any given
ε > 0, there exists a set E3 ⊂ [1,+∞) having finite logarithmic measure such that
for any θ ∈ [0, 2π)\H (H = {θ ∈ [0, 2π) : δ(P, θ) = 0}) and for |z| = r /∈ [0, 1]∪E3,
we have

(i) if δ(P, θ) > 0, then

exp{(1− ε)δ(P, θ)rn} ≤ |g(reiθ)| ≤ exp{(1 + ε)δ(P, θ)rn}, (2.3)

(ii) if δ(P, θ) < 0, then

exp{(1 + ε)δ(P, θ)rn} ≤ |g(reiθ)| ≤ exp{(1− ε)δ(P, θ)rn}. (2.4)

Lemma 2.4 ([4]). Let k ≥ 2 be an integer and let Aj(z) (j = 0, 1, . . . , k − 1) be
entire functions of finite order. If f is a solution of the differential equation

f (k) + Ak−1(z)f (k−1) + · · ·+ A1(z)f ′ + A0(z)f = 0, (2.5)

then σ2(f) ≤ max{σ(Aj) (j = 0, 1, . . . , k − 1)}.

3. Proof of main results

3.1. Proof of Theorem 1.6. Assume f is a transcendental solution of (1.6). By
Lemma 2.1, there exist a constant B > 0 and a set E1 ⊂ [1,+∞) having finite
logarithmic measure such that for all z satisfying |z| = r /∈ [0, 1] ∪ E1, we have∣∣f (j)(z)

f (s)(z)

∣∣ ≤ Br[T (2r, f)]j−s+1 (j = s + 1, . . . , k), (3.1)

|f
(j)(z)
f(z)

| ≤ Br[T (2r, f)]j+1 (j = 1, 2, . . . , s− 1). (3.2)

By Lemma 2.2, there exists a set E2 ⊂ [1,+∞) that has finite logarithmic measure
such that for all z satisfying |z| = r /∈ [0, 1] ∪ E2 and |f(z)| = M(r, f), we have∣∣ f(z)

f (s)(z)

∣∣ ≤ 2rs. (3.3)

Since arg an,j 6= arg an,s (j 6= s), there is a ray arg z = θ ∈ [0, 2π) \ H, where
H = {θ ∈ [0, 2π) : δ(P0, θ) = 0 or . . . or δ(Pk−1, θ) = 0}, such that δ(Ps, θ) > 0,
δ(Pj , θ) < 0 (j 6= s). Set β = max{σ(Bj) (j = 0, . . . , k − 1)}. By Lemma 2.3, for
any given ε (0 < 2ε < min{1, n− β}), there exists a set E3 ⊂ [1,+∞) having finite
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logarithmic measure such that for all z with arg z = θ, |z| = r /∈ [0, 1] ∪ E3 and a
sufficiently large r, we have

|As(z)ePs(z) + Bs(z)| ≥ (1− o(1)) exp{(1− ε)δ(Ps, θ)rn} (3.4)

and
|Aj(z)ePj(z) + Bj(z)| ≤ exp{(1− ε)δ(Pj , θ)rn}+ exp{rσ(Bj)+

ε
2 }

≤ exp{rσ(Bj)+ε}

≤ exp{rβ+ε} (j 6= s).

(3.5)

We can rewrite (1.6) as

As(z)ePs(z) + Bs(z)

=
f (k)

f (s)
+ (Ak−1(z)ePk−1(z) + Bk−1(z))

f (k−1)

f (s)
+ . . .

+ (As+1(z)ePs+1(z) + Bs+1(z))
f (s+1)

f (s)
+ (As−1(z)ePs−1(z) + Bs−1(z))

f (s−1)

f

f

f (s)

+ · · ·+ (A1(z)eP1(z) + B1(z))
f ′

f

f

f (s)
+ (A0(z)eP0(z) + B0(z))

f

f (s)
.

(3.6)
Hence from (3.1)-(3.6), for all z with arg z = θ, |z| = r /∈ [0, 1] ∪ E1 ∪ E2 ∪ E3,
|f(z)| = M(r, f) and a sufficiently large r, we have

(1− o(1)) exp{(1− ε)δ(Ps, θ)rn} ≤ M1r
s+1 exp{rβ+ε}[T (2r, f)]k, (3.7)

where M1 is some positive constant. Thus 0 < 2ε < min{1, n− β} implies σ(f) =
+∞ and σ2(f) ≥ n. By Lemma 2.4, we have σ2(f) = n.

3.2. Proof of Theorem 1.7. Assume f is a transcendental solution of (1.6). Since
an,j = cjan,s (0 < cj < 1) (j 6= s), it follows that δ(Pj , θ) = cjδ(Ps, θ) (j 6= s). Put
c = max{cj(j 6= s)}. Then 0 < c < 1.We take a ray arg z = θ ∈ [0, 2π) \H, where
H = {θ ∈ [0, 2π) : δ(Ps, θ) = 0}, such that δ(Ps, θ) > 0. By Lemma 2.3, for any
given ε (0 < 2ε < 1−c

1+c ), there exists a set E3 ⊂ [1,+∞) having finite logarithmic
measure such that for all z with arg z = θ, |z| = r /∈ [0, 1] ∪ E3 and a sufficiently
large r, we have

|As(z)ePs(z) + Bs(z)| ≥ (1− o(1)) exp{(1− ε)δ(Ps, θ)rn} (3.8)

and

|Aj(z)ePj(z) + Bj(z)| ≤ (1 + o(1)) exp{(1 + ε)cδ(Ps, θ)rn} (j 6= s). (3.9)

Thus by (3.1)-(3.3), (3.6), (3.8) and (3.9), we obtain that for all z with arg z = θ,
|z| = r /∈ [0, 1] ∪ E1 ∪ E2 ∪ E3, |f(z)| = M(r, f) and a sufficiently large r,

(1− o(1)) exp{(1− ε)δ(Ps, θ)rn}

≤ M2r
s+1(1 + o(1)) exp{(1 + ε)cδ(Ps, θ)rn}[T (2r, f)]k,

(3.10)

where M2 is a positive constant. By 0 < 2ε < 1−c
1+c and (3.10), we have

exp{ (1− c)
2

δ(Ps, θ)rn} ≤ M3r
s+1[T (2r, f)]k, (3.11)

where M3 is a positive constant. Hence (3.11) implies σ(f) = +∞ and σ2(f) ≥ n.
By Lemma 2.4, we have σ2(f) = n.
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Now we prove that if max{c1, . . . cs−1} < c0, then equation (1.6) cannot have a
nonzero polynomial solution. Suppose that c′ = max{c1, . . . cs−1} < c0 and let f(z)
be a nonzero polynomial solution of equation (1.6) with deg f(z) = m. We take a
ray arg z = θ ∈ [0, 2π) \ H, where H is defined as above, such that δ(Ps, θ) > 0.
By Lemma 2.3, for any given ε (0 < 2ε < min{ 1−c

1+c , c0−c′

c0+c′ }), there exists a set
E3 ⊂ [1,+∞) having finite logarithmic measure such that for all z with arg z = θ,
|z| = r /∈ [0, 1] ∪ E3 and a sufficiently large r, we have (3.8) and (3.9).

If m ≥ s, by (1.6), (3.8) and (3.9), we obtain for all z with arg z = θ, |z| = r /∈
[0, 1] ∪ E3 and a sufficiently large r,

d1r
m−s(1− o(1)) exp{(1− ε)δ(Ps, θ)rn}

≤ |As(z)ePs(z) + Bs(z)||f (s)(z)|
≤ d2r

m(1 + o(1)) exp{(1 + ε)cδ(Ps, θ)rn},
(3.12)

where d1, d2 are positive constants. By (3.12),

exp{ (1− c)
2

δ(Ps, θ)rn} ≤ d3r
s, (3.13)

where d3 is a positive constant. Hence (3.13) is not possible.
If m < s, by (1.6), (3.8) and (3.9), we obtain for all z with arg z = θ, |z| = r /∈

[0, 1] ∪ E3 and a sufficiently large r,

d4r
s−1(1− o(1)) exp{(1− ε)c0δ(Ps, θ)rn}

≤ |A0(z)eP0(z) + B0(z)||f(z)|

≤
s−1∑
j=1

|Aj(z)ePj(z) + Bj(z)||f (j)(z)|

≤ d5r
s−2(1 + o(1)) exp{(1 + ε)cδ(Ps, θ)rn},

(3.14)

where d4, d5 are positive constants. By (3.14),

exp{ (c0 − c′)
2

δ(Ps, θ)rn} ≤ d6

r
, (3.15)

where d6 is a positive constant. This contradiction implies that if max{c1, . . . cs−1}<
c0, then every solution of (1.6) is of infinite order and satisfies σ2(f) = n.

3.3. Proof of Theorem 1.8. Assume f is a transcendental solution of (1.6). By
Lemma 2.1, there exist a constant B > 0 and a set E1 ⊂ [1,+∞) having finite
logarithmic measure such that for all z satisfying |z| = r /∈ [0, 1] ∪ E1, we have∣∣f (j)(z)

f(z)

∣∣ ≤ Br[T (2r, f)]k+1 (j = 1, 2, . . . , k). (3.16)

Set β = max{σ(Bj) (j = 0, . . . , k − 1)}. Suppose that an,j1 , . . . , an,jm
satisfy

an,jα
= cjα

an,0, jα ∈ {1, . . . , s− 1, s + 1, . . . k − 1}, α ∈ {1, . . . ,m}, 1 ≤ m ≤ k − 2
and arg an,j = θs for j ∈ {1, . . . , s − 1, s + 1, . . . , k − 1} \ {j1, . . . , jm}. Choose
a constant c satisfying max{cj1 , . . . , cjm} = c < 1. We divide the proof into two
cases: c < 0 and 0 ≤ c < 1.

Case (a): c < 0. Since θ0 6= θs, there is a ray arg z = θ ∈ [0, 2π) \ H,
where H = {θ ∈ [0, 2π) : δ(P0, θ) = 0 or δ(Ps, θ) = 0} such that δ(P0, θ) > 0 and
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δ(Ps, θ) < 0. Hence

δ(Pjα
, θ) = cjα

δ(P0, θ) < 0(α = 1, . . . ,m), (3.17)

δ(Pj , θ) = |an,j | cos(θs + nθ) < 0, (3.18)

where j ∈ {1, . . . , s − 1, s + 1, . . . , k − 1} \ {j1, . . . , jm}. By Lemma 2.3, for any
given ε (0 < 2ε < min{1, n − β}), there exists a set E3 ⊂ [1,+∞) having finite
logarithmic measure such that for all z with arg z = θ, |z| = r /∈ [0, 1] ∪ E3 and a
sufficiently large r, we have

|A0(z)eP0(z) + B0(z)| ≥ (1− o(1)) exp{(1− ε)δ(P0, θ)rn} (3.19)

and

|Aj(z)ePj(z) + Bj(z)| ≤ exp{(1− ε)δ(Pj , θ)rn}+ exp{rσ(Bj)+
ε
2 }

≤ exp{rσ(Bj)+ε}

≤ exp{rβ+ε}(j = 1, . . . , k − 1).

(3.20)

We rewrite (1.6) as

A0(z)eP0(z) + B0(z)

=
f (k)

f
+ (Ak−1(z)ePk−1(z) + Bk−1(z))

f (k−1)

f
+ . . .

+ (As(z)ePs(z) + Bs(z))
f (s)

f
+ · · ·+ (A1(z)eP1(z) + B1(z))

f ′

f
.

(3.21)

Hence by (3.16) and (3.19)-(3.21), we obtain for all z with arg z = θ, |z| = r /∈
[0, 1] ∪ E1 ∪ E3 and a sufficiently large r,

(1− o(1)) exp{(1− ε)δ(P0, θ)rn}

≤ (1 + (k − 1) exp{rβ+ε})Br[T (2r, f)]k+1

≤ kBr exp{rβ+ε}[T (2r, f)]k+1.

(3.22)

Thus 0 < 2ε < min{1, n − β} implies σ(f) = +∞ and σ2(f) ≥ n. By Lemma 2.4,
we have σ2(f) = n.

Case (b): 0 ≤ c < 1. Using the same reasoning as above, there exists a ray
arg z = θ ∈ [0, 2π) \ H, where H is defined as above, such that δ(P0, θ) > 0, and
δ(Ps, θ) < 0. Hence

δ(−cP0, θ) = −cδ(P0, θ) < 0, δ((1− c)P0, θ) = (1− c)δ(P0, θ) > 0, (3.23)

δ(Pj , θ) = |an,j | cos(θs + nθ) < 0, (3.24)

where j ∈ {1, . . . , s− 1, s + 1, . . . , k − 1} \ {j1, . . . , jm},

δ(Pj − cP0, θ) < 0, j ∈ {1, . . . , k − 1} \ {j1, . . . , jm}, (3.25)

δ(Pjα − cP0, θ) = (cjα − c)δ(P0, θ) < 0(α = 1, . . . ,m). (3.26)

By Lemma 2.3, for any given ε (0 < 2ε < 1), there exists a set E3 ⊂ [1,+∞) having
finite logarithmic measure such that for all z with arg z = θ, |z| = r /∈ [0, 1] ∪ E3
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and a sufficiently large r, we have

|A0(z)e(1−c)P0(z)| ≥ exp{(1− ε)(1− c)δ(P0, θ)rn}, (3.27)

|e−cP0(z)| ≤ exp{−(1− ε)cδ(P0, θ)rn} < M, (3.28)

|Bj(z)e−cP0(z)| ≤ exp{−(1− ε)cδ(P0, θ)rn} < M, (3.29)

|Aj(z)ePj(z)−cP0(z)| ≤ exp{(1− ε)δ(Pj − cP0, θ)rn} < M, (3.30)

where j = 1, . . . , k − 1, and M is a positive constant. We can rewrite (1.6) as

A0(z)e(1−c)P0(z) = −B0(z)e−cP0(z) + e−cP0(z) f
(k)

f

+ (Ak−1(z)ePk−1(z)−cP0(z) + Bk−1(z)e−cP0(z))
f (k−1)

f
+ . . .

+ (As(z)ePs(z)−cP0(z) + Bs(z)e−cP0(z))
f (s)

f
+ . . .

+ (A1(z)eP1(z)−cP0(z) + B1(z)e−cP0(z))
f ′

f
.

(3.31)
By (3.16), (3.27)-(3.31), for all z with |z| = r /∈ [0, 1] ∪ E1 ∪ E3 and a sufficiently
large r, we have

exp{(1− ε)(1− c)δ(P0, θ)rn} ≤ M ′r[T (2r, f)]k+1, (3.32)

where M ′ is a positive constant. Thus 0 < 2ε < 1 and (3.32) implie σ(f) = +∞
and σ2(f) ≥ n. By Lemma 2.4, we have σ2(f) = n.

Now we prove that equation (1.6) cannot have a nonzero polynomial solution.
Let f(z) be a nonzero polynomial solution of (1.6) with deg f(z) = q. Suppose
first that max{cj1 , . . . , cjm

} = c < 0. Using the same reasoning as above, there is
a ray arg z = θ ∈ [0, 2π) \H, where H is defined as above, such that δ(P0, θ) > 0,
and δ(Ps, θ) < 0. By Lemma 2.3, for any given ε (0 < 2ε < min{1, n − β}), there
exists a set E3 ⊂ [1,+∞) having finite logarithmic measure such that for all z with
arg z = θ, |z| = r /∈ [0, 1] ∪E3 and a sufficiently large r, we have (3.19) and (3.20).

By (1.6), (3.19) and (3.20), for all z with arg z = θ, |z| = r /∈ [0, 1] ∪ E3 and a
sufficiently large r, we have

γ1r
q(1− o(1)) exp{(1− ε)δ(P0, θ)rn} ≤ |A0(z)eP0(z) + B0(z)||f(z)|

≤ kγ2r
q−1 exp{rβ+ε}.

(3.33)

where γ1 and γ2 are positive constants. From (3.33),

exp{(1− ε)δ(P0, θ)rn} ≤ γ3

r
, (3.34)

where γ3 is a positive constant. This is a contradiction. Suppose now that 0 ≤ c <
1. Using the same reasoning as above, there is a ray arg z = θ ∈ [0, 2π) \H, where
H is defined as above, such that δ(P0, θ) > 0, and δ(Ps, θ) < 0. By Lemma 2.3,
for any ε (0 < 2ε < 1), there exists a set E3 ⊂ [1,+∞) having finite logarithmic
measure such that for all z with arg z = θ, |z| = r /∈ [0, 1] ∪ E3 and a sufficiently
large r, we have (3.27)-(3.30).
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By (1.6), (3.27)-(3.30), for all z with arg z = θ, |z| = r /∈ [0, 1] ∪ E3 and a
sufficiently large r, we have

γ4r
q exp{(1− ε)(1− c)δ(P0, θ)rn}

≤ |A0(z)e(1−c)P0(z)||f(z)|

≤ |B0(z)e−cP0(z)||f(z)|+ |e−cP0(z)||f (k)(z)|

+ |Ak−1(z)ePk−1(z)−cP0(z) + Bk−1(z)e−cP0(z)||f (k−1)(z)|

+ · · ·+ |A1(z)eP1(z)−cP0(z) + B1(z)e−cP0(z)||f ′(z)|
≤ γ5r

q,

(3.35)

where γ4 and γ5 are positive constants. From (3.35), we obtain for |z| = r /∈
[0, 1] ∪ E3 and a sufficiently large r,

exp{(1− ε)(1− c)δ(P0, θ)rn} ≤ γ5

γ4
. (3.36)

This is a contradiction; hence (1.6) cannot have a nonzero polynomial solution.
If arg an,j = θs (j = 1, . . . , s − 1, s + 1, . . . , k − 1), then arg an,j 6= arg an,0

(j = 1, . . . , k − 1) and by Theorem 1.3, it follows that every solution f (6≡ 0) of
(1.6) is of infinite order and satisfies σ2(f) = n.

Proof of Theorem 1.9. Assume f is a transcendental solution of (1.6). By
Lemma 2.1, there exist a constant B > 0 and a set E1 ⊂ [1,+∞) having finite
logarithmic measure such that for all z satisfying |z| = r /∈ [0, 1] ∪ E1, we have

|f
(j)(z)

f (d)(z)
| ≤ Br[T (2r, f)]j−d+1 (j = d + 1, . . . , k) (3.37)

|f
(j)(z)
f(z)

| ≤ Br[T (2r, f)]j+1 (j = 1, 2, . . . , d− 1). (3.38)

By Lemma 2.2, there exists a set E2 ⊂ [1,+∞) having finite logarithmic measure
such that for all z satisfying |z| = r /∈ [0, 1] ∪ E2 and |f(z)| = M(r, f), we have

| f(z)
f (d)(z)

| ≤ 2rd. (3.39)

Set β = max{σ(Bj) (j = 0, . . . , k − 1)}. Suppose that an,j1 , . . . , an,jm satisfy
an,jα

= cjα
an,d, jα ∈ {0, . . . , k − 1} \ {d, s}, α ∈ {1, . . . ,m}, 1 ≤ m ≤ k − 2

and arg an,j = θs for j ∈ {0, . . . , k − 1} \ {d, s, j1, . . . , jm}. Choose a constant c
satisfying max{cj1 , . . . , cjm

} = c < 1. We divide the proof into two cases: c < 0
and 0 ≤ c < 1.

Case (a): c < 0. Since θd 6= θs, there is a ray arg z = θ ∈ [0, 2π) \ H,
where H = {θ ∈ [0, 2π) : δ(Pd, θ) = 0 or δ(Ps, θ) = 0} such that δ(Pd, θ) > 0 and
δ(Ps, θ) < 0. Hence

δ(Pjα
, θ) = cjα

δ(Pd, θ) < 0 (α = 1, . . . ,m), (3.40)

δ(Pj , θ) = |an,j | cos(θs + nθ) < 0, j ∈ {0, . . . , k − 1} \ {d, s, j1, . . . , jm}. (3.41)

By Lemma 2.3, for any ε (0 < 2ε < min{1, n− β}), there exists a set E3 ⊂ [1,+∞)
having finite logarithmic measure such that for all z with arg z = θ, |z| = r /∈
[0, 1] ∪ E3 and a sufficiently large r, we have

|Ad(z)ePd(z) + Bd(z)| ≥ (1− o(1)) exp{(1− ε)δ(Pd, θ)rn} (3.42)
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and

|Aj(z)ePj(z) + Bj(z)| ≤ exp{(1− ε)δ(Pj , θ)rn}+ exp{rσ(Bj)+
ε
2 }

≤ exp{rσ(Bj)+ε}

≤ exp{rβ+ε}(j 6= d).

(3.43)

By (1.6), we have

Ad(z)ePd(z) + Bd(z)

=
f (k)

f (d)
+

(
Ak−1(z)ePk−1(z) + Bk−1(z)

)f (k−1)

f (d)
+ . . .

+
(
Ad+1(z)ePd+1(z) + Bd+1(z)

)f (d+1)

f (d)

+
(
Ad−1(z)ePd−1(z) + Bd−1(z)

)f (d−1)

f

f

f (d)
+ . . .

+ (A1(z)eP1(z) + B1(z))
f ′

f

f

f (d)
+ (A0(z)eP0(z) + B0(z))

f

f (d)
.

(3.44)

Hence by (3.37)-(3.39) and (3.42)-(3.44), we get for all z with arg z = θ, |z| = r /∈
[0, 1] ∪ E1 ∪ E2 ∪ E3, |f(z)| = M(r, f) and a sufficiently large r,

(1− o(1)) exp{(1− ε)δ(Pd, θ)rn} ≤ M1r
d+1 exp{rβ+ε}[T (2r, f)]k+1, (3.45)

where M1 is a positive constant. Thus 0 < 2ε < min{1, n− β} implies σ(f) = +∞
and σ2(f) ≥ n. By Lemma 2.4, we have σ2(f) = n.

Case (b): 0 ≤ c < 1. Using the same reasoning as above, there exists a ray
arg z = θ ∈ [0, 2π) \ H, where H is defined as above, such that δ(Pd, θ) > 0, and
δ(Ps, θ) < 0. Hence

δ(−cPd, θ) = −cδ(Pd, θ) < 0, δ((1− c)Pd, θ) = (1− c)δ(Pd, θ) > 0, (3.46)

δ(Pj , θ) = |an,j | cos(θs + nθ) < 0, j ∈ {0, . . . , k − 1} \ {d, s, j1, . . . , jm}, (3.47)

δ(Pj − cPd, θ) < 0 j ∈ {0, . . . , k − 1} \ {d, j1, . . . , jm}, (3.48)

δ(Pjα − cPd, θ) = (cjα − c)δ(Pd, θ) < 0 (α = 1, . . . ,m). (3.49)

By Lemma 2.3, for any given ε (0 < 2ε < 1), there exists a set E3 ⊂ [1,+∞) having
finite logarithmic measure such that for all z with arg z = θ, |z| = r /∈ [0, 1] ∪ E3

and a sufficiently large r, we have

|Ad(z)e(1−c)Pd(z)| ≥ exp{(1− ε)(1− c)δ(Pd, θ)rn}, (3.50)

|e−cPd(z)| ≤ exp{−(1− ε)cδ(Pd, θ)rn} < M2, (3.51)

|Bj(z)e−cPd(z)| ≤ exp{−(1− ε)cδ(Pd, θ)rn} < M2 (j = 0, . . . , k − 1). (3.52)

|Aj(z)ePj(z)−cPd(z)| ≤ exp{(1− ε)δ(Pj − cPd, θ)rn} < M2 (j 6= d), (3.53)
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where M2 is a positive constant. We can rewrite (1.6) as

Ad(z)e(1−c)Pd(z)

= −Bd(z)e−cPd(z) + e−cPd(z) f
(k)

f (d)

+ (Ak−1(z)ePk−1(z)−cPd(z) + Bk−1(z)e−cPd(z))
f (k−1)

f (d)
+ . . .

+ (Ad+1(z)ePd+1(z)−cPd(z) + Bd+1(z)e−cPd(z))
f (d+1)

f (d)

+ (Ad−1(z)ePd−1(z)−cPd(z) + Bd−1(z)e−cPd(z))
f (d−1)

f

f

f (d)

+ · · ·+ (A1(z)eP1(z)−cPd(z) + B1(z)e−cPd(z))
f ′

f

f

f (d)

+ (A0(z)eP0(z)−cPd(z) + B0(z)e−cPd(z))
f

f (d)
.

(3.54)

By (3.37)-(3.39) and (3.50)-(3.54), for all z with arg z = θ, |z| = r /∈ [0, 1] ∪ E1 ∪
E2 ∪ E3, |f(z)| = M(r, f) and a sufficiently large r, we have

exp{(1− ε)(1− c)δ(Pd, θ)rn} ≤ M3r
d+1[T (2r, f)]k+1, (3.55)

where M3 is a positive constant. Thus 0 < 2ε < 1 implies σ(f) = +∞ and
σ2(f) ≥ n. By Lemma 2.4, we have σ2(f) = n.

If arg an,j = θs (j 6= d, s), then arg an,j 6= arg an,d (j 6= d) and by Theorem 1.6,
it follows that every transcendental solution f of equation (1.6) is of infinite order
and satisfies σ2(f) = n.
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