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EXPONENTIAL DECAY OF SOLUTIONS TO A
FOURTH-ORDER VISCOELASTIC EVOLUTION EQUATION
IN R"

MOHAMMAD KAFINI

ABSTRACT. In this article, we consider a Cauchy problem for a viscoelastic
wave equation of fourth order. Under suitable conditions on the initial data
and the relaxation function, we show that the rate of decay is exponential.

1. INTRODUCTION

In this work concerns the Cauchy problem

t
Uge — Au + u + / g(t — s)(Au(s) —u(s))ds — Auy =0, x€R™, t >0, (1.1)
0 .

u(z,0) =uo(x), w(z,0)=ui(zx), z€R",

where wug, w1 are initial data and g is the relaxation function subjected to some
conditions to be specified later. This type of evolution equations of fourth order
arises in the study of strain solitary waves [7),26] and in the theory of viscoelasticity
when the material density depends on wu, see [I1}, 23].

Hrusa and Nohel [I4] studied the one-dimensional nonlinear viscoelastic equation

ust = (¢(ua(, 1))z — /O a'(t = 5) (¢ (uz(z, 5)))xds = 0 (1.2)

in R™. They proved, under reasonable conditions on ¢, ¥ and smallness condi-
tion on the initial data, the existence of a unique global classical solution. They
also established an asymptotic result but no rate of decay was given. Dassios and
Zafiropoulus [9] showed that for the same kernel the decay is of order t=3/2, if the
material is occupying the whole space R®. Muiioz [18] extended the result of Dassios
and Zafiropoulus to R™. Precisely, he showed that if the kernel is decaying expo-
nentially then the solution decays exponentially for material occupying bounded
domains whereas the decay is of the order ¢t~"/2 for material occupying the whole
n-dimensional space.

For nonexistence and formation of singularities, we mention the work by Dafer-
mos [§] in 1985. Recently, Kafini and Messaoudi [I5] considered the Cauchy problem
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¢
ugy — Au +/ g(t — s)Au(z, s)ds +uy = [P u, x€R™, t>0 (13)
0 .

w(z,0) = up(x), wp(x,0) =ui(z), zeR™.
They showed that if the initial energy is negative and

e 2p — 2
/0 g(s)ds < 2271, /n uourdz > 0,

then the solution blows up in finite time. Also, in [I6], the same authors showed
their blow-up result for the coupled system

t
ugy — Au —|—/ g(t — 8)Au(z, s)ds = f1(u,v), inR" x (0,00)
0

vy — Av + /t h(t — s)Av(z, s)ds = fa(u,v), in R"™ x (0,00) (1.4)
0

u(z,0) = uo(z), u(z,0)=wui(z), xe€R"
v(z,0) =vo(x), wv(z,0)=v1(x), xeR™

For more results related to stability and asymptotic behavior of viscoelastic
equations, we refer the reader to the books by Renardy et al. [24], Munoz and
Oquendo [19], Fabrizio and Morro [12], and Baretto et al. [I].

Most of the works [2] [3, [, [ [6] concerning the linear case of viscoelastic wave
equations use assumptions of the form

1- /0 g(s)ds=1>0, (1.5)

and, for a > 0,

g ) < —ag”(t), 1<p<3/2, t>0. (1.6)
Lately, a few papers [13] 20, 21], 25] appeared with alternative conditions. For in-
stance, Furati and Tatar [I3] proved that for sufficiently small g and ¢’ can give
also an exponential decay. Namely, they assumed g(t)e®t and ¢'(t)e®* have small
L'-norms. Conditions like or are not imposed. In particular, g is not
necessarily always negative. Recently, Messaoudi and Tatar [22] improved some
earlier results concerning the exponential decay. They showed that the weak dissi-
pation induced by the convolution term is sufficient to drive the system to rest with
an exponential rate. Precisely, they established their result under the conditions

g'(t) <0 and / g(t)e®tdt < +oo (1.7)
0

for some large positive constant «.

Our aim, in this paper, is to establish a rate of exponential decay for the energy
of solutions to (L.I), under the same conditions on g and ¢’ as in [22] but in R".
Unlike in the bounded domain case, Poincaré’s inequality and some embedding
inequalities are no longer valid. To overcome this difficulty, more recently, Kafini
and Messaoudi [I7], exploited the nature of the wave propagation. In our problem,
we want to achieve our goal without using such property. We will define functionals
with special type that are equivalent to the energy functional. We remark that our
proof is also valid for bounded domains (2 C R™). Ouly it is needed to add the
condition u = 0 on 0§ x (0,00) to the original system.
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This paper is organized as follows. In section 2, we state the conditions needed
on g, and present, without proof, a global existence result. Section 3 starts with
five technical lemmas before the statement and proof of the main result.

2. PRELIMINARIES

In this section we present some material needed for the proof of our result. For
this goal, we use the assumptions:
(G1) g: Ry — Ry is a differentiable function such that

17/ g(s)ds=1>0, t>0.
0

(G2) ¢'(t) < 0and [;° g(t)e*dt < +oo, for some large positive a.

Proposition 2.1. Assume that (G1), (G2) hold, ug € H(R"), and u; € L?*(R"),
with compact support. Then (L.1)) has a unique local solution

u € C([0,00); H'(R™)), ;€ C([0,00); L*(R™)) N L?([0,00) x R™).

Now, we introduce the “modified” energy functional

E(t) = %[/Rnﬂutp 4 [ Vue|?)da + (1 - /Otg(s)ds) /]R Vul2da
+ (1 - /Ot g(s)ds) / |uf2dz + (g u)(t)}
where

(9 Hu)(t) = /Otg(t —s) /W[IVU(f) = Vau(s)]? + [u(t) — u(s)|*] dx ds.
Lemma 2.2. If u is a solution of , then the “modified” energy satisfies
(0 = 3¢/ D) - 50)|Vul} < 54 Dw) <0, (21)
Proof. By multiplying the equation in by u; and integrating over R", using

integration by parts and repeating the same computations as in [22], we obtain the
result. (]

In this paper, we use the notation
_ oo
7= [ Isas
0

3. DECAY OF SOLUTIONS

In this section, we establish four lemmas, and then we state and prove our main
result. to this end, we introduce the following functionals:

D4 (t) := /n /0 G(t —s) [|[Vu(t) - Vu(s)|? + |u(t) — u(s)\Q] dsdz (3.1)
with G(t) := e~ [ e™g(s)ds,

Dy(t) := (/n uugdr + - Vu.Vutdx), (3.2)
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— [/n \ZT /Otg(t —5)(Vu(t) — Vu(s)) dsdx

* / U /0 ot )t — u(s)) ds de]

3
= E(t) + Z%‘I)i(t), t>0.
i=1

(3.3)

(3.4)

Lemma 3.1. Assume (G1), (G2) hold. Then, for small enough vo and s, there

exist two positive constants &1,&y such that

S E(t) < F(t) < &[E() + (1))

(3.5)

Proof. We estimate the terms in the above functionals using Young’s inequality as

follows

1
/ wugdr < ||ul|3 + Z”Ut“;
RTL

1
/ Vu.Vudxr < HVU”% + ZHVUtHg,
/ Vuy. / (t —s)(Vu(t) — Vu(s)) dsdx
t
< V]2 + / o(t — 5) / Vu(t) — Vu(s)|? da ds,
]Rn

/nut/ (t—s)( —u(s))dsdx

g
< a3+ / gt~ 5) / u(t) — () da ds.
O n
By inserting (3.6])-(3.9) in (3.4]), we obtain for some positive constant &5,
1
FO <m0+ G+ 247 [ fufds
274 -
l

l
+(7+fyz)/ |Vu\2d:v+(f+72)/ lu|2dz
2 o 2

L Lt
+[§+f+73} /R |Vut|2dx+[2+73](gmu)

< &[E(t) + 21(1)].

Moreover, the same estimates give
1
FO)2 (-2~ ) [ Jufds
! 2 ! 2
+(5 =) [ [Vufde+(5—72) | [ufde
Rn Rn

1 7 2 1 g7
g = 2ol [ 1VuPds+ 5 - D20 0w,

By taking 2 and 73 small enough, we arrive, for some positive constant &,

F(t) > &E(t).
Combining of (3.10)) and (3.11)), the result follows.

(3.6)

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)
O
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Lemma 3.2. If (G1), (G2) hold. Then ®,(t) satisfies, for any 1,2 > 0,
Py(t) < —(a— 5 = =) Pu(t) — (g T u) + 01l Vue|3 + d2 e [3- (3.12)

Proof. We obtain the result by differentiating (3.1) and using Young’s inequality
as follows

B (1) = —ady(t) — (g D) + 2 / V. /O Gt — )(Vu(t) — Vu(s)) ds da

+2/n Uy /OtG(t—s)(u(t) —u(s))dsdx

2 2 _
< —a®(t) — (gD u) + 61| V3 + aGfbl(t) + baluell3 + EG‘IH(U,

where

@:/ G(s)ds:/ (efat/ easg(s)ds)dtg l/ e*g(s)ds < 0.
0 0 t @ Jo

Lemma 3.3. Assume (G1), (G2) hold. Then along the solution of (1.1), for any
03,04 > 0, the function ®o(t) satisfies

O

I (gTu). (3.13)

@) () < [luell3 + [IVuel|3 = (1 = 83)IVuull3 — (1 — ) [ul3 + 10,

Proof. By differentiating (3.2)), we have
Rn R™ Rn Rn
Along (1.1)), we find

/ g dx + Vu.Vuydr
n R’Vl

t
= —/ \Vu|?dx +/ Vu./ g(t — s)Vu(s)dsdx
Rn n

/ |ul dm—/ / (t — s)u(s) dsdux;
R"'L n

thus (3.14)) becomes

PL(t) = / | d:v+/ |Vut|2d:rf/ |Vu|2dx7/ lu|?dx

(3.15)
/ Vu/ (t —s)Vu(s dsdx—/ / (t — s)u(s)dsdx.
Using the estimates
¢
/ Vu(t)./ g(t — s)Vu(s) dsdx
R 0 (3.16)

_ t
< 53||Vu||§ + 4%53 /Rn /0 g(t —s)|Vu(t) — Vu(s)\stdx +§HVuH§
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and

_ / u(®) /Otg(t — Su(s)ds dz

- ) (3.17)
<olulf+ 5 [ ot ot~ u) dsds+ glul;
404 Jgrn Jo
Adding (3.16) and (3.17)), for 65 = min{ds, 4}, yields
t t
/ Vu(t)./ g(t — s)Vu(s) dsdxf/ u(t)/ g(t — s)u(s)dsdx
" 0 o Jo (3.18)
< 83| Vull3 + gl Vul3 + dallull3 + gllul3 + 15, I (gDu).
Inserting (3.18]) in (3.15]) gives the desired result (3.13). O

Lemma 3.4. Suppose (G1), (G2) hold. Then along the solution of (L.1)), for any
06,97, 09, 010, 012, 013 > 0, the function ®3(t) satisfies

t

(1) < —( [ oto)ts = 80) IVl = ([ tods — 10— 1) ]

+Got 612 Vull + Srlulf + (5 + g5 +1)5@Bw  (319)

g(O) ’
— (¢
4011 g =

Proof. Differentiation of (3.3)) yields

_ / Vg / "ot — $)(Vu(t) — Vu(s)) ds d

/ Vug. [ ¢'(t—s)(Vu(t) — Vu(s)) ds dz
R™ 0

-,
/nut/otg t—s)( —u(s))dsdx

([ o) s - ( / o(5)ds) [ Va3

use /Otg t—s) —u(s))dsdx (3.20)

=

=
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Along (1.1)), we find

/nutt/ (t — 8)(u(t) — u(s)) ds dz

[ V. [ gt — $)(Vult) - Vu(s)) ds de
?nvu./é t— $)(Vult) — Vu(s)) ds de
-
s

(/0 g(t — s)Vu(s)ds. /t g(t —s)(Vu(t) — Vu(S))ds)dx

0

- / N / g(t = s)u(s)ds. / gt~ s)(u(t) — u(s))ds) da.

The first two terms in the right side of (3.21]) can be estimated as follows

t
/ Vu./ (t = 8)(Vu(t) — Vu(s)) ds dx

<66HVuH2+—/ / (t — 8)|Vu(t) — Vu(s)|* ds dx,

/ / (t—s)( u(s)) dsdx

< &7||ul|2 + 7/ / g(t — 8)|u(t) — u(s)|? ds d,
407 Jrn Jo

from these two estimates, for s = min{dg, o7}, we have

(3.21)

(3.22)

(3.23)

t
/ Vu./ (t —s)(Vu(t) — Vu(s dsda:+/ / (t—s)( u(s)) dsdx

< 8ol Vul + orlull3 + 15 (9B w)

Using

(3.24)

t ? g t 2dsdx
/}Rn \/0 g(t = 8)(Vu(t) — Vu(s))ds| dmgg/n/o g(t — 8)|Vu(t) — Vu(s)|? ds da,

we estimate the last two terms in (3.21)), for d14 = min{di2, 013}, as follows

/Rn (/Ot g(t — s)Vu(s)ds. /Ot g(t — s)(Vu(t) — Vu(s))ds) dx

_ /n (/Otg(t — s)u(s)ds. /Otg(t — ) (u(t) — U(S))ds)dac

g/R” Vu(t)./o gt — $)(Vu(t) — Vu(s)) ds da
+ /n u(t)/o g(t —s)(u(t) —u(s))dsdx
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+/n
+/n

g _
< 812||Vull2 + 613|ue]|3 + m(g Hu) +g(g Du).

Similarly, the second and the fourth term of (3.20) can be handled as follows

/O t gt — 8)(Vu(t) vu(s))dsfdx

t 2
/ o(t — 5)(u(t) — u(s))ds| da
0

/ Vut./ g (t = s)(Vu(t) — Vu(s)) ds dx
8 0 (3.25)

0 t
gagnwtné—i(—ég) / / §(t = 9)|Vu(t) - Vu(s)P ds de,

/ ut/ g (t — s)(u(t) — u(s))dsdx
nd0 (3.26)

0 t
<sululd =22 [ [ - )lut) - u(o)l s
10 Jrn Jo
from the (3.25)) and (3.26]), for 11 = min{dy, d10}, we have
t t
/ Vut./ g'(t — s)(Vu(t) — Vu(s)) dsdx + / ut/ g (t — s)(u(t) — u(s)) dsdx
n 0 n 0

0
< doll Vel + ol — A (g m).
11

(3.27)
Combining ({3.20))-(3.27)), the result follows. d

Theorem 3.5. Assume (G1), (G2) hold for large a. Then, for any ty > 0, there
exist two positive constants K and k such that

B(t) < Ke ™.
Proof. Differentiating (3.4) and using (2.1) yields

N =

3 3
F'(t) = E'(t) + Y _7%®(t) < 5(¢ Du) + > %®i(t). (3.28)
i=1 i=1

Since ¢ is continuous and g(0) > 0 then, for any ¢ > to > 0, we have

¢ to
/ g(s)ds > / g(s)ds = go > 0.
0 0
By inserting (3.12), (3.13) and (3.19)) in (3.28]), we obtain

PO < (-5~ a0+ 1) - 200y my
~In 972 +73(ﬁ + i + 1) (g D)

(3.29)
— [y2(l = 83) — v3(J6 + 612)] | Vull3

[v3(g0 — 69) — 72 — 1161] | Vue|[3
— [3(g0 — 010 — 613) — Y2 — 102 lluell3 — [v2 (I — 8a) — v367][|ulf3.
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At this point, we fix d3 = d4 < I, g = 19 + 013 < go- Then any choice of v2,v3 SO
that
06 + 07 + 012 0 — d9) + (9o — d10 — d13

(l(— 53) + (1 — 5)4)73 <72 <73 (g ) (92 )7

for d¢ + 7 + 012 < A = [(I — d3) + (I — d4)][(g0 — d9) + (go — 610 — d13)]/2, will make
Yol — 64) — 367 > 0
~Ya(l — 03) — 3(d6 + d12) > 0
Y3(g0 — 09) —v2 = k1 >0
Y3(go — 010 — 613) — y2 = k2 > 0.

So we choose dg + d7 + d12 < A and ~y3 small enough so that and remain

(3.30)

valid and 0
1 g(0
- — 0.
2 73(4511) ~
Then we pick v, large enough so that
(2 1 1 )
—gl—= — 4+ —+1 0
m 9(455 (gt tY) >0

and 01, d2 small enough so that
k‘l — ’)/161 > 0, ]{2 — ’7152 > 0.

Therefore if « is large enough so that o — 2G _ 2G o, 0, then ,for all ¢t > tg, (3.29)

51 o
becomes
F'(t) < —c[E(t) + ®1(t)] < ;F(t).
2
Integrating over (to,t) yields
F(t) < F(tg)ecto/E2emct/e2

The equivalence in (3.5)) completes the proof for K = %6“0/ 2and k =c/&. O
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