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EXISTENCE OF SOLUTIONS FOR NONLINEAR PARABOLIC
SYSTEMS VIA WEAK CONVERGENCE OF TRUNCATIONS

ELHOUSSINE AZROUL, HICHAM REDWANE, MOHAMED RHOUDAF

ABSTRACT. We prove an existence result for a class of nonlinear parabolic
systems. Without assumptions on the growth of some nonlinear terms, we
prove the existence of a renormalized solution.

1. INTRODUCTION

Let Q be a bounded open subset of RN, (N > 1), T > 0 and let Q := (0,T) x
Q. We prove the existence of a renormalized solution for the nonlinear parabolic
systems

(bi(us))e — div (a(x,ui, Du;) + @Z—(ui)) + fiz,ug,u2) =0 in Q, (1.1)
u; =0 onT:=(0,T) x 09, (1.2)
bi(u;)(t = 0) = bi(u;0) in Q, (1.3)

where i = 1,2. Here, the vector field
a:QxRxRY - RY is a Carathéodory function such that (1.4)

e There exists o > 0 with

a(z,s,£).§ = algf? (1.5)

for almost every x € €, for every s € R, for every £ € RV,
e For each K > 0, there exists fx > 0 and a function Cx in L? (Q) such
that

la(z, 5,6)| < Ck (x) + Br[€P~ (1.6)

for almost every z € Q, for every s such that |s| < K, and for every ¢ € RV,
e The vector field a is monotone in &; i.e.,

la(z,s,€) —a(z,s,£)][§ —€1=0, (1.7)

for any s € R, for any (¢,¢’) € R?N and for almost every x € €.
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Moreover, we suppose that for i = 1, 2,

®; : R — R¥ is a continuous function, (1.8)
bi : R — R is a strictly increasing C*-function with b;(0) = 0, (1.9)
fi 1 2 xR xR — R is a Carathéodory function with
fi(z,0,5) = fa(z,5,0) =0 ae ze€Q,VseR. (1.10)
and for almost every x € 2, for every s1,s2 € R,
sign(s;) fi(x, s1,82) > 0. (1.11)

The growth assumptions on f; are as follows: For each K > 0, there exists o > 0
and a function F in L'(Q) such that

|f1(z,81,82)| < Fr(z) + 0K [b2(s2)] (1.12)

a.e. in €, for all s; such that |s1]| < K, for all s € R.
For each K > 0, there exists Ax > 0 and a function Gk in L'(Q) such that

|f2(z,51,82)] < Gr(x) + Ak [b1(51)] (1.13)

for almost every = € €, for every so such that |sz] < K, and for every s; € R.
Finally, we assume the following condition on the initial data w; o:

;0 is a measurable function such that b;(u; ) € L*(Q), fori=1,2.  (1.14)

The main difficulty when dealing with problem — is due to the fact that
the functions a(z, u;, Du;), ®;(u;) and f;(z,u1,us) are not in (L}, (Q))Y in general,
since the growth of a(z,wu;, Du;), ®;(u;) and f;(x,u1,us) are not controlled with
respect to u;, so that proving existence of a weak solution (i.e. in the distribution
meaning) seems to be an arduous task. To overcome this difficulty, we use in this
paper the framework of renormalized solutions due to Lions and DiPerna [20] for
the study of Boltzmann equations (see also Lions [2I] for a few applications to
fluid mechanics models). This notion was then adapted to the elliptic version of
(T1)-(T.3) in Boccardo, Diaz, Giachetti, Murat [I1], in Lions and Murat [22] and
Murat[22] 23]. At the same the equivalent notion of entropy solutions have been
developed independently by Bénilan and al. [I] for the study of nonlinear elliptic
problems.

The particular case where b;(u;) = u; and ®; = ®, i = 1,2 has been studied in
Redwane [25] and for the parabolic version of —, existence and uniqueness

results are already proved in [4] (see also [30] and [24]) in the case where f;(x, u1,us)

is replaced by f + div(g) where f € L'(Q) and g € L”/(Q)N

In the case where a(t,z,s,§) is independent of s, ®; = 0 and g = 0, existence
and uniqueness are established in [2]; in [3], and in the case where a(t,z,s,§)
is independent of s and linear with respect to £, existence and uniqueness are
established in [7].

In the case where ®; = 0 and the operator Ayu = div|Vu[P~2Vu) p-Laplacian
replaces a nonlinear term diva(z, s,§)), existence of a solution for nonlinear par-
abolic systems (L.I)-(L.3) is investigated in [26, 27], in [28] and in [29], where an
existence result of as (usual) weak solution is proved.

This article is organized as follows: in Section [2] we specify the notation and
give the definition of a renormalized solution of —. Then, in Section |3}, we
establish the existence of such a solution (see Theorem [3.1]).
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2. NOTATION

In this paper, for K > 0, we denote by Tk : r +— min(K, maz(r,—K)) the
truncation function at height K. For any measurable subset F of (), we denote
by meas(E) the Lebesgue measure of E. For any measurable function v defined
on @ and for any real number s, x{,<s} (respectively, x{y—s}, X{v>s}) denote the
characteristic function of the set {(z,t) € Q ; v(x,t) < s} (respectively, {(z,t) €
Q;v(z,t) = s}, {(z,t) € Q;v(z,1) > s}).

Definition 2.1. A couple of functions (u1,us) defined on Q is called a renormalized

solution of (L.1)-(1.3)) if for i = 1,2 the function w; satisfies
T (u;) € LP(0, T; Wo () and  b;(u;) € L=(0,T; L' (), (2.1)
for any K > 0.
/ a(x,u;, Du;)Du; dedt — 0 as n — 400, (2.2)
{(tvx)eQ 5 nfl“L(xat)‘SnJ"l}

and if, for every function S in W% (R) which is piecewise C* and such that S’
has a compact support, we have

%%Eut) —div 8’ (us)a(x, u;, Dug)) + 8" (us)a(x, u;, Dug) Du;
—div S (u;)®; (w;)) + 8" (ui)®; (w;) Du; + fi(w,ur,u2)S (u;) =0 in D'(Q),
(2.3)
and
bi,s(ui)(t = 0) = bi s(ui0) in €, (2.4)

where b; s(r) = [ b;(s)S'(s) ds.

Remark 2.2. Equation (2.3)) is formally obtained through pointwise multiplication
of equation (L.1)) by S’(u;). Note that in Definition the gradient Du; is not
defined even as a distribution, but that due to (2.1)) each term in ([2.3) has a meaning
in LY(Q) + L' (0, T; W1 ().

Indeed if K > 0 is such that supp S’ C [ K, K], the following identifications are
made in (2.3):

e b; 5(u;) belong to L®(Q) N LP(0,T; Wy*(€2)). Indeed
Db; s(u) = 8" (ui)by (T (ui)) DT (ui) € (LP(2))Y

and

[usl
|bi,s(us)] S/ 8" (s)b;(s)| ds < K max [S'(r)b;(r)].
0 [r|<K

o S'(u;)a(x,u;, Du;) can be identified with S’ (u;)a(x, Tk (u;), DTk (u;)) a.e.
in Q. Indeed, since |Tk(u;)] < K a.e. in Q, assumptions ([1.4) and (1.6))
imply that

’a(m,TK(ui),DTK(ui))‘ < CK(t,.’lf) + ﬁK\DTK(ui)V’_l a.e. in Q.
As a consequence of (2.1)) and of S"(u;) € L*°(Q), it follows that

S (us)a(w, T (u;), DTk (u;) € (L7 (Q))N.
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o S"(u;)a(x,u;, Du;)Du; can be identified with
S"(ui)a(a:,TK(ui), DTK(ui))DTK(ui)

and in view of (1.4)), (1.6)) and (2.1]) one has
S"(wi)a(x, Tk (u;), DTk (u;)) DTk (u;) € LNQ).

o S'(u;)®;(u;) and S (u;)P;(u;)Du; respectively identify with
S (u;)®; (T (u;)) and S” (u;)®(Tk (u;)) DTk (u;). Due to the properties of
S and ([1.8)), the functions S’,S” and ® o Tk are bounded on R so that (2.1))
implies that S’ (u;)®; (T (u;)) € (L°(Q))N and S (u;)®i(Tx (u;)) DT (u;)
belongs to LP(Q).

o S'(u;) fi(x,ur,us) identifies with S”(u;) f1(x, Tk (u1),us2) a.e. in @
(or S"(u;) fa(x,u1, T (uz)) a.e. in Q). Indeed, since |Tk(u;)| < K a.e. in
@, assumptions (|1.12)) and (1.13) imply that

ffl(m,TK(ul),ug)} < Fi(x) + ok |ba(ug)| ae. in @

and

[fal, ur, T(w))] < Gr(@) +ox [br(w)] ac. in Q.
As a consequence of and of S"(u;) € L™(Q), it follows that
S'(ur) fi(a, Tre (ur),u) € LY(Q)  and 8" (uz) fo(z, ur, Tic (us)) € LHQ).

The above considerations show that takes place in D'(Q) and that abi'gt("i)
belongs to LP (0, T; W% (Q))+ L' (Q), which in turn implies that ab%t(“i) belongs
to L1(0,T; W=15(Q)) for all s < inf(p/, i) It follows that b; s(u;) belongs to
CO([0,T]; W~15(Q)) so that the initial condition makes sense.

3. EXISTENCE RESULT
This section is devoted to the proof of the following existence theorem.

Theorem 3.1. Under assumptions (1.4])-(1.14)), there exists at least a renormalized
solution (u1,us2) of Problem (1.1])-(1.3).

Proof. The proof is divided into 9 steps. In stepl, we introduce an approximate
problem and step 2 is devoted to establish a few a priori estimates. In step 3, we
prove some properties of the limit u; of the approximate solutions ;. In step 4, we
define a time regularization of the field Tk (u;) and we establish Lemma which
allows to control the parabolic contribution that arises in the monotonicity method
when passing to the limit. In step 5, we prove an energy estimate (see Lemma
which is a key point for the monotonicity arguments that are developed in Step 6
and Step 7. In Step 8, we prove that u; satisfies and finally, in step 9, we

prove that u; satisfies properties (2.3)) and (2.4]) of Definition O

Step 1. Let us introduce the following regularization of the data: for ¢ > 0 and
1=1,2

bi(s) = bz-(T% (s))+es VseR, (3.1)
ac(x,8,&) = a(m,Té (5),€) a.e. in Q,Vs € R,VE € RY, (3.2)

®; . is a Lipschitz continuous bounded function from R into R (3.3)
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such that ®§ converges uniformly to ®; on any compact subset of R as ¢ tends to
0.

fi(z, s1,82) = fl(x,Té( )7T§ (s2)) a.e. in Q,Vs1,s2 € R, (3.4)

f5(x, s1,82) = folx, Té( )7Té(52)) a.e. in 2, Vs, s2 € R,
ui g € C5° (), bic(ug o) — bi(uip) in LY(Q) as ¢ tends to 0. (3.6)

Let us now consider the regularized problem
Ob; «(u®) . )

T —div (ac(z, v, Du’) + ;. (u¥)) + fi(z,uf,u3) =0 inQ, (3.7
u; =0 on (0,T) x 09, (3.8)
bie(uf)(t =0) = b; c(u; ) in Q. (3.9)

In view of (1.9) and (3.1)), for i = 1,2, we have

bic(s) = e |bie(s)] < s bi(s)| +1 Vs €R,

In view of (1.6), (1.12) and (1.13), a., f; and f5 satisfy: There exists C. €
LY (Q),F. € L'(Q),G. € LY(Q) and B > 0,0. > 0, \. > 0, such that
lac(z,5,6)] < Co(x) + B|¢P™  ae. inz € Q,Vs € R, VE€RY.

|f5(x, 81,82)| < Fo(x) + o \Hlla)l( |bi(s)] a.e. inz € Q,Vsy,s €R,
<1

|f5 (2, 81,82)] < Ge(x) + Ac ln|1ax|b( s)| ae. inz e, Vs, 50 €R.

As a consequence, proving the existence of a weak solution us € LP(0,T; W, *(Q))

of (3.7)-(3.9) is an easy task (see e.g. [29, 26 27]).

Step 2. The estimates derived in this step rely on usual techniques for problems
of type (3.9)-(3.13) and we just sketch the proof of them (the reader is referred to

2,3, [7, [10, 4, [5] or to [11, 22, 23] for elliptic versions of (3.9)-(3.13)).

Using Tk (u5) as a test function in (3.7)) leads to
/bK dw+/ /as x,ui, Dui) DT (uf) dx ds
t
+/ /@i,s(uf)DTK(uf)dxds—i—/ /ff(m,ui,ug)TK(uf)dxds (3.10)
0o Ja 0o Jo

= / bffa(ugo) dx
Q

for i = 1,2, for almost every ¢ in (0,7, and where bK fo Tk (s)b} .(s)ds. The
Lipschitz character of ®; ., Stokes formula together w1th the boundary condition
(3.8) allow to obtain obtain

/t/ D, (u;) DTk (uf)drds =0, (3.11)

for almost any ¢ € (0,T). Now, as 0 < bf_(uf ) < K|b;c(uf )| a.e. in €, it follows
that 0 < [, b (us o) do < K [ [bic(u 170)|dx Since a. satisfies (3.2), ff satisfies

(3-4), (3.5), we deduce from (3.14) ( taking into account the properties of b/, and
us 5 ) that

Tx (uS) is bounded in LP(0,T; Wy (Q)) (3.12)
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independently of € for any K > 0.
Proceeding as in [3| 7, 4], we prove that for any S € W2>°(R) such that S’ is
compact (supp S’ C [-K, K])

S(b;e(us)) is bounded in LP(0, T} Wo P(Q)), (3.13)
and
W is bounded in L'(Q) + L¥ (0, T; W17 (Q)), (3.14)

independently of €, as soon as e < 7. Due to the definition (3.1)) of b, it is clear
that

{~K <bio(uf) < K} C{-K < b;(uf) < K} = {07 (-K) < uf <b7'(K)}

as long as € < f. As a first consequence we have
DS (by o (45)) = S (bio (W), (Tie: (u)) DT (u) ae. in Q. (3.15)

as long as ¢ < &, and K; = max(|b; ' (—K)|,b; "(K)). Secondly, the following

estimate holds true

15" (B e (u )7, < (T (ui)) |2 (@) < IIS'IILw(R)(‘TImSag*(bQ(T)) +1),

as long as € < f

As a consequence of -, 3.15) we obtain . To show that (3.14)) holds,
we multiply the equation for u® in 1-) by S’ (b ( l)) to obtain

98 (b; o (u°))
ot
= div (s (b (uf))ac (z, uS, Du §)Du‘?> (3.16)
= 8" (bie (ui))b; o (uf )ac (z, uf, Duf) Dug Dug + div ®; . (u®)S" (bs c (u®)))
— 8" (bie (ug))b; o (uF) @i e (uf) Dui + f5 (2, uf, u5)S" (bie(uf)) =0,

in D'(Q). Since supp S’ and supp S” are both included in [—K, K], u§ may be
replaced by Tk (u$) in each of these terms, where K} = rnax(|b7 (—K)|,b; 1 (K)).
As a consequence each term in the right hand side of is bounded elther in

L (0, T; W~ (Q)) or in LY(Q). (see [4,[7). As a consequence of (3.12), (3:16

we then obtain
Now for fixed K > O ae(z, T (uf), DTK( £)) = a(z, Tk (u§), DTk (uf)) a.e. in

Q@ as long as € < K, while assumption (|1.6) gives
|ac (@, T (uf), DT (u5))| < Cxc(2) + Brc| DT (uf) P~
where B > 0 and Cx € L¥ (Q). In view of , we deduce that
a(z, Tre (uf), DT (uf)) is bounded in (LP (Q))™. (3.17)

independently of € for £ < F-
For any integer n > 1, consider the Lipschitz continuous function 6,, defined
through

On(r) = Thia(r) — To(r)
We remark that |0, g ®) < 1 for any n > 1 and that 6,,(r) — 0 for any r when
n tends to infinity.
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Using the admissible test function 6,,(u®) in (3.7) leads to

/b” dw—i—/ /as (z,u;, Duf) DO, (uf) dx ds

// ie (1) DO, ( dxds—|—/ /f x,uf, u)b, (u) deds (3.18)
z/b?@(uE

Q

for almost any ¢ in (0,7') and where b}’ ( = [, b} s)ds.
The Lipschitz character of ®., Stokes formula together Wlth the boundary con-
dition (3.8]) allow to obtain

t
/ / @, (u¥) DO, (uf) dxds = 0. (3.19)
0 Jo
Since b} (.) > 0, ff satisfies (L.11), we have

// a(z,us, Du$) DO, (u )dxdsg/bzs(ufﬁo)dx, (3.20)
Q

for almost t € (0,T) and for ¢ < nT—l

Step 3. Arguing again as in [3 [7, 4, 5], estimates (3.13)and (3.14) imply that for
a subsequence still indexed by ¢,

u; converges almost every where to u; in @ (3.21)
and thanks to ,
T (u$) converges weakly to Tik (u;) in LP(0,T; WP (Q)), (3.22)
0 (u5) — 0, (u;) weakly in LP(0,T; W, P(Q)) (3.23)
ae (x Tr (uf), DT (u )) — X, x weakly in (L (Q))V. (3.24)

as € tends to 0 for any K > 0 and any n > 1. Here, for any K > 0 and for
i =1,2, X; x belongs to (L (Q))N.

We now establish that bi(u;) belongs to L>(0,T; L'(€2)). Indeed using 17T, (uf)
as a test function in ) leads to

/b t)dr + — //aa x,uf, Dui) DT, (uf) dx ds
Q
// ie(us) DTy (u;) drds + — //f (z,us,u5) Ty (u) deds  (3.25)
- | g as,

for almost any ¢ in (0,T). Where, b}, (r) = [; b} s)ds.

The Lipschitz character of &, Stokeb formula together with the boundary con-
dition (3.8]) allow to obtain

1 t
7/ / D, (uf) DT, (uf)dzds = 0. (3.26)
g.Jo Ja
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Since a. satisfies (1.5)) and ff satisfies (1.11]), letting o go to zero, it follows that

/ 152 (uS)(8)] dr < (1o (0 0) 22 s (3.27)

for almost ¢ € (0,T). Recalling , and makes it possible to pass to
the limit-inf and we show that b;(u;) belongs to L>(0, T; L' (€2)).

We are now in a position to exploit . The pointwise convergence of u® to
w and b; - (uf) to b;(ug) imply that

limsup/ / a(x,uf, Dus Dﬁn(uf)d;vdsg/b?(ui,o)dx, (3.28)
Q

e—0

Since 6,, converge to zero everywhere as n goes to zero, the Lebesgue’s convergence
theorem permits to conclude that

lim lnnsup/ ac(x,us, Duf)Du; dz dt = 0. (3.29)
{n<|us|<n+1}

n—+4+o00 o,

Step 4. This step is devoted to introduce for K > 0 fixed, a time regularization
of the function Tk (u;) in order to perform the monotonicity method which will be
developed in Step 5 and Step 6. This kind of regularization has been first introduced
by Landes (see Lemma 6 and Proposition 3, p. 230 and Proposition 4, p. 231 in
[18]). More recently, it has been exploited in [9] and [16] to solve a few nonlinear
evolution problems with L' or measure data.

This specific time regularization of Tk (u;) (for fixed K > 0) is defined as follows.
let us consider the unique solution Tk (u;), € L*>(Q) N LP(0,T; WP () of the
monotone problem:

0Tk (ui)

S u(TK(ui)M - TK(ui)) —0 in D'(Q). (3.30)

T (ui),(t = 0) = 0 in Q. (3.31)
We remark that for 4 > 0 and K > 0,

0Tk (ui)

o €L0.T; W,y P(52)). (3.32)

The behavior of Tk (u;), as p — 400 is investigated in [I8] (see also [16] and [17])
and we just recall here that — imply that
Tr(ui)y — Tr(u;) ae. in @, (3.33)
and in L>°(Q) weak * and strongly in L?(0,T; Wy'*()) as pu — ~+oo.
1Tk (i)l L= @) < K (3.34)

for any p and any K > 0.
Let v; ; € C§°(Q), such that v; ; converges almost everywhere to u; o in 2. And
let us consider

Tr(ui), ; = Tr(ui), + e " Tk (v )



EJDE-2010/68 EXISTENCE OF SOLUTIONS 9

is a smooth approximation of Tk (u;). We remark that for 4 > 0,5 > 0 and K > 0,
we have |Tx(u;),, ;| < K and

% - M(TK(ui) - TK(ui)M,j), (3.35)
Tk (wi)p,j(0) = Tk (v55), (3.36)
Tr(ui)p; — Tr(u;)  strongly in LP(0,T Wol’p(ﬂ)), (3.37)

as u tends to infinity.
We denote by w(e, i, j) the quantities such that

li lim 1 = 0.
jJTOOM*I’rJII:lOO EI_I}%U)(E s ])

The main estimate is as follows.

Lemma 3.2. Let K > 0 be fized. Let S be an increasing C*°(R)-function such that
S(r) =r for|r| < K and supp(S’) is compact. Then

lim inf lim/ / <abl s , T (uf) — (Tk (w;)),) ) dtds >0

p—+00 e—0

where (,) denotes the duality pairz’ng between Ll(Q) + WL(Q) and L®(Q) N
WyP(Q). and where b; s(r = [, bi(s

The proof of the above Lemma can be found in [24].
Step 5. In this step we prove the following Lemma which is the key point in the
monotonocity arguments that will be developed in Step 6.

Lemma 3.3. The subsequence of u® defined is Step 3 satisfies: For any K > 0,

e—0

g/ / /XLKDTK(ui)d:cdsdt
o Jo Ja

Proof. We first introduce a sequence of increasing C'*°(R)-functions S,, such that,
for any n > 1

lim sup / / / a(uf, DTi (u)) DTy (u) da dis dt -

Sp(r) =7 for [r] <n, supp(S,) C[-(n+1),(n+1)], [l <1. (3.39)

Pointwise multiplication of (3.7) by S}, (u5) (which is licit) leads to

b; H
Obiss, (uf) _ div (Sn(uf)as(x,ul,Du )) + SV (uf)ae (z,uf, Du§) Dus
ot ‘ (3.40)
— div (@0 (u) S (1) ) + 700 @iy () D + 7 (5, u5) S, (u5) = 0
in D’ . We use the sequence Tk (u), of approximations of Tk (u) defined by
(3-30), -j of Step 4 and plug the test function Tk (u®) — Tk (u), (for € > 0 and
/L > 0 ) in (3.40). Through setting, for fixed K > 0,
Wi, = Tr(ui) — T (i), (3.41)
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we obtain upon integration over (0,¢) and then over (0,7),

Tt oby s, (u)
#’Wf ds dt
/(; /O < 8t uu'>
T ot
—|—/ / /S;L(uf)aE x,us, Dui)DW; , dx ds dt
o Jo Ja
T ot
+/ / /S,'{(uf)Wf c(x,uf, Duf)Dus dx ds dt
/ // il )DWE dx ds dt
/ //S" Wi @i (u7) Du; dx ds dt

+/ / ff (@05, u5) S, (u§ W5, deds dt = 0
0 0 JQ

(3.42)

Next we pass to the limit as € tends to 0, then u tends to +oco and then n tends
to 400, the real number K > 0 being kept fixed. In order to perform this task we

prove below the following results for fixed K > 0:

liminflim/ / (“)bzg VV8 >d8dt20 for any n > K,

p—+o00 e—0

lim lim/ / /S’ ui)DW; , drdsdt =0 for any n > 1,

p——+oc0 e—0

lim lim/ //S" YWE @i c(uf)Dug dxdsdt =0 for any n,

p——+o00 e—0

lim lim hm|/ //s” VW5 ae(us, Dus ) Duf da ds dt| = 0,
Q

n—-+oo p—-+oo e—0

lim lim/ /0 /fo(ac,ui,u;)sg(uf)Wf# drdsdt =0 for any n > 1.

p—+o0e—0 Jq

Proof of (3.43). In view of 3 41) of W7, Lemma applies with S =

fixed n > K. As a consequence (|3.43) holds.
Proof of (3.44). For fixed n > 1, we have

Sy (u) @i 2 (uf) DW= S5, (07) @i e (Tgr (uF)) DW,

a.e. in @, and for all ¢ < +1’ and where supp S), C [-(n+1),n+1].
Since S/, is smooth and bounded, (1.8)), (3.5) and (3.22) lead to

Sy () Pi e (Togr (u5)) — Sy, (i) Ri(Trgr (ui))
a.e. in @ and in L>°(Q) weak *, as € tends to 0. For fixed p > 0, we have

WE, — T (u;) — Tk (u;),, weakly in LP(0,T; W, (Q))

i,p

(3.43)
(3.44)
(3.45)
(3.46)

(3.47)
O

S, for

(3.48)

(3.49)

(3.50)
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and a.e. in @ and in L*°(Q) weak *, as € tends to 0. As a consequence of (3.48)),

(3.49) and (3.50) we deduce that

liH(l)/ //S’ ) ug)DW; , dx ds dt
E—

(3.51)
0 0 JQ

for any p > 0. Appealing now to (3.33) and passing to the limit as gy — +oo in
(3.51) allows to conclude that (3.44) holds.

Proof of (3.45). For fixed n > 1, and by the same arguments as those which
lead to (3.48]), we have

Sy (uf) @i e (uf) Dug Wi, = Sy (uf) @i e (T (u5)) DT (ug) W, e in Q.

ip
From (1.8)), (3.3)) and (3.22)), it follows that for any u > 0,

lir%/ / /S” uf) Dus Wi, da ds dt
£—

/ //S" u;)®; n+1(uz))DTn+1(ul)Wi,u[DTK(ui)—DTK(ui)M] dx dsdt

with the help of (3.37)) passing to the limit, as u tends to +o0, in the above equality,

we find ([3.45).
Proof of (3.46). For any n > 1 fixed, we have supp(S))) C [-(n+ 1),—n] U
[n,n + 1]. As a consequence

T
|/ / /kS’;L’(uf)a‘E z,uf, Duf) Du; Wy, da ds dt|
o Jo Ja

< TSyl @) IWE Ml Lo Q)/ ac(z,us, Duf)Duf dx dt,
{n<|us|<n+1}

for any n > 1, and any p > 0. The above inequality together with (3.34)) and (3.39)
make it possible to obtain

T pt
limsuplimsup{/ / /S;{(uf)ag (ug, Dui) Du; W7, dx dsdt‘
p—too e—0 Jo Jo Ja

(3.52)
< Clim sup/ ac(u$, Du)Duf dx dt,
{n<|ut|<n+1}

e—0

for any n > 1, where C is a constant independent of n. Using (3.29)) we pass to the

limit as n tends to +o0 in (3.52)) and establish ([3.46)).
Proof of (3.47). For fixed n > 1, we have,

fla(x’ ui7u§)5;z(u§) = fl(x’Tn+1(ui)le (u;))sé(ui)a

B

f5 (5, u3) 85 (u5) = falw, Ta (), Tnyr (u3)) Sy, (u5)
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a.e. in @, and for all ¢ < 5. In view of (L.10), (8.21) and (3.22)), Lebesgue’s

convergence theorem implies that for any © > 0 and any n > 1

T
lim/ / / fi(z,us, u3) Sy, (uf )W d ds dt
o Jo Ja

e—0

/OT/Ot/Qf1(x,u1,uz)5;(ui)<TK(ui)TK(ui)#> da ds dt.

Now for fixed n > 1, using (3.33]) permits to pass to the limit as u tends to 400 in
the above equality to obtai.

We now turn back to the proof of Lemma[3.3] due to (3.43), (3.44), (3-45), (3.46)
and , we are in a position to pass to the lim-sup when ¢ tends to zero, then
to the limit-sup when p tends to +0o and then to the limit as n tends to +o0 in
. We obtain using the definition of W that for any K > 0,

T pt
lim lim suplimsup / / / Sy (uf)ae (ug, Duf ) (DT (u5)
o Jo Jo

n—=+00 i stoo 0

— DTK(ui)H) dx dsdt < 0.

Since S, (u)ac (uf, Du§) DT (uf) = a(us, Du$) DT (uf) for e < & and K < n.
The above inequality implies that for K < n,

T
lim sup / / / ac(x,us, Dui) DTy (uf) dex ds dt
o Jo Ja

e—0

T (3.53)
< lim limsuplimsup / / / Sy (uf)ae (@, u, Du§) DT (u;),, da ds dt
o Jo Jao

n—=+00 4 stoo 0

The right hand side of (3.53)) is computed as follows: In view of (3.2 and (3.40]),

1
we have for ¢ < o

Sh(u)ac(w,uf, Duf) = Sy, (u)a (@, Tosa (1), DT (u5) ) ave. in Q.
Due to ([3.24)), it follows that for fixed n > 1,
S! (uf)ac(us, Dug) — S' (u;)Xiny1 weakly in (LP (Q)),

when ¢ tends to 0.
The strong convergence of Tr (u;),, to Tk (u;) in LP(0,T; W, P(2)) as u tends to
400, allows then to conclude that

T [t
lim lim/ / Sy, (uf)ae(x, ui, Du§) DT (u;),, dz ds dt
o Jo Ja

p——+00 e—0

T t
0 0o JQ

T rt
0 0 JQ

as long as K < n, since S, (r) =1 for |r| < n. Now for K < n, we have
a(@, Toyr (uf), DT (u5)) Xqjuz| <y = @ (@, Tre (uf), DT (45)) X{jus| <K}
a.e. in . Passing to the limit as e tends to 0, we obtain

Xint1X{|ui| <Kk} = Xi, KX{Jui|<k} @€ in Q—{|u;| =K} for K <n. (3.55)
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As a consequence of (3.55)), for K < n, we have
Taking into account (3.53)), (3.54) and (3.56]), we conclude that (3.38]) holds true

and the proof of Lemma is complete.
Step 6. In this step, we prove the following monotonicity estimate.

Lemma 3.4. The subsequence of u; defined in step 3 satisfies: For any K > 0,

Jim / / / (T (uf), DT (uf)) — a(Ti (u5), DT (us))]

e—0

X [DTK( z) — DTK(UZ)] drdsdt=0.

(3.57)

Proof. Let K > 0 be fixed. The monotone character (1.7) of a(s,{) with respect to
¢ implies that

/ / / (T (uf), DTxe (u)) — a(Tie (), DT ()]
[DTK( i) — DTK(UZ)] dr dsdt Z O7

(3.58)

In order to pass to the limit-sup as € tends to 0 in , let us recall first that
, and imply
a(Tk (u$), DTk (u;)) — a(Tk (u;), DTk (u;)) a.e. in Q,
as € tends to 0, and that
|a(Tk (uf), DT (ui))| < Ck (t,2) + Brc | DT (wi) [P~
a.e. in @, uniformly with respect to . It follows that when ¢ tends to 0,
a(Tx (uf), DTk (w;)) — a(Tk (u;), DTk (u;))  strongly in (Lp/ @)HN.  (3.59)

Using ([3.38)) of Lemmam (3.22)), (3. 24 and ([3.59)), we can pass to the lim-sup as
e tends to zero in ) to obtain (3.57) of Lemma 3 (]

Step 7. In this step we identify the weak limit X; x and we prove the weak L!
convergence of the “truncated” energy a(Tk (z,u5), DTk (u5)) DTk (uf) as € tends
to 0.

Lemma 3.5. For fited K > 0, as € tends to 0, we have
Xk =a(x,Tg(uf), DTk (u5)) a.e. in Q. (3.60)
Also, as € tends to 0,
a(Tx (uf), DTk (uf)) DT (uf) = a(Tk (ui), DTk (us)) DT (ui), (3.61)
weakly in L' (Q).

Proof. The proof is standard once we remark that for any K > 0, any 0 < ¢ < %
and any £ € RN

aE(x’TK(u§)7£) = a('r’TK(uf)vg) = a%(x7TK(uz€)’§) a.e. in Q
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which together with (3.24), (3.59) and (3.57) of Lemma [3.4] imply

e—0

T ot
:/ / /G'KDTK('LLZ') dx ds dt.
o Jo Ja

Since, for fixed K > 0, the function a%(aj,s,f) is continuous and bounded with

respect to s, the usual Minty’s argument applies in view of 7 , and
. It follows that holds true (the case K = 0 being trivial). In order to
prove (3.61]), we observe that thanks to the monotone character of a (with respect
to &) a, for any K > 0 and any T’ < T, we have

[a(Tk (u5), DTk (uf)) — a(Tx (u5), DTk (v))] [DTk (uf) — DTk (u;)] — 0 (3.63)

strongly in LY((0,T") x Q) as ¢ tends to 0. Moreover (3.22)), (3.24)), (3.59) and
(3.60) imply that

a(TK(uf), DTK(u§)>DTK(ui) - a(TK(ui), DTK(ui))DTK(ui)

T t
lim/ / /a%(a:,TK(uf),DTK(uf))DTK(uf)dxdsdt
0 Jo Ja (3.62)

weakly in L}(Q),

a(TK(ug), DTK(ui))DTK(uf) -~ a(TK(ui), DTK(ui))DTK(ui)
weakly in L'(Q),

a(TK(ug), DTK(ui))DTK(ui) = a(TK(ui), DTK(ui))DTK(ui),

strongly in L'(Q), as € tends to 0. Using the above convergence results in (3.63)),
we get for any K >0 and any 77 < T,

(T (u), DTy (1)) DTic (uf) = a(Tie (ws), DT (u:) ) DT () (3.64)
weakly in L1((0,7") x Q) as ¢ tends to 0. O

We remark that for T > T, (1.6)-(1.14)) are satisfied with T in place of T and
that the convergence result ([3.64)) is still true in L!(Q)-weak which means that

(3-61)) holds.

Step 8. In this step we prove that u satisfies (2.2). To this end, we remark that
for any fixed n > 0,

a(x,uf, Duf)Dus dx dt

/ y Wi 7

{tz)/ n<|ug|<n+1}

= / ac(x,us, Dus) {DTnﬂ(uf) — DTn(uf)] dx dt
Q

:/ aE(:L’,Tn+1(uf),DTn_,_l(uf))DTn_,_l(uf)da:dt
Q
—/ ag(x,Tn(uf),DTn(uf))DTn(uE)dmdt

Q

1
fOr€< Py
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According to (3.61]), one can pass to the limit as ¢ tends to 0; for fixed n > 0 to
obtain

lim ac(z,us, Dui)Du; dx dt

=0 /¢ (t,m)/ n<|us|<n+1}

:/a(m,Tnﬂ(ui),DTnH(ui))DTnH(ui)d:vdt
N (3.65)

—/ a(x,Tn(ui),DTn(ui))DTn(ui)dzdt
Q

= / a(x,u;, Du;)Du; dx dt
{t,2)/ n<lui|<n+1}
Taking the limit as n tends to 400 in (3.65) and using the estimate (3.29)) show

that u; satisfies (2.2)).
Step 9. In this step, u; is shown to satisfy (2.3) and (2.4). Let S be a function

in W?2°°(R) such that S’ has a compact support. Let K be a positive real number

such that supp S’ C [- K, K]. Pointwise multiplication of the approximate equation
(3-7) by S’(uf) leads to
ob; g (u )

i div (S’(uf) c(z,u5, Du§ )) + 5" (uf)ae (z, us, Dus ) Dus

(3.66)
v ()P (u)) + S ()P () Dt + £ (o5, 05)S () = 0

in D'(Q), for i = 1,2. In what follows we pass to the limit as ¢ tends to 0 in each

term of (3.66] -

Limit of 2 S( . Since S is bounded and continuous, and bf ¢(uf) converges
to S(u;) a.e. in Q and in L*°(Q) weak x, Bbi’gt(ui) converges to ‘%%t(“) in D'(Q)
as € tends to 0.

Limit of —div (S’(uf) e(x,u§, Du§ )) Since supp S’ C [~ K, K], for ¢ < %, we
have

S (u)ae (z, us, Dus) = S' (uS)a. (m Tr (uS), DT (u )) ae. in Q.
The pointwise convergence of u® to u as € tends to 0, the bounded character of .S,
(3.24) and (3.60) of Lemmaimply that S’ (uf)ac (:E Tk (uf), DTk (u )) converges
to S’(ui)a(x, T (u;), DTk (uz)) weakly in L¥' (Q), as ¢ tends to 0, because S (u;) =

0 for |u;| > K a.e. in Q. And S’(ui)a(x,TK(ui),DTK(ui)) = S'(u;)a(x, u;, Du;)
a.e. in Q.

Limit of " (uf)ac(z,u§, Du§)Dus. Since supp S” C [~ K, K], for e < &, we
have

S" (u®)ae(x,us, Dui ) Dui = S" (uf)ae (TK( u$), DTk (u ))DTK( $) ae. in Q.

The pointwise convergence of S”(u®) to S”(u;) as € tends to 0, the bounded char-
acter of S” Tk and (3.61) of Lemma allow to conclude that

S" (u$)ae(x,us, Du§)Du — S”(ui)a(x,TK(ui),DTK(ui)>DTK(ui)
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weakly in L'(Q), as € tends to 0. Also
S”(ui)a(TK(ui),DTK(ui))DTK(ui) = §"(u)a(u;, Du;)Du;  ae. in Q.

Limit of ' (u$)®.(u). Since supp S’ C [-K, K], for ¢ < 75 we have
S (u5)Pe(uS) = S (uf)Pe (T (uf)) ae. in Q. As a consequence of (L.§), and
(3.21)), it follows that for any 1 < ¢ < 400 : S'(uf)Pc(us) — S (u;)P(Tk (ui))
strongly in L(Q), as ¢ tends to 0. The term S’(u;)®(Tk(u;)) is denoted by

Limit of " (u$)®.(u$)Dus. Since S’ € WH*(R) with supp S’ C [~ K, K], we
have S” (uf)®. (u$)Dus = @ (T (u5))DS'(u5 a.e. in Q. Then, DS’ (uf) converges
to DS’ (u) weakly in LP(Q)" as e tends to 0, while ®, (Tx (uf)) is uniformly bounded
with respect to € and converges a.e. in @ to ®(Tk(u;)) as € tends to 0. Therefore

S (uf) @ (us)Du — @ (Tk (us)) DS’ (us) weakly in LP(Q).
Limit of ff(x,u5,u§)S (us). Due to (1.10), (1.12), (1.13), (3.4) and (3.5),

we have ff(z,u$,u5)S’(u$) converges to f;(w,u1,u2)S’ (u;) strongly in L(Q), as €
tends to 0.
As a consequence of the above convergence result, we are in a position to pass
to the limit as € tends to 0 in equation and to conclude that u satisfies .
It remains to show that b; s(u;) satisfies the initial condition . To this end,
firstly remark that, S being bounded, bf (uf) is bounded in L>(Q). Secondly,

K2

(3.66) and the above considerations on the behavior of the terms of this equation

show that % is bounded in L*(Q) + L*' (0, T; W~12'(Q)). As a consequence,

an Aubin’s type lemma (see, e.g, [31], Corollary 4), b5 g(uf) lies in a compact set
of CO([0, T); W=15(Q)) for any s < z'nf(p’, %) It follows that b ¢(u$)(t = 0) =
¢ g(us ) converges to b; s(u;)(t = 0) strongly in W~15(€2). On the order hand,
and the smoothness of S imply that b5 (us,) converges to b; s(u;0)(t = 0)
strongly in L(Q) for all ¢ < +o00 and this in turn implies . As a conclusion of
step 3, step 8 and step 9, we prove theorem
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