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ALMOST PERIODIC SOLUTIONS OF HIGHER ORDER
DIFFERENTIAL EQUATIONS ON HILBERT SPACES

LAN THANH NGUYEN

Abstract. We find necessary and sufficient conditions for the differential

equation

u(n)(t) = Au(t) + f(t), t ∈ R
to have a unique almost periodic solution. Some applications are also given.

1. Introduction

In this article, we study the almost periodicity of solutions to the differential
equation

u(n)(t) = Au(t) + f(t), t ∈ R, (1.1)

where A is a linear, closed operator on a Hilbert space H and f is a function from
R to H. The asymptotic behavior and, in particular, the almost periodicity of
solutions of (1.1) has been a subject of intensive study for recent decades, see e.g.
[2, 6, 7, 11, 12, 13, 14] and references therein. A particular condition for almost
periodicity is the countability of the spectrum of the solution. In this paper we
investigate the almost periodicity of mild solutions of Equation (1.1), when A is
a linear, unbounded operator on a Hilbert space H. We use the Hilbert space
AP (R,H) introduced in [5], defined by follows: Let (, ) be the inner product of H
and let APb(R, E) be the space of all almost periodic functions from R to H. The
completion of APb(R, E) is then a Hilbert space with the inner product defined by:

〈f, g〉 := lim
T→∞

1
2T

∫ T

−T

(f(s), g(s))ds.

First, we establish the relationship between the Bohr transforms of the almost
periodic solutions of (1.1) and those of the inhomogeneity f . We then give a
necessary and sufficient condition so that (1.1) admits a unique almost periodic
solution for each almost periodic inhomogeneity f . As applications, in Section 4 we
show a short proof of the Gearhart’s Theorem: If A is generator of a strongly
continuous semigroup T (t), then 1 ∈ %(T (1)) if and only if 2kπi ∈ %(A) and
supk∈Z ‖(2kπi−A)−1‖ < ∞.
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2. Hilbert space of almost periodic functions

Let us fix some notation. Define S(t)f as (S(t)f)(s) = f(s + t). Recall that a
bounded, uniformly continuous function f from R to a Banach space H is almost
periodic, if the set {S(t)f : t ∈ R} is relatively compact in BUC(R,H), the space
of bounded uniformly continuous functions with sup norm topology. Let H be now
a complex Hilbert space with (, ) and ‖ · ‖ be the inner product and the norm in
H, respectively. Let APb(R,H) be the space of all almost periodic functions from
R to H. In APb(R,H) the following expression

〈f, g〉 := lim
T→∞

1
2T

∫ T

−T

(f(s), g(s))ds

exists and defines an inner product. Hence, APb(R,H) is a pre-Hilbert space and
its completion, denoted by AP (R,H), is a Hilbert space. The inner product and
the norm in AP (R,H) are denoted by 〈, 〉 and ‖ · ‖AP , respectively.

For each function f ∈ AP (R,H), the Bohr transform is defined by

a(λ, f) := lim
T→∞

1
2T

∫ T

−T

f(s)e−iλsds.

The set

σ(f) := {λ ∈ R : a(λ, f) 6= 0}

is called the Bohr spectrum of f . It is well known that σ(f) is countable for each
function f ∈ AP (R,H). The Fourier-Bohr series of f is∑

λ∈σ(f)

a(λ, f)eiλt

and it converges to f in the norm topology of AP (R,H). The following Parseval’s
equality also holds:

‖f‖2AP (R,H) =
∑

λ∈σ(f)

‖a(λ, f)‖2.

For more information about the almost periodic functions and properties of the
Hilbert space AP (R,H), we refer readers to [5, 6, 12].

Let W k(AP ) be the space consisting of all almost periodic functions f , such that
f ′, f ′′, . . . , f (k) are in AP (R,H). W k(AP ) is then a Hilbert space with the norm

‖f‖2W k(AP ) :=
k∑

i=0

‖f (i)‖2AP (R,H).

Note that, for k ≥ 0, the W k+1(AP )-topology is stronger than the sup-norm topol-
ogy in Ck

b (R,H), the space of k-times continuously differentiable functions with all
derivatives until order k inclusively bounded (see [15]). We will use the following
lemma in the sequel. (See also [11, Lemma 2.1]).

Lemma 2.1. If F is a function in W 1(AP ) and f = F ′, then we have

a(λ, f) = λi · a(λ, F ). (2.1)
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Proof. If λ 6= 0, using integration by part we have

1
2T

∫ T

−T

e−iλsf(s)ds =
1

2T
F (t)e−iλt|T−T +

iλ

2T

∫ T

−T

F (s)e−iλsds

=
F (T )e−iλT − F (−T )eiλT

2T
+ iλ

1
2T

∫ T

−T

F (s)e−iλsds.

Let T →∞, and note that F (t) is bounded, we have (2.1). If λ = 0, then

a(0, f) = lim
T→∞

1
2T

∫ T

−T

f(s)ds = lim
T→∞

F (T )− F (−T )
2T

= 0,

which also satisfies (2.1). �

Finally, for a linear and closed operator A in a Hilbert space H, we denote the
domain, the range, the spectrum and the resolvent set of A by D(A), Range(A),
σ(A) and %(A), respectively.

3. Almost periodic mild solutions of differential equations

We now turn to the differential equation

u(n)(t) = Au(t) + f(t), t ∈ R, (3.1)

where n ∈ N+ and A is a linear and closed operator on H. First we define two
types of solutions to Equation (3.1). Let I : C(R,H) → C(R,H) be the operator
defined by If(t) :=

∫ t

0
f(s)ds and Inf := I(In−1f).

Definition 3.1. (a) We say that u : R → H is a classical solution of (3.1), if u is
n-times continuously differentiable , u(t) ∈ D(A) and (3.1) is satisfied for all t ∈ R.

(b) For f ∈ C(R,H), a continuous function u is called a mild solution of (3.1),
if Inu(t) ∈ D(A) and there exist n points v0, v1, . . . , vn−1 in H such that

u(t) =
n−1∑
j=0

tj

j!
vj + AInu(t) + Inf(t) (3.2)

for all t ∈ R.

Remark. Using the standard argument, we can prove the following:

(i) If a mild solution u is m times differentiable, 0 ≤ m < n , then vi, (i =
0, 1, . . . ,m), are the initial values, i.e. u(0) = v0, u′(0) = v1, . . . , and
u(m)(0) = vm.

(ii) If n = 1 and A is the generator of a C0 semigroup T (t), then a continuous
function u : R → E is a mild solution of (3.1) if and only if it has the form

u(t) = T (t− s)u(s) +
∫ t

s

T (t− r)f(r)dr

for t ≥ s.
(iii) If u is a bounded mild solution of (3.1) corresponding to a bounded in-

homogeneity f and φ ∈ L1(R, E) then u ∗ φ is a mild solution of (3.1)
corresponding to f ∗ φ.
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The mild solution to (3.1) defined by (3.2) is really an extension of classical solution
in the sense that every classical solution is a mild solution and conversely, if a mild
solution is n-times continuously differentiable, then it is a classical solution. That
statement is actually contained in the following lemma (see also [10]).

Lemma 3.2. Suppose 0 ≤ m ≤ n and u is a mild solution of (3.1), which is
m-times continuously differentiable. Then for all t ∈ R we have In−mu(t) ∈ D(A)
and

u(m)(t) =
n−1∑
j=m

tj−m

(j −m)!
vj + AIn−mu(t) + In−mf(t), (3.3)

where vm, . . . , vn−1 are given in Definition 3.1(b).

Proof. If m = 0, then (3.3) coincides with (3.2). We prove for m = 1: Let v(t) :=
AInu(t). Then, by (3.2), v is continuously differentiable and

v′(t) = u′(t)−
n−1∑
j=1

tj−1

(j − 1)!
vj − In−1f(t).

Let h > 0 and put

vh :=
1
h

∫ t+h

t

In−1u(s)ds.

Then vh → (In−1u)(t) for h → 0 and

lim
h→0

Avh = lim
h→0

1
h

(
A

∫ t+h

0

In−1u(s)ds−A

∫ t

0

In−1u(s)ds
)

=
1
h

(v(t + h)− v(t))

= v′(t).

Since A is a closed operator, we obtain that In−1u(t) ∈ D(A) and

AIn−1u(t) = u′(t)−
n−1∑
j=1

tj−1

(j − 1)!
vj − In−1f(t),

from which (3.3) with m = 1 follows. If m > 1, we obtain (3.3) by repeating the
above process (m− 1) times. �

In particular, if the mild solution u is n-times continuously differentiable, then
(3.3) becomes u(n)(t) = Au(t) + f(t); i.e. u is a classical solution of (3.1).

We now consider the mild solutions of (3.1), which are (n−1) times continuously
differentiable. The following proposition describes the connection between the Bohr
transforms of such solutions and those of f(t).

Proposition 3.3. Suppose A is a linear and closed operator on H, f ∈ AP (R,H)
and u is an almost periodic mild solution of (3.1), which belongs to Cn−1

b (R,H).
Then

[(λi)n −A]a(λ, u) = a(λ, f) (3.4)

for every λ ∈ R.
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Proof. Suppose u is an almost periodic mild solution of (3.1), which belongs to
Cn−1

b (R,H) and λ is a real number. Using (3.3) with m = n− 1 we have

u(n−1)(t) = u(n−1)(0) + AIu(t) + If(t). (3.5)

For λ 6= 0, multiplying each side of (3.5) with e−iλt and taking definite integral
from −T to T on both sides, we have∫ T

−T

e−iλtu(n−1)(t)dt =
∫ T

−T

e−iλtu(n−1)(0)dt + A

∫ T

−T

e−iλt

∫ t

0

u(s) ds dt

+
∫ T

−T

e−iλt

∫ t

0

f(s) ds dt.

(3.6)

Here we used the fact that
∫ b

a
Au(t)dt = A

∫ b

a
u(t)dt for a closed operator A. It is

easy to see that∫ T

−T

e−iλtu(n−1)(0)dt = −e−iλT u(n−1)(0)− eiλT u(n−1)(0)
iλ

and, applying integration by part for any integrable function g(t), we have∫ T

−T

e−iλt

∫ t

0

g(s) ds dt = − 1
iλ

e−iλt

∫ t

0

g(s)ds|T−T +
1
iλ

∫ T

−T

e−iλtg(t)dt

= − 1
iλ

e−iλT

∫ T

0

g(t)dt +
1
iλ

eiλT

∫ −T

0

g(t)dt

+
1
iλ

∫ T

−T

e−iλtg(t)dt.

(3.7)

Using (3.7) for g(t) = u(t) and g(t) = f(t) in (3.6), respectively, we have

1
2T

∫ T

−T

e−iλtu(n−1)(t)dt

= −e−iλT u(n−1)(0)− eiλT u(n−1)(0)
2iλT

− e−iλT

2iλT

(
A

∫ T

0

u(t)dt +
∫ T

0

f(t)dt
)

+
eiλT

2iλT

(
A

∫ −T

0

u(t)dt +
∫ −T

0

f(t)dt
)

+
1

iλ2T

(
A

∫ T

−T

e−iλtu(t)dt +
∫ T

−T

e−iλtf(t)dt
)

= I1 + I2 + I3,

(3.8)

where

I1 = −e−iλT u(n−1)(0)− eiλT u(n−1)(0)
2iλT

→ 0

as T →∞;

I2 = −e−iλT

2iλT

(
A

∫ T

0

u(t)dt +
∫ T

0

f(t)dt
)

+
eiλT iλ

2iλT

(
A

∫ −T

0

u(t)dt +
∫ −T

0

f(t)dt
)

= −e−iλT

2iλT

(
u(n−1)(T )− u(n−1)(0)

)
+

eiλT

2iλT

(
u(n−1)(−T )− u(n−1)(0)

)
→ 0 as T →∞,
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and

I3 =
1
iλ

( 1
2T

A

∫ T

−T

e−iλtu(t)dt +
1

2T

∫ T

−T

e−iλtf(t)dt
)
. (3.9)

Let uT := 1
2T

∫ T

−T
e−iλtu(t)dt. It is clear that

lim
T→∞

uT = a(λ, u) (3.10)

and from (3.9) we have

AuT =
1

2T
A

∫ T

−T

e−iλtu(t)dt

= iλI3 −
1

2T

∫ T

−T

e−iλtf(t)dt

= iλ
( 1

2T

∫ T

−T

u(n−1)(t)dt− I1 − I2

)
− 1

2T

∫ T

−T

e−iλtf(t)dt

→ iλa(λ, u(n−1))− a(λ, f) as T →∞.

(3.11)

Since A is a closed operator, from (3.10) and (3.11), we obtain a(λ, u) ∈ D(A) and

Aa(λ, u) = iλa(λ, u(n−1))− a(λ, f) = (iλ)na(λ, u)− a(λ, f),

from which (3.4) follows. Next, if λ = 0, using Formula (3.5), we have

u(n−1)(T ) = vn−1 + A

∫ T

0

u(t)dt +
∫ T

0

f(t)dt,

u(n−1)(−T ) = vn−1 + A

∫ −T

0

u(t)dt +
∫ −T

0

f(t)dt.

Hence,

u(n−1)(T )− u(n−1)(−T )
2T

= A
1

2T

∫ T

−T

u(t)dt +
1

2T

∫ T

−T

f(t)dt. (3.12)

Let uT = 1
2T

∫ T

−T
u(s)ds. Then limt→∞ uT = a(0, u), and by (3.12),

AuT =
1

2T
A

∫ T

−T

u(s)ds

=
u(n−1)(T )− u(n−1)(−T )

2T
− 1

2T

∫ T

−T

f(s)ds → −a(0, f) as T →∞.

Again, since A is a closed operator, it implies a(0, u) ∈ D(A) and Aa(0, u) =
−a(0, f), from which (3.4) follows, and this completes the proof. �

Note that Proposition 3.3 also holds in a Banach space. We are now going to
look for conditions that Equation (3.1) has an almost periodic mild solution.

Theorem 3.4. Suppose A is a linear and closed operator and f is a function in
AP (R,H). Then the following statements are equivalent

(i) Equation (3.1) has an almost periodic mild solution, which is in Wn(AP );
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(ii) For every λ ∈ σ(f), a(λ, f) ∈ Range((iλ)n − A) and there exists a set
{xλ}λ∈σ(f) in H satisfying ((iλ)n−A)xλ = a(λ, f), for which the following
inequalities ∑

λ∈σ(f)

|λ|2k‖xλ‖2 < ∞ (3.13)

hold for k = 0, 1, 2, . . . , n.

Proof. (i) ⇒ (ii): Let u(t) be an almost periodic solution to (3.1), which is in
Wn(AP ). By Proposition 3.3, ((iλ)n − A)a(λ, u) = a(λ, f). Hence a(λ, f) ∈
Range((iλ)n − A) for all λ ∈ σ(f). Put now xλ := a(λ, u) for λ ∈ σ(f). Then it
satisfies ((iλ)n − A)xλ = a(λ, f). Moreover, by Lemma 2.1, (iλ)kxλ = a(λ, u(k)).
Hence, for 0 ≤ k ≤ n we have∑

λ∈σ(f)

|λ|2k‖xλ‖2 =
∑

λ∈σ(f)

|a(λ, u(k))|2

≤
∑

λ∈σ(f)∪σ(u(k))

|a(λ, u(k))|2

=
∑

λ∈σ(u(k))

|a(λ, u(k))|2

= ‖u(k)‖2AP ,

from which (3.13) follows.
(ii) ⇒ (i): Let {xλ}λ∈σ(f) be a set in H satisfying ((iλ)n − A)xλ = a(λ, f), for

which (3.13) holds. Put

fN (t) :=
∑

λ∈σ(f),|λ|<N

eiλta(λ, f), uN (t) :=
∑

λ∈σ(f),|λ|<N

eiλtxλ.

It is then easy to find their norms

‖u(k)
N ‖2AP =

∑
λ∈σ(f),|λ|<N

|λ|2k‖xλ‖2.

From (3.13) it implies that u
(k)
N → Uk as N → ∞ for some functions Uk (k =

0, 1, 2, . . . , n) in the topology of AP (R,H). Since the differential operator is closed,
we obtain U ′

k = Uk−1 and limN→∞ uN = U0 in the topology of Wn(AP ). It remains
to show that U0 is a mild solution of (3.1). In order to do that, note uN is a classical,
and hence, a mild solution of (3.1) corresponding to fN ; i.e.,

uN (t) =
n−1∑
i=0

ti

i!
u

(i)
N (0) + AInuN (t) + InfN (t). (3.14)

For each t ∈ R we have

lim
N→∞

∫ t

0

fN (s)ds =
∫ t

0

f(s)ds, lim
N→∞

∫ t

0

uN (s)ds =
∫ t

0

U0(s)ds.

Hence,

lim
N→∞

IkuN (t) = IkU0(t), lim
N→∞

IkfN (t) = Ikf(t)
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for k = 0, 1, 2, . . . , n. Using Equation (3.14), we have

lim
N→∞

A(InuN (t)) = lim
N→∞

(
uN (t)−

n−1∑
i=0

ti

i!
u

(i)
N (0)− InfN (t)

)
= U0(t)−

n−1∑
i=0

ti

i!
U

(i)
0 (0)− Inf(t).

Since A is a closed operator, we obtain InU0(t) ∈ D(A) and

A(InU0(t)) = u(t)−
n−1∑
i=0

ti

i!
U

(i)
0 (0)− Inf(t),

which shows that U0 is a mild solution of (3.1) and the proof is complete. �

Note that if condition (ii) in Theorem 3.4 holds, Equation (3.1) may have two
or more almost periodic mild solutions. We are going to find conditions such that
for each almost periodic function f , Equation (3.1) has a unique almost periodic
mild solution. We are now in the position to state the main result.

Theorem 3.5. Suppose A is a linear and closed operator on a Hilbert space H and
M is a closed subset of R. For 0 ≤ k ≤ n, the following statements are equivalent

(i) For each function f ∈ W k(AP ) with σ(f) ⊂ M , Equation (3.1) has a
unique almost periodic mild solution u in Wn(AP ) with σ(u) ⊆ M .

(ii) For each λ ∈ M , (iλ)n ∈ %(A) and

sup
λ∈M

|λ|m‖((iλ)n −A)−1‖ < ∞ (3.15)

for all m = 0, 1, 2, . . . , n− k.

Proof. (i) ⇒ (ii): Let W k(AP )|M be the subspace of all functions f in W k(AP )
with σ(f) ⊂ M . Then W k(AP )|M is a Hilbert space by nature. Let x be any
vector in H, λ be a number in M and let f(t) = eiλtx. Then f ∈ W k(AP )|M and
hence, Equation (3.1) has a unique almost periodic solution u in Wn(AP )|M . By
Theorem 3.4, x = a(λ, f) ∈ Range((iλ)n−A), hence ((iλ)n−A) is surjective for all
λ ∈ M . If ((iλ)n − A) were not injective, i.e., there exists a nonzero vector y ∈ H
such that ((iλ)n − A)y = 0, we show that u2(t) = u(t) + eiλty, would be an other
almost periodic mild solution to (3.1) with σ(u2) = σ(u) ⊆ M . In deed, since u is
(n− 1) times differentiable, we can use formula (3.3) to obtain

u
(n−1)
2 (t) = u(n−1)(0) + A

∫ t

0

u(s)ds +
∫ t

0

f(s)ds + (iλ)(n−1)eiλty

= u(n−1)(0) + A

∫ t

0

u(s)ds +
∫ t

0

f(s)ds +
eiλt

iλ
Ay

= (u(n−1)(0) +
Ay

iλ
) + A

∫ t

0

(u(s) + eiλsy)ds +
∫ t

0

f(s)ds

= u
(n−1)
2 (0) + A

∫ t

0

u2(s)ds +
∫ t

0

f(s)ds,

which means u2 is another mild solution of (3.1) corresponding to f , contradicting
to the uniqueness of the solution. Therefore, ((iλ)n − A) is bijective and (iλ)n ∈
%(A) for all λ ∈ M .
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We now define the operator L : W k(AP )|M → Wn(AP )|M by follows: For
each f ∈ W k(AP )|M , Lf is the unique almost periodic mild solution to (3.1)
corresponding to f . By the assumption, L is everywhere defined. We will prove
that L is a bounded operator by showing L is closed. Let fn → f in W k(AP )|M
and Lfn → u in Wn(AP )|M , where

(Lfn)(n−1)(t) = (Lfn)(n−1)(0) + A

∫ t

0

(Lfn)(s)ds +
∫ t

0

fn(s)ds. (3.16)

For each t ∈ R, we have limn→∞(Lfn)(n−1)(t) = u(n−1)(t), limN→∞
∫ t

0
fn(s)ds =∫ t

0
f(s)ds and limn→∞

∫ t

0
Lfn(s)ds =

∫ t

0
u(s)ds. Moreover, from (3.16) we have

A

∫ t

0

(Lfn)(s)ds = (Lfn)(n−1)(t)− (Lfn)(n−1)(0)−
∫ t

0

fn(s)ds

→ u(n−1)(t)− u(n−1)(0)−
∫ t

0

f(s)ds, as n →∞,

for each t ∈ R. Since A is a closed operator,
∫ t

0
u(s)ds ∈ D(A) and

A

∫ t

0

u(s)ds = u(t)− u(0)−
∫ t

0

f(s)ds,

which means u is a mild solution to (3.1) corresponding to f . Thus, f ∈ D(L),
Lf = u and hence, L is closed.

Next, for any x ∈ H and λ ∈ M , put f(t) = eiλtx, then u(t) = eiλt((iλ)n−A)−1x
is the unique almost periodic solution to (3.1), i.e., u = Lf . Using the boundedness
of operator L, we obtain

n∑
j=0

|λ|2j‖((iλ)n −A)−1x‖2 = ‖u‖2W n(AP ) ≤ ‖L‖2‖f‖2W k(AP ) = ‖L‖2
k∑

j=0

|λ|2j‖x‖2,

which implies

‖((iλ)n −A)−1x‖2 ≤ ‖L‖2
∑k

j=0 |λ|2j∑n
j=0 |λ|2j

· ‖x‖2. (3.17)

for any x ∈ H and any λ ∈ M . For a real number λ and an integer m with
0 ≤ m ≤ n− k it is easy to show the inequality∑k

j=0 |λ|2j∑n
j=0 |λ|2j

≤ 1
|λ|2m

.

Thus, from (3.17) we have

‖((iλ)n −A)−1x‖ ≤ ‖L‖ 1
|λm|

· ‖x‖,

from which (3.15) follows.
(ii) ⇒ (i): Suppose f is in W k(AP )|M . Put xλ := ((iλ)n − A)−1a(λ, f). For

any integer m with 0 ≤ m ≤ n we can write m = m1 + m2 with 0 ≤ m1 ≤ n − k
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and 0 ≤ m2 ≤ k. We have∑
λ∈σ(f)

λ2m‖xλ‖2 ≤
∑

λ∈σ(f)

((
|λ|2m1‖((iλ)n −A)−1‖2

)
·
(
|λ|2m2‖a(λ, f)‖2

))
≤

(
sup

λ∈σ(f)

|λ|2m1‖((iλ)n −A)−1‖2
) ∑

λ∈σ(f)

|λ|2m2‖a(λ, f)‖2

=
(

sup
λ∈σ(f)

|λ|m1‖((iλ)n −A)−1‖
)2

‖f (m2)‖2AP < ∞.

By Proposition 3.4, Equation (3.1) has an almost periodic mild solution in Wn(AP ).
That solution is unique and is in Wn(AP )|M , since its Bohr transforms are uniquely
determined by a(λ, u) = ((iλ)n −A)−1a(λ, f) for all λ ∈ M . �

We can apply Theorem 3.5 to some particular sets for M . First, if M = R we
have

Corollary 3.6. Suppose A is a linear and closed operator on a Hilbert space H.
For 0 ≤ k ≤ n, the following statements are equivalent

(i) For each function f ∈ W k(AP ), Equation (3.1) has a unique almost peri-
odic mild solution in Wn(AP ).

(ii) (iR)n ⊆ %(A) and

sup
λ∈R

|λ|n−k‖((iλ)n −A)−1‖ < ∞.

Let L2(0, 1) be the Hilbert space of integrable functions f from (0, 1) to H with
the norm

‖f‖2L2(0,1) =
∫ 1

0

‖f(t)‖2dt < ∞.

If M = {2pπ : p ∈ Z}, then the space AP (R,H)|M becomes L2(0, 1) and W k(AP )
becomes W k(1), the space of all periodic functions f of period 1 with f (k) ∈ L2(0, 1).
W k(1) is then a Hilbert space with the norm

‖f‖2W k(1) =
k∑

j=0

|f (k)‖2L2(0,1).

Note that, since M = {2pπ : p ∈ Z}, Condition (3.15) is satisfied for all m from 0
to (n − k) if and only if it is satisfied for only m = n − k. Hence, we obtain the
following corollary, which generalizes a result in [10].

Corollary 3.7 ([10, Theorem 2.6]). Suppose A is a linear and closed operator on
a Hilbert space H. For 0 ≤ k ≤ n, the following statements are equivalent

(i) For each function f ∈ W k(1), Equation (3.1) has a unique 1-periodic mild
solution in Wn(1).

(ii) For each p ∈ Z, 2piπ ∈ %(A) and

sup
p∈Z

|2pπ|(n−k)‖((2piπ)n −A)−1‖ < ∞. (3.18)
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4. Application: A C0-semigroup case

If A generates a C0-semigroup (T (t))t≥0, then mild solutions of the first order
differential equation

u′(t) = Au(t) + f(t) t ∈ R, (4.1)

can be expressed by

u(t) = T (t− s)u(s) +
∫ t

s

T (t− τ)f(τ)dτ (4.2)

for t ≥ s (see [1, Theorem 2.5]). We obtain the following result.

Corollary 4.1. Let A generate a C0-semigroup (T (t)) on a Hilbert H and M is a
closed subset in R. The following statements are equivalent

(i) For each function f ∈ W 1(AP )|M , Equation (4.1) has a unique solution in
W 1(AP )|M .

(ii) For each function f ∈ W 1(AP )|M , Equation (4.1) has a unique almost
periodic classical solution u with σ(u) ⊂ M .

(iii) For each λ ∈ M , λi ∈ %(A) and

sup
λ∈M

‖(iλ−A)−1‖ < ∞. (4.3)

Proof. The equivalence (i) ⇔ (iii) is shown in Theorem 3.5, (ii) ⇒ (i) is obvious.
So, it remains to show the implication (i) ⇒ (ii).

Let f be any function in W 1(AP ) and u(t) be the unique mild solution of (4.1),
which is in W 1(AP ). We will show u is a classical solution by showing u(t0) ∈ D(A)
for every point t0 ∈ R. Take any point s0 ∈ R with s0 < t0. Since for each almost
everywhere differentiable function f , the function g(t) :=

∫ t

s0
T (t − s)f(s)ds is

continuously differentiable and g(t) ∈ D(A) for all t ∈ [s0, t0] (see [9]). So, from
Formula (4.2), it suffices to show T (t0 − s0)u(s0) ∈ D(A).

By the assumptions, function g(t) := T (t− s0)u(s0) = u(t)−
∫ t

s0
T (t− s)f(s)ds

is almost everywhere differentiable on [s0, t0]. It follows that g(t) ∈ D(A) for
almost t in [s0, t0] (since t 7→ T (t)x is differentiable at right at t0 if and only if
T (t0)x ∈ D(A)). Taking a point s1 ∈ (s0, t0) such that T (s1 − s0)u(s0) ∈ D(A),
then T (t0 − s0)u(s0) = T (t0 − s1)T (s1 − s0)u(s0) ∈ D(A). The uniqueness of this
classical solution is obvious and the proof is complete. �

If M = {2kπ : k ∈ Z} and f is a 1-periodic function, then it is easy to see that
solution u is 1-periodic if and only if u(1) = u(0). Hence, to consider 1-periodic
solution, it suffices to consider u in [0, 1] and in this interval we have

u(t) = T (t)u(0) +
∫ t

0

T (t− s)f(s)ds, 0 ≤ t ≤ 1. (4.4)

From Corollary 4.1 we have a direct consequence below, in which we show the
Gearhart’s Theorem (the equivalence (iv) ⇔ (v)). For the proof of that Corol-
lary, note that the equivalence (i) ⇔ (ii) can be easily proved by using standard
arguments and (i) ⇔ (v) has been shown in [8].

Corollary 4.2. Let A generate a C0-semigroup (T (t)) on a Hilbert H, then the
following statements are equivalent
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(i) For each function f ∈ L2(0, 1), Equation (4.1) has a unique 1-periodic mild
solution.

(ii) For each function f ∈ W 1(1), Equation (4.1) has a unique 1-periodic clas-
sical solution.

(iii) For each function f ∈ W 1(1), Equation (4.1) has a unique 1-periodic solu-
tion contained in W 1(1).

(iv) For each k ∈ Z, 2kπi ∈ %(A) and

sup
k∈Z

‖(2kπi−A)−1‖ < ∞.

(v) 1 ∈ %(T (1)).
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