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EXISTENCE OF SOLUTIONS FOR NONLINEAR PARABOLIC
SYSTEMS VIA WEAK CONVERGENCE OF TRUNCATIONS

ELHOUSSINE AZROUL, HICHAM REDWANE, MOHAMED RHOUDAF

Abstract. We prove an existence result for a class of nonlinear parabolic

systems. Without assumptions on the growth of some nonlinear terms, we
prove the existence of a renormalized solution.

1. Introduction

Let Ω be a bounded open subset of RN , (N ≥ 1), T > 0 and let Q := (0, T ) ×
Ω. We prove the existence of a renormalized solution for the nonlinear parabolic
systems

(bi(ui))t − div
(
a(x, ui, Dui) + Φi(ui)

)
+ fi(x, u1, u2) = 0 in Q, (1.1)

ui = 0 on Γ := (0, T )× ∂Ω, (1.2)

bi(ui)(t = 0) = bi(ui,0) in Ω, (1.3)

where i = 1, 2. Here, the vector field

a : Ω× R× RN → RN is a Carathéodory function such that (1.4)

• There exists α > 0 with

a(x, s, ξ).ξ ≥ α|ξ|p (1.5)

for almost every x ∈ Ω, for every s ∈ R, for every ξ ∈ RN .
• For each K > 0, there exists βK > 0 and a function CK in Lp′(Ω) such

that
|a(x, s, ξ)| ≤ CK(x) + βK |ξ|p−1 (1.6)

for almost every x ∈ Ω, for every s such that |s| ≤ K, and for every ξ ∈ RN .
• The vector field a is monotone in ξ; i.e.,

[a(x, s, ξ)− a(x, s, ξ′)][ξ − ξ′] ≥ 0, (1.7)

for any s ∈ R, for any (ξ, ξ′) ∈ R2N and for almost every x ∈ Ω.
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Moreover, we suppose that for i = 1, 2,

Φi : R → RN is a continuous function, (1.8)

bi : R → R is a strictly increasing C1-function with bi(0) = 0, (1.9)

fi : Ω× R× R → R is a Carathéodory function with

f1(x, 0, s) = f2(x, s, 0) = 0 a.e. x ∈ Ω,∀s ∈ R. (1.10)

and for almost every x ∈ Ω, for every s1, s2 ∈ R,

sign(si)fi(x, s1, s2) ≥ 0. (1.11)

The growth assumptions on fi are as follows: For each K > 0, there exists σK > 0
and a function FK in L1(Ω) such that

|f1(x, s1, s2)| ≤ FK(x) + σK |b2(s2)| (1.12)

a.e. in Ω, for all s1 such that |s1| ≤ K, for all s2 ∈ R.
For each K > 0, there exists λK > 0 and a function GK in L1(Ω) such that

|f2(x, s1, s2)| ≤ GK(x) + λK |b1(s1)| (1.13)

for almost every x ∈ Ω, for every s2 such that |s2| ≤ K, and for every s1 ∈ R.
Finally, we assume the following condition on the initial data ui,0:

ui,0 is a measurable function such that bi(ui,0) ∈ L1(Ω), for i = 1, 2. (1.14)

The main difficulty when dealing with problem (1.1)-(1.3) is due to the fact that
the functions a(x, ui, Dui),Φi(ui) and fi(x, u1, u2) are not in (L1

loc(Q))N in general,
since the growth of a(x, ui, Dui),Φi(ui) and fi(x, u1, u2) are not controlled with
respect to ui, so that proving existence of a weak solution (i.e. in the distribution
meaning) seems to be an arduous task. To overcome this difficulty, we use in this
paper the framework of renormalized solutions due to Lions and DiPerna [20] for
the study of Boltzmann equations (see also Lions [21] for a few applications to
fluid mechanics models). This notion was then adapted to the elliptic version of
(1.1)-(1.3) in Boccardo, Diaz, Giachetti, Murat [11], in Lions and Murat [22] and
Murat[22, 23]. At the same the equivalent notion of entropy solutions have been
developed independently by Bénilan and al. [1] for the study of nonlinear elliptic
problems.

The particular case where bi(ui) = ui and Φi = Φ, i = 1, 2 has been studied in
Redwane [25] and for the parabolic version of (1.1)-(1.3), existence and uniqueness
results are already proved in [4] (see also [30] and [24]) in the case where fi(x, u1, u2)
is replaced by f + div(g) where f ∈ L1(Q) and g ∈ Lp′(Q)

N
.

In the case where a(t, x, s, ξ) is independent of s, Φi = 0 and g = 0, existence
and uniqueness are established in [2]; in [3], and in the case where a(t, x, s, ξ)
is independent of s and linear with respect to ξ, existence and uniqueness are
established in [7].

In the case where Φi = 0 and the operator ∆pu = div |∇u|p−2∇u) p-Laplacian
replaces a nonlinear term div a(x, s, ξ)), existence of a solution for nonlinear par-
abolic systems (1.1)-(1.3) is investigated in [26, 27], in [28] and in [29], where an
existence result of as (usual) weak solution is proved.

This article is organized as follows: in Section 2, we specify the notation and
give the definition of a renormalized solution of (1.1)-(1.3). Then, in Section 3, we
establish the existence of such a solution (see Theorem 3.1).
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2. Notation

In this paper, for K > 0, we denote by TK : r 7→ min(K, max(r,−K)) the
truncation function at height K. For any measurable subset E of Q, we denote
by meas(E) the Lebesgue measure of E. For any measurable function v defined
on Q and for any real number s, χ{v<s} (respectively, χ{v=s}, χ{v>s}) denote the
characteristic function of the set {(x, t) ∈ Q ; v(x, t) < s} (respectively, {(x, t) ∈
Q; v(x, t) = s}, {(x, t) ∈ Q; v(x, t) > s}).

Definition 2.1. A couple of functions (u1, u2) defined on Q is called a renormalized
solution of (1.1)-(1.3) if for i = 1, 2 the function ui satisfies

TK(ui) ∈ Lp(0, T ;W 1,p
0 (Ω)) and bi(ui) ∈ L∞(0, T ;L1(Ω)), (2.1)

for any K ≥ 0.∫
{(t,x)∈Q ; n≤|ui(x,t)|≤n+1}

a(x, ui, Dui)Dui dx dt → 0 as n → +∞, (2.2)

and if, for every function S in W 2,∞(R) which is piecewise C1 and such that S′

has a compact support, we have

∂bi,S(ui)
∂t

− div S′(ui)a(x, ui, Dui)) + S′′(ui)a(x, ui, Dui)Dui

− div S′(ui)Φi(ui)) + S′′(ui)Φi(ui)Dui + fi(x, u1, u2)S′(ui) = 0 in D′(Q),
(2.3)

and
bi,S(ui)(t = 0) = bi,S(ui,0) in Ω, (2.4)

where bi,S(r) =
∫ r

0
b′i(s)S

′(s) ds.

Remark 2.2. Equation (2.3) is formally obtained through pointwise multiplication
of equation (1.1) by S′(ui). Note that in Definition 2.1, the gradient Dui is not
defined even as a distribution, but that due to (2.1) each term in (2.3) has a meaning
in L1(Q) + Lp′(0, T ;W−1,p′(Ω)).

Indeed if K > 0 is such that suppS′ ⊂ [−K, K], the following identifications are
made in (2.3):

• bi,S(ui) belong to L∞(Q) ∩ Lp(0, T ;W 1,p
0 (Ω)). Indeed

Dbi,S(u) = S′(ui)b′i(TK(ui))DTK(ui) ∈ (Lp(Ω))N

and

|bi,S(ui)| ≤
∫ |ui|

0

|S′(s)b′i(s)| ds ≤ K max
|r|≤K

|S′(r)b′i(r)|.

• S′(ui)a(x, ui, Dui) can be identified with S′(ui)a(x, TK(ui), DTK(ui)) a.e.
in Q. Indeed, since |TK(ui)| ≤ K a.e. in Q, assumptions (1.4) and (1.6)
imply that∣∣a(x, TK(ui), DTK(ui))

∣∣ ≤ CK(t, x) + βK |DTK(ui)|p−1 a.e. in Q.

As a consequence of (2.1) and of S′(ui) ∈ L∞(Q), it follows that

S′(ui)a(x, TK(ui), DTK(ui)) ∈ (Lp′(Q))N .
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• S′′(ui)a(x, ui, Dui)Dui can be identified with

S′′(ui)a(x, TK(ui), DTK(ui))DTK(ui)

and in view of (1.4), (1.6) and (2.1) one has

S′′(ui)a(x, TK(ui), DTK(ui))DTK(ui) ∈ L1(Q).

• S′(ui)Φi(ui) and S′′(ui)Φi(ui)Dui respectively identify with
S′(ui)Φi(TK(ui)) and S′′(ui)Φ(TK(ui))DTK(ui). Due to the properties of
S and (1.8), the functions S′, S′′ and Φ◦TK are bounded on R so that (2.1)
implies that S′(ui)Φi(TK(ui)) ∈ (L∞(Q))N and S′′(ui)Φi(TK(ui))DTK(ui)
belongs to Lp(Q).

• S′(ui)fi(x, u1, u2) identifies with S′(ui)f1(x, TK(u1), u2) a.e. in Q
(or S′(ui)f2(x, u1, TK(u2)) a.e. in Q). Indeed, since |TK(ui)| ≤ K a.e. in
Q, assumptions (1.12) and (1.13) imply that∣∣f1(x, TK(u1), u2)

∣∣ ≤ FK(x) + σK |b2(u2)| a.e. in Q

and ∣∣f2(x, u1, TK(u2))
∣∣ ≤ GK(x) + σK |b1(u1)| a.e. in Q.

As a consequence of (2.1) and of S′(ui) ∈ L∞(Q), it follows that

S′(u1)f1(x, TK(u1), u2) ∈ L1(Q) and S′(u2)f2(x, u1, TK(u2)) ∈ L1(Q).

The above considerations show that (2.3) takes place in D′(Q) and that ∂bi,S(ui)
∂t

belongs to Lp′(0, T ;W−1,p′(Ω))+L1(Q), which in turn implies that ∂bi,S(ui)
∂t belongs

to L1(0, T ;W−1,s(Ω)) for all s < inf(p′, N
N−1 ). It follows that bi,S(ui) belongs to

C0([0, T ];W−1,s(Ω)) so that the initial condition (2.4) makes sense.

3. Existence result

This section is devoted to the proof of the following existence theorem.

Theorem 3.1. Under assumptions (1.4)-(1.14), there exists at least a renormalized
solution (u1, u2) of Problem (1.1)-(1.3).

Proof. The proof is divided into 9 steps. In step1, we introduce an approximate
problem and step 2 is devoted to establish a few a priori estimates. In step 3, we
prove some properties of the limit ui of the approximate solutions uε

i . In step 4, we
define a time regularization of the field TK(ui) and we establish Lemma 3.2 which
allows to control the parabolic contribution that arises in the monotonicity method
when passing to the limit. In step 5, we prove an energy estimate (see Lemma 3.3)
which is a key point for the monotonicity arguments that are developed in Step 6
and Step 7. In Step 8, we prove that ui satisfies (2.2) and finally, in step 9, we
prove that ui satisfies properties (2.3) and (2.4) of Definition 2.1. �

Step 1. Let us introduce the following regularization of the data: for ε > 0 and
i = 1, 2

bi,ε(s) = bi(T 1
ε
(s)) + ε s ∀s ∈ R, (3.1)

aε(x, s, ξ) = a(x, T 1
ε
(s), ξ) a.e. in Ω,∀s ∈ R,∀ξ ∈ RN , (3.2)

Φi,ε is a Lipschitz continuous bounded function from R into RN (3.3)



EJDE-2010/68 EXISTENCE OF SOLUTIONS 5

such that Φε
i converges uniformly to Φi on any compact subset of R as ε tends to

0.

fε
1 (x, s1, s2) = f1(x, T 1

ε
(s1), T 1

ε
(s2)) a.e. in Ω,∀s1, s2 ∈ R, (3.4)

fε
2 (x, s1, s2) = f2(x, T 1

ε
(s1), T 1

ε
(s2)) a.e. in Ω,∀s1, s2 ∈ R, (3.5)

uε
i,0 ∈ C∞

0 (Ω), bi,ε(uε
i,0) → bi(ui,0) in L1(Ω) as ε tends to 0. (3.6)

Let us now consider the regularized problem
∂bi,ε(uε)

∂t
− div

(
aε(x, uε, Duε) + Φi,ε(uε)

)
+ fε

i (x, uε
1, u

ε
2) = 0 in Q, (3.7)

uε
i = 0 on (0, T )× ∂Ω, (3.8)

bi,ε(uε
i )(t = 0) = bi,ε(uε

i,0) in Ω. (3.9)

In view of (1.9) and (3.1), for i = 1, 2, we have

b′i,ε(s) ≥ ε, |bi,ε(s)| ≤ max
|s|≤ 1

ε

|bi(s)|+ 1 ∀s ∈ R,

In view of (1.6), (1.12) and (1.13), aε, f
ε
1 and fε

2 satisfy: There exists Cε ∈
Lp′(Ω), Fε ∈ L1(Ω), Gε ∈ L1(Ω) and βε > 0, σε > 0, λε > 0, such that

|aε(x, s, ξ)| ≤ Cε(x) + βε|ξ|p−1 a.e. in x ∈ Ω,∀s ∈ R,∀ξ ∈ RN .

|fε
1 (x, s1, s2)| ≤ Fε(x) + σε max

|s|≤ 1
ε

|bi(s)| a.e. in x ∈ Ω,∀s1, s2 ∈ R,

|fε
2 (x, s1, s2)| ≤ Gε(x) + λε max

|s|≤ 1
ε

|bi(s)| a.e. in x ∈ Ω,∀s1, s2 ∈ R.

As a consequence, proving the existence of a weak solution uε
i ∈ Lp(0, T ;W 1,p

0 (Ω))
of (3.7)-(3.9) is an easy task (see e.g. [29, 26, 27]).
Step 2. The estimates derived in this step rely on usual techniques for problems
of type (3.9)-(3.13) and we just sketch the proof of them (the reader is referred to
[2, 3, 7, 10, 4, 5] or to [11, 22, 23] for elliptic versions of (3.9)-(3.13)).

Using TK(uε
i ) as a test function in (3.7) leads to∫

Ω

bK
i,ε(u

ε
i )(t) dx +

∫ t

0

∫
Ω

aε(x, uε
i , Duε

i )DTK(uε
i ) dx ds

+
∫ t

0

∫
Ω

Φi,ε(uε
i )DTK(uε

i ) dx ds +
∫ t

0

∫
Ω

fε
i (x, uε

1, u
ε
2)TK(uε

i ) dx ds

=
∫

Ω

bK
i,ε(u

ε
i,0) dx

(3.10)

for i = 1, 2, for almost every t in (0, T ), and where bK
i,ε(r) =

∫ r

0
TK(s)b′i,ε(s) ds. The

Lipschitz character of Φi,ε, Stokes formula together with the boundary condition
(3.8) allow to obtain obtain∫ t

0

∫
Ω

Φi,ε(uε
i )DTK(uε

i ) dx ds = 0, (3.11)

for almost any t ∈ (0, T ). Now, as 0 ≤ bK
i,ε(u

ε
i,0) ≤ K|bi,ε(uε

i,0)| a.e. in Ω, it follows
that 0 ≤

∫
Ω

bK
i,ε(u

ε
i,0) dx ≤ K

∫
Ω
|bi,ε(uε

i,0)| dx. Since aε satisfies (3.2), fε
i satisfies

(3.4), (3.5), we deduce from (3.14) ( taking into account the properties of bK
i,ε and

uε
i,0 ) that

TK(uε
i ) is bounded in Lp(0, T ;W 1,p

0 (Ω)) (3.12)
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independently of ε for any K ≥ 0.
Proceeding as in [3, 7, 4], we prove that for any S ∈ W 2,∞(R) such that S′ is

compact (suppS′ ⊂ [−K, K])

S(bi,ε(uε
i )) is bounded in Lp(0, T ;W 1,p

0 (Ω)), (3.13)

and
∂S(bi,ε(uε

i ))
∂t

is bounded in L1(Q) + Lp′(0, T ;W−1,p′(Ω)), (3.14)

independently of ε, as soon as ε < 1
K . Due to the definition (3.1) of bε, it is clear

that

{−K ≤ bi,ε(uε
i ) ≤ K} ⊂ {−K ≤ bi(uε

i ) ≤ K} = {b−1
i (−K) ≤ uε

i ≤ b−1
i (K)}

as long as ε < 1
K . As a first consequence we have

DS(bi,ε(uε
i )) = S′(bi,ε(uε

i ))b
′
i,ε(TK∗

i
(uε

i ))DTK∗
i
(uε

i ) a.e. in Q. (3.15)

as long as ε < 1
K , and K∗

i = max(|b−1
i (−K)|, b−1

i (K)). Secondly, the following
estimate holds true

‖S′(bi,ε(uε
i ))b

′
i,ε(TK∗

i
(uε

i ))‖L∞(Q) ≤ ‖S′‖L∞(R)

(
max
|r|≤K∗

i

(b′i(r)) + 1
)
,

as long as ε < 1
K .

As a consequence of (3.12), (3.15) we obtain (3.13). To show that (3.14) holds,
we multiply the equation for uε in (2.3) by S′(bi,ε(uε

i )) to obtain

∂S(bi,ε(uε))
∂t

= div
(
S′(bε(uε

i ))aε(x, uε
i , Duε

i )Duε
i

)
− S′′(bi,ε(uε

i ))b
′
i,ε(u

ε
i )aε(x, uε

i , Duε
i )Duε

i Duε
i + div Φi,ε(uε)S′(bi,ε(uε)))

− S′′(bi,ε(uε
i ))b

′
i,ε(u

ε
i )Φi,ε(uε

i )Duε
i + fε

i (x, uε
1, u

ε
2)S

′(bi,ε(uε
i )) = 0,

(3.16)

in D′(Q). Since suppS′ and suppS′′ are both included in [−K, K], uε
i may be

replaced by TK∗
i
(uε

i ) in each of these terms, where K∗
i = max(|b−1

i (−K)|, b−1
i (K)).

As a consequence, each term in the right hand side of (3.16) is bounded either in
Lp′(0, T ;W−1,p′(Ω)) or in L1(Q). (see [4, 7]). As a consequence of (3.12), (3.16)
we then obtain (3.14).

Now for fixed K > 0 : aε(x, TK(uε
i ), DTK(uε

i )) = a(x, TK(uε
i ), DTK(uε

i )) a.e. in
Q as long as ε < 1

K , while assumption (1.6) gives∣∣aε(x, TK(uε
i ), DTK(uε

i ))
∣∣ ≤ CK(x) + βK |DTK(uε

i )|p−1

where βK > 0 and CK ∈ Lp′(Q). In view of (3.12), we deduce that

a
(
x, TK(uε

i ), DTK(uε
i )

)
is bounded in (Lp′(Q))N . (3.17)

independently of ε for ε < 1
K .

For any integer n ≥ 1, consider the Lipschitz continuous function θn defined
through

θn(r) = Tn+1(r)− Tn(r)

We remark that ‖θn‖L∞(R) ≤ 1 for any n ≥ 1 and that θn(r) → 0 for any r when
n tends to infinity.
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Using the admissible test function θn(uε) in (3.7) leads to∫
Ω

bn
i,ε(u

ε
i )(t) dx +

∫ t

0

∫
Ω

aε(x, uε
i , Duε

i )Dθn(uε
i ) dx ds

+
∫ t

0

∫
Ω

Φi,ε(uε
i )Dθn(uε

i ) dx ds +
∫ t

0

∫
Ω

fε
i (x, uε

1, u
ε
2)θn(uε

i ) dx ds

=
∫

Ω

bn
i,ε(u

ε
i,0) dx,

(3.18)

for almost any t in (0, T ) and where bn
i,ε(r) =

∫ r

0
b′i,ε(s)θn(s) ds.

The Lipschitz character of Φε, Stokes formula together with the boundary con-
dition (3.8) allow to obtain∫ t

0

∫
Ω

Φi,ε(uε)Dθn(uε
i ) dx ds = 0. (3.19)

Since bn
i,ε(.) ≥ 0, fε

i satisfies (1.11), we have∫ t

0

∫
Ω

a(x, uε
i , Duε

i )Dθn(uε
i ) dx ds ≤

∫
Ω

bn
i,ε(u

ε
i,0) dx, (3.20)

for almost t ∈ (0, T ) and for ε < 1
n+1 .

Step 3. Arguing again as in [3, 7, 4, 5], estimates (3.13)and (3.14) imply that for
a subsequence still indexed by ε,

uε
i converges almost every where to ui in Q (3.21)

and thanks to (3.12),

TK(uε
i ) converges weakly to TK(ui) in Lp(0, T ;W 1,p

0 (Ω)), (3.22)

θn(uε
i ) ⇀ θn(ui) weakly in Lp(0, T ;W 1,p

0 (Ω)) (3.23)

aε

(
x, TK(uε

i ), DTK(uε
i )

)
⇀ Xi,K weakly in (Lp′(Q))N . (3.24)

as ε tends to 0 for any K > 0 and any n ≥ 1. Here, for any K > 0 and for
i = 1, 2, Xi,K belongs to (Lp′(Q))N .

We now establish that bi(ui) belongs to L∞(0, T ;L1(Ω)). Indeed using 1
σ Tσ(uε

i )
as a test function in (3.7) leads to

1
σ

∫
Ω

bσ
i,ε(u

ε
i )(t) dx +

1
σ

∫ t

0

∫
Ω

aε(x, uε
i , Duε

i )DTσ(uε
i ) dx ds

+
1
σ

∫ t

0

∫
Ω

Φi,ε(uε
i )DTσ(uε

i ) dx ds +
1
σ

∫ t

0

∫
Ω

fε
i (x, uε

1, u
ε
2)Tσ(uε

i ) dx ds

=
1
σ

∫
Ω

bσ
i,ε(u

ε
i,0) dx,

(3.25)

for almost any t in (0, T ). Where, bn
i,ε(r) =

∫ r

0
b′i,ε(s)Tσ(s) ds.

The Lipschitz character of Φε, Stokes formula together with the boundary con-
dition (3.8) allow to obtain

1
σ

∫ t

0

∫
Ω

Φi,ε(uε
i )DTσ(uε

i ) dx ds = 0. (3.26)
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Since aε satisfies (1.5) and fε
i satisfies (1.11), letting σ go to zero, it follows that∫

Ω

|bi,ε(uε
i )(t)| dx ≤ ‖bi,ε(uε

i,0)‖L1(Ω) (3.27)

for almost t ∈ (0, T ). Recalling (3.6), (3.21) and (3.27) makes it possible to pass to
the limit-inf and we show that bi(ui) belongs to L∞(0, T ;L1(Ω)).

We are now in a position to exploit (3.20). The pointwise convergence of uε to
u and bi,ε(uε

0) to bi(u0) imply that

lim sup
ε→0

∫ t

0

∫
Ω

a(x, uε
i , Duε

i )Dθn(uε
i ) dx ds ≤

∫
Ω

bn
i (ui,0) dx, (3.28)

Since θn converge to zero everywhere as n goes to zero, the Lebesgue’s convergence
theorem permits to conclude that

lim
n→+∞

lim sup
ε→0

∫
{n≤|uε

i |≤n+1}
aε(x, uε

i , Duε
i )Duε

i dx dt = 0. (3.29)

Step 4. This step is devoted to introduce for K ≥ 0 fixed, a time regularization
of the function TK(ui) in order to perform the monotonicity method which will be
developed in Step 5 and Step 6. This kind of regularization has been first introduced
by Landes (see Lemma 6 and Proposition 3, p. 230 and Proposition 4, p. 231 in
[18]). More recently, it has been exploited in [9] and [16] to solve a few nonlinear
evolution problems with L1 or measure data.

This specific time regularization of TK(ui) (for fixed K ≥ 0) is defined as follows.
let us consider the unique solution TK(ui)µ ∈ L∞(Q) ∩ Lp(0, T ;W 1,p

0 (Ω)) of the
monotone problem:

∂TK(ui)µ

∂t
+ µ

(
TK(ui)µ − TK(ui)

)
= 0 in D′(Q). (3.30)

TK(ui)µ(t = 0) = 0 in Ω. (3.31)

We remark that for µ > 0 and K ≥ 0,

∂TK(ui)µ

∂t
∈ Lp(0, T ;W 1,p

0 (Ω)). (3.32)

The behavior of TK(ui)µ as µ → +∞ is investigated in [18] (see also [16] and [17])
and we just recall here that (3.30)-(3.31) imply that

TK(ui)µ → TK(ui) a.e. in Q , (3.33)

and in L∞(Q) weak ? and strongly in Lp(0, T ;W 1,p
0 (Ω)) as µ → +∞.

‖TK(ui)µ‖L∞(Q) ≤ K (3.34)

for any µ and any K ≥ 0.
Let vi,j ∈ C∞

0 (Ω), such that vi,j converges almost everywhere to ui,0 in Ω. And
let us consider

TK(ui)µ,j = TK(ui)µ + e−µtTK(vi,j)
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is a smooth approximation of TK(ui). We remark that for µ > 0, j > 0 and K ≥ 0,
we have |TK(ui)µ,j | ≤ K and

∂TK(ui)µ,j

∂t
= µ

(
TK(ui)− TK(ui)µ,j

)
, (3.35)

TK(ui)µ,j(0) = TK(vi,j), (3.36)

TK(ui)µ,j → TK(ui) strongly in Lp(0, T ;W 1,p
0 (Ω)), (3.37)

as µ tends to infinity.
We denote by w(ε, µ, j) the quantities such that

lim
j→+∞

lim
µ→+∞

lim
ε→0

w(ε, µ, j) = 0.

The main estimate is as follows.

Lemma 3.2. Let K ≥ 0 be fixed. Let S be an increasing C∞(R)-function such that
S(r) = r for |r| ≤ K and supp(S′) is compact. Then

lim inf
µ→+∞

lim
ε→0

∫ T

0

∫ s

0

〈∂bi,S(uε
i )

∂t
,
(
TK(uε

i )− (TK(ui))µ

)〉
dt ds ≥ 0

where 〈, 〉 denotes the duality pairing between L1(Ω) + W−1,p′(Ω) and L∞(Ω) ∩
W 1,p

0 (Ω). and where bi,S(r) =
∫ r

0
b′i(s)S(s) ds.

The proof of the above Lemma can be found in [24].
Step 5. In this step we prove the following Lemma which is the key point in the
monotonocity arguments that will be developed in Step 6.

Lemma 3.3. The subsequence of uε defined is Step 3 satisfies: For any K ≥ 0,

lim sup
ε→0

∫ T

0

∫ t

0

∫
Ω

a(uε
i , DTK(uε

i ))DTK(uε
i ) dx ds dt

≤
∫ T

0

∫ t

0

∫
Ω

Xi,KDTK(ui) dx ds dt

(3.38)

Proof. We first introduce a sequence of increasing C∞(R)-functions Sn such that,
for any n ≥ 1

Sn(r) = r for |r| ≤ n, supp(S′n) ⊂ [−(n + 1), (n + 1)], ‖S′′n‖L∞(R) ≤ 1. (3.39)

Pointwise multiplication of (3.7) by S′n(uε
i ) (which is licit) leads to

∂bi,Sn
(uε

i )
∂t

− div
(
Sn(uε

i )aε(x, uε
i , Duε

i )
)

+ S′′n(uε
i )aε(x, uε

i , Duε
i )Duε

i

− div
(
Φi,ε(uε

i )S
′
n(uε

i )
)

+ S′′n(uε
i )Φi,ε(uε

i )Duε
i + fε

i (x, uε
1, u

ε
2)S

′
n(uε

i ) = 0
(3.40)

in D′(Q). We use the sequence TK(u)µ of approximations of TK(u) defined by
(3.30), (3.31) of Step 4 and plug the test function TK(uε)− TK(u)µ (for ε > 0 and
µ > 0) in (3.40). Through setting, for fixed K ≥ 0,

W ε
i,µ = TK(uε

i )− TK(ui)µ (3.41)



10 E. AZROUL, H. REDWANE, M. RHOUDAF EJDE-2010/68

we obtain upon integration over (0, t) and then over (0, T ),∫ T

0

∫ t

0

〈∂bi,Sn(uε
i )

∂t
,W ε

i,µ

〉
ds dt

+
∫ T

0

∫ t

0

∫
Ω

S′n(uε
i )aε(x, uε

i , Duε
i )DW ε

i,µ dx ds dt

+
∫ T

0

∫ t

0

∫
Ω

S′′n(uε
i )W

ε
i,µaε(x, uε

i , Duε
i )Duε

i dx ds dt

+
∫ T

0

∫ t

0

∫
Ω

Φi,ε(uε
i )S

′
n(uε

i )DW ε
i,µ dx ds dt

+
∫ T

0

∫ t

0

∫
Ω

S′′n(uε
i )W

ε
i,µΦi,ε(uε

i )Duε
i dx ds dt

+
∫ T

0

∫ t

0

∫
Ω

fε
i (x, uε

1, u
ε
2)S

′
n(uε

i )W
ε
i,µ dx ds dt = 0

(3.42)

Next we pass to the limit as ε tends to 0, then µ tends to +∞ and then n tends
to +∞, the real number K ≥ 0 being kept fixed. In order to perform this task we
prove below the following results for fixed K ≥ 0:

lim inf
µ→+∞

lim
ε→0

∫ T

0

∫ t

0

〈∂bi,Sn(uε
i )

∂t
,W ε

i,µ

〉
ds dt ≥ 0 for any n ≥ K, (3.43)

lim
µ→+∞

lim
ε→0

∫ T

0

∫ t

0

∫
Ω

S′n(uε
i )Φi,ε(uε

i )DW ε
i,µ dx ds dt = 0 for any n ≥ 1, (3.44)

lim
µ→+∞

lim
ε→0

∫ T

0

∫ t

0

∫
Ω

S′′n(uε
i )W

ε
i,µΦi,ε(uε

i )Duε
i dx ds dt = 0 for any n, (3.45)

lim
n→+∞

lim
µ→+∞

lim
ε→0

∣∣ ∫ T

0

∫ t

0

∫
Ω

S′′n(uε
i )W

ε
i,µaε(uε

i , Duε
i )Duε

i dx ds dt
∣∣ = 0, (3.46)

lim
µ→+∞

lim
ε→0

∫ T

0

∫ t

0

∫
Ω

fε
i (x, uε

1, u
ε
2)S

′
n(uε

i )W
ε
i,µ dx ds dt = 0 for any n ≥ 1. (3.47)

�

Proof of (3.43). In view of (3.41) of W ε
i,µ, Lemma 3.2 applies with S = Sn for

fixed n ≥ K. As a consequence (3.43) holds.
Proof of (3.44). For fixed n ≥ 1, we have

S′n(uε
i )Φi,ε(uε

i )DW ε
i,µ = S′n(uε

i )Φi,ε(Tn+1(uε
i ))DW ε

i,µ (3.48)

a.e. in Q, and for all ε ≤ 1
n+1 , and where suppS′n ⊂ [−(n + 1), n + 1].

Since S′n is smooth and bounded, (1.8), (3.5) and (3.22) lead to

S′n(uε
i )Φi,ε(Tn+1(uε

i )) → S′n(ui)Φi(Tn+1(ui)) (3.49)

a.e. in Q and in L∞(Q) weak ?, as ε tends to 0. For fixed µ > 0, we have

W ε
i,µ ⇀ TK(ui)− TK(ui)µ weakly in Lp(0, T ;W 1,p

0 (Ω)) (3.50)
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and a.e. in Q and in L∞(Q) weak ?, as ε tends to 0. As a consequence of (3.48),
(3.49) and (3.50) we deduce that

lim
ε→0

∫ T

0

∫ t

0

∫
Ω

S′n(uε
i )Φi,ε(uε

i )DW ε
i,µ dx ds dt

=
∫ T

0

∫ t

0

∫
Ω

S′n(ui)Φi(ui)
[
DTK(ui)−DTK(ui)µ

]
dx ds dt

(3.51)

for any µ > 0. Appealing now to (3.33) and passing to the limit as µ → +∞ in
(3.51) allows to conclude that (3.44) holds.

Proof of (3.45). For fixed n ≥ 1, and by the same arguments as those which
lead to (3.48), we have

S′′n(uε
i )Φi,ε(uε

i )Duε
i W

ε
i,µ = S′′n(uε

i )Φi,ε(Tn+1(uε
i ))DTn+1(uε

i )W
ε
i,µ a.e. in Q.

From (1.8), (3.3) and (3.22), it follows that for any µ > 0,

lim
ε→0

∫ T

0

∫ t

0

∫
Ω

S′′n(uε
i )Φi,ε(uε

i )Duε
i W

ε
i,µ dx ds dt

=
∫ T

0

∫ t

0

∫
Ω

S′′n(ui)Φi(Tn+1(ui))DTn+1(ui)Wi,µ

[
DTK(ui)−DTK(ui)µ

]
dx ds dt

with the help of (3.37) passing to the limit, as µ tends to +∞, in the above equality,
we find (3.45).

Proof of (3.46). For any n ≥ 1 fixed, we have supp(S′′n) ⊂ [−(n + 1),−n] ∪
[n, n + 1]. As a consequence

∣∣ ∫ T

0

∫ t

0

∫
Ω

S′′n(uε
i )aε(x, uε

i , Duε
i )Duε

i W
ε
i,µ dx ds dt

∣∣
≤ T‖S′′n‖L∞(R)‖W ε

i,µ‖L∞(Q)

∫
{n≤|uε

i |≤n+1}
aε(x, uε

i , Duε
i )Duε

i dx dt,

for any n ≥ 1, and any µ > 0. The above inequality together with (3.34) and (3.39)
make it possible to obtain

lim sup
µ→+∞

lim sup
ε→0

∣∣ ∫ T

0

∫ t

0

∫
Ω

S′′n(uε
i )aε(uε

i , Duε
i )Duε

i W
ε
i,µ dx ds dt

∣∣
≤ Clim sup

ε→0

∫
{n≤|uε

i |≤n+1}
aε(uε

i , Duε
i )Duε

i dx dt,

(3.52)

for any n ≥ 1, where C is a constant independent of n. Using (3.29) we pass to the
limit as n tends to +∞ in (3.52) and establish (3.46).

Proof of (3.47). For fixed n ≥ 1, we have,

fε
1 (x, uε

1, u
ε
2)S

′
n(uε

1) = f1(x, Tn+1(uε
1), T 1

ε
(uε

2))S
′
n(uε

1),

fε
2 (x, uε

1, u
ε
2)S

′
n(uε

2) = f2(x, T 1
ε
(uε

1), Tn+1(uε
2))S

′
n(uε

2)
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a.e. in Q, and for all ε ≤ 1
n+1 . In view of (1.10), (3.21) and (3.22), Lebesgue’s

convergence theorem implies that for any µ > 0 and any n ≥ 1

lim
ε→0

∫ T

0

∫ t

0

∫
Ω

fε
1 (x, uε

1, u
ε
2)S

′
n(uε

i )W
ε
µ dx ds dt

=
∫ T

0

∫ t

0

∫
Ω

f1(x, u1, u2)S′n(ui)
(
TK(ui)− TK(ui)µ

)
dx ds dt.

Now for fixed n ≥ 1, using (3.33) permits to pass to the limit as µ tends to +∞ in
the above equality to obtain (3.47).

We now turn back to the proof of Lemma 3.3, due to (3.43), (3.44), (3.45), (3.46)
and (3.47), we are in a position to pass to the lim-sup when ε tends to zero, then
to the limit-sup when µ tends to +∞ and then to the limit as n tends to +∞ in
(3.42). We obtain using the definition of W ε

µ that for any K ≥ 0,

lim
n→+∞

lim sup
µ→+∞

lim sup
ε→0

∫ T

0

∫ t

0

∫
Ω

S′n(uε
i )aε(uε

i , Duε
i )

(
DTK(uε

i )

−DTK(ui)µ

)
dx ds dt ≤ 0.

Since S′n(uε
i )aε(uε

i , Duε
i )DTK(uε

i ) = a(uε
i , Duε

i )DTK(uε
i ) for ε ≤ 1

K and K ≤ n.
The above inequality implies that for K ≤ n,

lim sup
ε→0

∫ T

0

∫ t

0

∫
Ω

aε(x, uε
i , Duε

i )DTK(uε
i ) dx ds dt

≤ lim
n→+∞

lim sup
µ→+∞

lim sup
ε→0

∫ T

0

∫ t

0

∫
Ω

S′n(uε
i )aε(x, uε

i , Duε
i )DTK(ui)µ dx ds dt

(3.53)

The right hand side of (3.53) is computed as follows: In view of (3.2) and (3.40),
we have for ε ≤ 1

n+1 ,

S′n(uε
i )aε(x, uε

i , Duε
i ) = S′n(uε

i )a
(
x, Tn+1(uε

i ), DTn+1(uε
i )

)
a.e. in Q.

Due to (3.24), it follows that for fixed n ≥ 1,

S′n(uε
i )aε(uε

i , Duε
i ) ⇀ S′n(ui)Xi,n+1 weakly in (Lp′(Q))N ,

when ε tends to 0.
The strong convergence of TK(ui)µ to TK(ui) in Lp(0, T ;W 1,p

0 (Ω)) as µ tends to
+∞, allows then to conclude that

lim
µ→+∞

lim
ε→0

∫ T

0

∫ t

0

∫
Ω

S′n(uε
i )aε(x, uε

i , Duε
i )DTK(ui)µ dx ds dt

=
∫ T

0

∫ t

0

∫
Ω

S′n(ui)Xi,n+1DTK(ui) dx ds dt

=
∫ T

0

∫ t

0

∫
Ω

Xi,n+1DTK(ui) dx ds dt

(3.54)

as long as K ≤ n, since S′n(r) = 1 for |r| ≤ n. Now for K ≤ n, we have

a
(
x, Tn+1(uε

i ), DTn+1(uε
i )

)
χ{|uε

i |<K} = a
(
x, TK(uε

i ), DTK(uε
i )

)
χ{|uε

i |<K},

a.e. in Q. Passing to the limit as ε tends to 0, we obtain

Xi,n+1χ{|ui|<K} = Xi,Kχ{|ui|<K} a.e. in Q− {|ui| = K} for K ≤ n. (3.55)
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As a consequence of (3.55), for K ≤ n, we have

Xn+1DTK(ui) = XKDTK(ui) a.e. in Q. (3.56)

Taking into account (3.53), (3.54) and (3.56), we conclude that (3.38) holds true
and the proof of Lemma 3.3 is complete.

Step 6. In this step, we prove the following monotonicity estimate.

Lemma 3.4. The subsequence of uε
i defined in step 3 satisfies: For any K ≥ 0,

lim
ε→0

∫ T

0

∫ t

0

∫
Ω

[
a(TK(uε

i ), DTK(uε
i ))− a(TK(uε

i ), DTK(ui))
]

×
[
DTK(uε

i )−DTK(ui)
]
dx ds dt = 0 .

(3.57)

Proof. Let K ≥ 0 be fixed. The monotone character (1.7) of a(s, ξ) with respect to
ξ implies that∫ T

0

∫ t

0

∫
Ω

[
a(TK(uε

i ), DTK(uε
i ))− a(TK(uε

i ), DTK(ui))
]

×
[
DTK(uε

i )−DTK(ui)
]
dx ds dt ≥ 0,

(3.58)

In order to pass to the limit-sup as ε tends to 0 in (3.58), let us recall first that
(1.4), (1.6) and (3.21) imply

a(TK(uε
i ), DTK(ui)) → a(TK(ui), DTK(ui)) a.e. in Q,

as ε tends to 0, and that∣∣a(TK(uε
i ), DTK(ui))

∣∣ ≤ CK(t, x) + βK |DTK(ui)|p−1

a.e. in Q, uniformly with respect to ε. It follows that when ε tends to 0,

a
(
TK(uε

i ), DTK(ui)
)
→ a

(
TK(ui), DTK(ui)

)
strongly in (Lp′(Q))N . (3.59)

Using (3.38) of Lemma 3.3, (3.22), (3.24) and (3.59), we can pass to the lim-sup as
ε tends to zero in (3.58) to obtain (3.57) of Lemma 3.4. �

Step 7. In this step we identify the weak limit Xi,K and we prove the weak L1

convergence of the “truncated” energy a
(
TK(x, uε

i ), DTK(uε
i )

)
DTK(uε

i ) as ε tends
to 0.

Lemma 3.5. For fixed K ≥ 0, as ε tends to 0, we have

Xi,K = a
(
x, TK(uε

i ), DTK(uε
i )

)
a.e. in Q. (3.60)

Also, as ε tends to 0,

a
(
TK(uε

i ), DTK(uε
i )

)
DTK(uε

i ) ⇀ a
(
TK(ui), DTK(ui)

)
DTK(ui), (3.61)

weakly in L1(Q).

Proof. The proof is standard once we remark that for any K ≥ 0, any 0 < ε < 1
K

and any ξ ∈ RN

aε(x, TK(uε
i ), ξ) = a(x, TK(uε

i ), ξ) = a 1
K

(x, TK(uε
i ), ξ) a.e. in Q
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which together with (3.24), (3.59) and (3.57) of Lemma 3.4 imply

lim
ε→0

∫ T

0

∫ t

0

∫
Ω

a 1
K

(
x, TK(uε

i ), DTK(uε
i )

)
DTK(uε

i ) dx ds dt

=
∫ T

0

∫ t

0

∫
Ω

σKDTK(ui) dx ds dt.

(3.62)

Since, for fixed K > 0, the function a 1
K

(x, s, ξ) is continuous and bounded with
respect to s, the usual Minty’s argument applies in view of (3.22), (3.24), and
(3.62). It follows that (3.60) holds true (the case K = 0 being trivial). In order to
prove (3.61), we observe that thanks to the monotone character of a (with respect
to ξ) and (3.57), for any K ≥ 0 and any T ′ < T , we have[

a(TK(uε
i ), DTK(uε

i ))− a(TK(uε
i ), DTK(u))

][
DTK(uε

i )−DTK(ui)
]
→ 0 (3.63)

strongly in L1((0, T ′) × Ω) as ε tends to 0. Moreover (3.22), (3.24), (3.59) and
(3.60) imply that

a
(
TK(uε

i ), DTK(uε
i )

)
DTK(ui) ⇀ a

(
TK(ui), DTK(ui)

)
DTK(ui)

weakly in L1(Q),

a
(
TK(uε

i ), DTK(ui)
)
DTK(uε

i ) ⇀ a
(
TK(ui), DTK(ui)

)
DTK(ui)

weakly in L1(Q),

a
(
TK(uε

i ), DTK(ui)
)
DTK(ui) → a

(
TK(ui), DTK(ui)

)
DTK(ui),

strongly in L1(Q), as ε tends to 0. Using the above convergence results in (3.63),
we get for any K ≥ 0 and any T ′ < T ,

a
(
TK(uε

i ), DTK(uε
i )

)
DTK(uε

i ) ⇀ a
(
TK(ui), DTK(ui)

)
DTK(u) (3.64)

weakly in L1((0, T ′)× Ω) as ε tends to 0. �

We remark that for T > T , (1.6)-(1.14) are satisfied with T in place of T and
that the convergence result (3.64) is still true in L1(Q)-weak which means that
(3.61) holds.

Step 8. In this step we prove that u satisfies (2.2). To this end, we remark that
for any fixed n ≥ 0,∫

{(t,x)/ n≤|uε
i |≤n+1}

a(x, uε
i , Duε

i )Duε
i dx dt

=
∫

Q

aε(x, uε
i , Duε

i )
[
DTn+1(uε

i )−DTn(uε
i )

]
dx dt

=
∫

Q

aε

(
x, Tn+1(uε

i ), DTn+1(uε
i )

)
DTn+1(uε

i ) dx dt

−
∫

Q

aε

(
x, Tn(uε

i ), DTn(uε
i )

)
DTn(uε) dx dt

for ε < 1
n+1 .
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According to (3.61), one can pass to the limit as ε tends to 0; for fixed n ≥ 0 to
obtain

lim
ε→0

∫
{(t,x)/ n≤|uε

i |≤n+1}
aε(x, uε

i , Duε
i )Duε

i dx dt

=
∫

Q

a
(
x, Tn+1(ui), DTn+1(ui)

)
DTn+1(ui) dx dt

−
∫

Q

a
(
x, Tn(ui), DTn(ui)

)
DTn(ui) dx dt

=
∫
{(t,x)/ n≤|ui|≤n+1}

a(x, ui, Dui)Dui dx dt

(3.65)

Taking the limit as n tends to +∞ in (3.65) and using the estimate (3.29) show
that ui satisfies (2.2).

Step 9. In this step, ui is shown to satisfy (2.3) and (2.4). Let S be a function
in W 2,∞(R) such that S′ has a compact support. Let K be a positive real number
such that suppS′ ⊂ [−K, K]. Pointwise multiplication of the approximate equation
(3.7) by S′(uε

i ) leads to

∂bε
i,S(uε

i )
∂t

− div
(
S′(uε

i )aε(x, uε
i , Duε

i )
)

+ S′′(uε
i )aε(x, uε

i , Duε
i )Duε

i

− div
(
S′(uε

i )Φi,ε(uε
i )

)
+ S′′(uε

i )Φε(uε
i )Duε

i + fε
i (x, uε

1, u
ε
2)S

′(uε
i ) = 0

(3.66)

in D′(Q), for i = 1, 2. In what follows we pass to the limit as ε tends to 0 in each
term of (3.66).

Limit of
∂bε

i,S(uε
i )

∂t . Since S is bounded and continuous, and bε
i,S(uε

i ) converges

to S(ui) a.e. in Q and in L∞(Q) weak ?, ∂bε
i,S(uε

i )

∂t converges to ∂bi,S(ui)
∂t in D′(Q)

as ε tends to 0.
Limit of −div

(
S′(uε

i )aε(x, uε
i , Duε

i )
)
. Since supp S′ ⊂ [−K, K], for ε < 1

K , we
have

S′(uε
i )aε(x, uε

i , Duε
i ) = S′(uε

i )aε

(
x, TK(uε

i ), DTK(uε
i )

)
a.e. in Q.

The pointwise convergence of uε to u as ε tends to 0, the bounded character of S,
(3.24) and (3.60) of Lemma 3.5 imply that S′(uε

i )aε

(
x, TK(uε

i ), DTK(uε
i )

)
converges

to S′(ui)a
(
x, TK(ui), DTK(ui)

)
weakly in Lp′(Q), as ε tends to 0, because S′(ui) =

0 for |ui| ≥ K a.e. in Q. And S′(ui)a
(
x, TK(ui), DTK(ui)

)
= S′(ui)a(x, ui, Dui)

a.e. in Q.
Limit of S′′(uε

i )aε(x, uε
i , Duε

i )Duε
i . Since suppS′′ ⊂ [−K, K], for ε ≤ 1

K , we
have

S′′(uε)aε(x, uε
i , Duε

i )Duε
i = S′′(uε

i )aε

(
TK(x, uε

i ), DTK(uε
i )

)
DTK(uε

i ) a.e. in Q.

The pointwise convergence of S′′(uε) to S′′(ui) as ε tends to 0, the bounded char-
acter of S′′, TK and (3.61) of Lemma 3.5 allow to conclude that

S′′(uε
i )aε(x, uε

i , Duε
i )Duε

i ⇀ S′′(ui)a
(
x, TK(ui), DTK(ui)

)
DTK(ui)
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weakly in L1(Q), as ε tends to 0. Also

S′′(ui)a
(
TK(ui), DTK(ui)

)
DTK(ui) = S′′(ui)a(ui, Dui)Dui a.e. in Q.

Limit of S′(uε
i )Φε(uε

i ). Since suppS′ ⊂ [−K, K], for ε ≤ 1
K? we have

S′(uε
i )Φε(uε

i ) = S′(uε
i )Φε(TK(uε

i )) a.e. in Q. As a consequence of (1.8), (3.3) and
(3.21), it follows that for any 1 ≤ q < +∞ : S′(uε

i )Φε(uε
i ) → S′(ui)Φ(TK(ui))

strongly in Lq(Q), as ε tends to 0. The term S′(ui)Φ(TK(ui)) is denoted by
S′(ui)Φ(ui).

Limit of S′′(uε
i )Φε(uε

i )Duε
i . Since S′ ∈ W 1,∞(R) with suppS′ ⊂ [−K, K], we

have S′′(uε
i )Φε(uε

i )Duε
i = Φε(TK(uε

i ))DS′(uε
i a.e. in Q. Then, DS′(uε

i ) converges
to DS′(u) weakly in Lp(Q)N as ε tends to 0, while Φε(TK(uε

i )) is uniformly bounded
with respect to ε and converges a.e. in Q to Φ(TK(ui)) as ε tends to 0. Therefore

S′′(uε)Φε(uε
i )Duε

i ⇀ Φε(TK(uε
i ))DS′(uε

i ) weakly in Lp(Q).

Limit of fε
i (x, uε

1, u
ε
2)S

′(uε
i ). Due to (1.10), (1.12), (1.13), (3.4) and (3.5),

we have fε
i (x, uε

1, u
ε
2)S

′(uε
i ) converges to fi(x, u1, u2)S′(ui) strongly in L1(Q), as ε

tends to 0.
As a consequence of the above convergence result, we are in a position to pass

to the limit as ε tends to 0 in equation (3.66) and to conclude that u satisfies (2.3).
It remains to show that bi,S(ui) satisfies the initial condition (2.4). To this end,

firstly remark that, S being bounded, bε
i,S(uε

i ) is bounded in L∞(Q). Secondly,
(3.66) and the above considerations on the behavior of the terms of this equation
show that ∂bε

i,S(uε
i )

∂t is bounded in L1(Q) + Lp′(0, T ;W−1,p′(Ω)). As a consequence,
an Aubin’s type lemma (see, e.g, [31], Corollary 4), bε

i,S(uε
i ) lies in a compact set

of C0([0, T ];W−1,s(Ω)) for any s < inf
(
p′, N

N−1

)
. It follows that bε

i,S(uε
i )(t = 0) =

bε
i,S(uε

i,0) converges to bi,S(ui)(t = 0) strongly in W−1,s(Ω). On the order hand,
(3.9) and the smoothness of S imply that bε

i,S(uε
i,0) converges to bi,S(ui,0)(t = 0)

strongly in Lq(Ω) for all q < +∞ and this in turn implies (2.4). As a conclusion of
step 3, step 8 and step 9, we prove theorem 3.1.
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[1] P. Bénilan, L. Boccardo, T. Gallouët, R. Gariepy, M. Pierre, J.-L. Vazquez; An L1-theory

of existence and uniqueness of solutions of nonlinear elliptic equations, Ann. Scuola Norm.
Sup. Pisa, 22, (1995), 241-273.

[2] D. Blanchard; Truncation and monotonicity methods for parabolic equations equations, Non-
linear Anal., 21, (1993), 725-743.

[3] D. Blanchard, F. Murat; Renormalized solutions of nonlinear parabolic problems with L1

data, Existence and uniqueness, Proc. Roy. Soc. Edinburgh Sect., A 127, (1997), 1137-1152.

[4] D. Blanchard, F. Murat, H. Redwane; Existence et unicité de la solution reormalisée d’un
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