Electronic Journal of Differential Equations, Vol. 2010(2010), No. 73, pp. 1–9. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

OSCILLATION CRITERIA FOR FORCED SECOND-ORDER MIXED TYPE QUASILINEAR DELAY DIFFERENTIAL EQUATIONS

SOWDAIYAN MURUGADASS, ETHIRAJU THANDAPANI, SANDRA PINELAS

ABSTRACT. This article presents new oscillation criteria for the second-order delay differential equation

$$(p(t)(x'(t))^{\alpha})' + q(t)x^{\alpha}(t-\tau) + \sum_{i=1}^{n} q_i(t)x^{\alpha_i}(t-\tau) = e(t)$$

where $\tau \geq 0$, $p(t) \in C^1[0,\infty)$, $q(t), q_i(t), e(t) \in C[0,\infty)$, p(t) > 0, $\alpha_1 > \cdots > \alpha_m > \alpha > \alpha_{m+1} > \cdots > \alpha_n > 0$ $(n > m \geq 1)$, $\alpha_1, \ldots, \alpha_n$ and α are ratio of odd positive integers. Without assuming that $q(t), q_i(t)$ and e(t) are nonnegative, the results in [6, 8] have been extended and a mistake in the proof of the results in [3] is corrected.

1. INTRODUCTION

In this paper, we are concerned with the oscillatory behavior of the quasilinear delay differential equation

$$(p(t)(x'(t))^{\alpha})' + q(t)x^{\alpha}(t-\tau) + \sum_{i=1}^{n} q_i(t)x^{\alpha_i}(t-\tau) = e(t)$$
(1.1)

where $\tau \ge 0$, $p(t), q(t), q_i(t) \in C[0, \infty)$, p(t) is positive, nondecreasing and differentiable, $\alpha_1, \ldots, \alpha_n, \alpha$ are ratio of odd positive integers, and $\alpha_1 > \cdots > \alpha_m > \alpha > \alpha_{m+1} > \cdots > \alpha_n > 0$.

A solution x(t) of (1.1) is said to be oscillatory if it is defined on some ray $[T, \infty)$ with $T \ge 0$ and has unbounded set of zeros. Equation (1.1) is said to be oscillatory if all solutions extendable throughout $[0, \infty)$ are oscillatory.

For $\tau = 0$ and $\alpha = 1$, the oscillatory behavior of (1.1) has been studied in Sun and Wong [8] and Sun and Meng [6]. When $\alpha = 1$, Chen and Li [3] extended the results established by Sun and Meng [6] to (1.1). A close look into the proof of [3, Theorem 1] reveals that the authors used $x''(t) \leq 0$ for $t \in [a_1 - \tau, b_1]$ instead of taking $(p(t)x'(t))' \leq 0$ for $t \in [a_1 - \tau, b_1]$. We wish not only to correct the proof of the theorem but also extend the results given in [1, 2, 4, 8] for ordinary and delay differential equations.

²⁰⁰⁰ Mathematics Subject Classification. 34K11, 34C55.

Key words and phrases. Interval oscillation; quasilinear delay differential equation; second order.

^{©2010} Texas State University - San Marcos.

Submitted January 10, 2010. Published May 19, 2010.

In Section 2, we present some new oscillation criteria for the (1.1) and in Section 3 we provide some examples to illustrate the results.

2. Oscillation Results

We first present a lemma which is a generalization of Lemma 1 of Sun and Wong [8].

Lemma 2.1. Let $\{\alpha_i\}$, i = 1, 2, ..., n be the *n*-tuple satisfying $\alpha_1 > \cdots > \alpha_m > \alpha > \alpha_{m+1} > \cdots > \alpha_n > 0$. Then there is an *n*-tuple $(\eta_1, \eta_2, ..., \eta_n)$ satisfying

$$\sum_{i=1}^{n} \alpha_i \eta_i = \alpha \tag{2.1}$$

which also satisfies

$$\sum_{i=1}^{n} \eta_i < 1, \quad 0 < \eta_i < 1, \tag{2.2}$$

or

$$\sum_{i=1}^{n} \eta_i = 1, \quad 0 < \eta_i < 1.$$
(2.3)

Lemma 2.2. Suppose X and Y are nonnegative, then

$$X^{\gamma} - \gamma Y^{\gamma-1}X + (\gamma - 1)Y^{\gamma} \ge 0, \quad \gamma > 1,$$

where the equality holds if and only if X = Y.

The proof of the above lemma can be found in [5].

Following Philos [1], we say a continuous function H(t,s) belongs to a function class $D_{a,b}$, denoted by $H \in D_{a,b}$, if H(b,b) = H(a,a) = 0, H(b,s) > 0 and H(s,a) > 0 for b > s > a, and H(t,s) has continuous partial derivatives with $\frac{\partial H(t,s)}{\partial t}$ and $\frac{\partial H(t,s)}{\partial s}$ in $[a,b] \times [a,b]$. Set

$$\frac{\partial H(t,s)}{\partial t} = (\alpha+1)h_1(t,s)\sqrt{H(t,s)}, \quad \frac{\partial H(t,s)}{\partial s} = -(\alpha+1)h_2(t,s)\sqrt{H(t,s)}. \quad (2.4)$$

Theorem 2.3. If for any $T \ge 0$, there exist a_1, b_1, c_1, a_2, b_2 and c_2 such that $T \le a_1 < c_1 < b_1, T \le a_2 < c_2 < b_2$ and

$$q_{i}(t) \geq 0, \quad q(t) \geq 0, \quad t \in [a_{1} - \tau, b_{1}] \cup [a_{2} - \tau, b_{2}], \ i = 1, 2, \dots, n,$$
$$e(t) \leq 0, \quad t \in [a_{1} - \tau, b_{1}],$$
$$e(t) \geq 0, \quad t \in [a_{2} - \tau, b_{2}],$$
$$(2.5)$$

and there exist $H_j \in D_{a_j,b_j}$, j = 1, 2, such that

$$\frac{1}{H_{j}(c_{j},a_{j})} \int_{a_{j}}^{c_{j}} H_{j}(s,a_{j}) \Big[Q_{j}(s) - \frac{p(s)}{\alpha^{\alpha}} \Big(\frac{h_{j_{1}}(s,a_{j})}{\sqrt{H_{j}(s,a_{j})}} \Big)^{\alpha+1} \Big] ds
+ \frac{1}{H_{j}(b_{j},c_{j})} \int_{c_{j}}^{b_{j}} H_{j}(b_{j},s) \Big[Q_{j}(s) - \frac{p(s)}{\alpha^{\alpha}} \Big(\frac{h_{j_{2}}(b_{j},s)}{\sqrt{H_{j}(b_{j},s)}} \Big)^{\alpha+1} \Big] ds > 0$$
(2.6)

where h_{j_1} and h_{j_2} are defined as in (2.4),

$$Q_j(t) = \beta_j(t) \Big[q(t) + k_0 |e(t)|^{\eta_0} \prod_{i=1}^n q_i^{\eta_i}(t) \Big], \quad k_0 = \prod_{i=0}^n \eta_i^{-\eta_i}, \quad \eta_0 = 1 - \sum_{i=1}^n \eta_i, \quad (2.7)$$

Proof. Suppose that x(t) is a nonoscillatory solution of (1.1). Without loss of generality, we may assume that x(t) > 0 for $t \ge t_0 - 2\tau > 0$ where t_0 depends on the solution x(t). When x(t) is eventually negative, the proof follows the same argument by using the interval $[a_2, b_2]$ instead of $[a_1, b_1]$. Choose $a_1, b_1 \ge t_0$ such that $q_i(t) \ge 0, q(t) \ge 0$ and $e(t) \le 0$ for $t \in [a_1 - \tau, b_1]$ and $i = 1, 2, \ldots, n$. From (1.1), we have $(p(t)(x'(t))^{\alpha})' \le 0$ for $t \in [a_1 - \tau, b_1]$. Therefore for $a_1 - \tau < s < t \le b_1$, we have

$$x(t) - x(a_1 - \tau) = \frac{p^{\frac{1}{\alpha}}(s)x'(s)}{p^{\frac{1}{\alpha}}(s)}(t - a_1 + \tau)$$

or

$$x(t) \ge \frac{p^{\frac{1}{\alpha}}(t)x'(t)}{p^{\frac{1}{\alpha}}(s)}(t-a_1+\tau)$$

where $t \in (a_1 - \tau, b_1]$. Noting that $x(a_1 - \tau) > 0$ and p(t) is nondecreasing, we have

$$\frac{1}{(t-a_1+\tau)} \ge \frac{x'(t)}{x(t)}, \quad t \in (a_1-\tau, b_1].$$
(2.8)

Integrating (2.8) from $t - \tau$ to $t > a_1$, we obtain

$$\frac{x(t-\tau)}{x(t)} \ge \frac{t-a_1}{t-a_1+\tau}, \quad t \in (a_1, b_1].$$
(2.9)

Define $w(t) = -p(t)\frac{(x'(t))^{\alpha}}{x^{\alpha}(t)}$. From (1.1) and (2.9) we find that w(t) satisfies the inequality

$$w'(t) \ge q(t)\beta_1(t) + \sum_{i=1}^n q_i(t)\beta_1(t)x^{\alpha_i - \alpha}(t - \tau) - e(t)\beta_1(t)x^{-\alpha}(t - \tau) + \alpha \frac{|w(t)|^{1 + \frac{1}{\alpha}}}{p^{1/\alpha}(t)}, \quad t \in [a_1, b_1].$$
(2.10)

Recall the arithmetic-geometric mean inequality

$$\sum_{i=0}^{n} \eta_i u_i \ge \prod_{i=0}^{n} u_i^{\eta_i}, \quad u_i \ge 0,$$
(2.11)

where $\eta_0 = 1 - \sum_{i=1}^n \eta_i$ and $\eta_i > 0, i = 1, 2, ..., n$, are chosen according to given $\alpha_1, \ldots, \alpha_n$ as in Lemma 2.1 satisfying (a) and (b). Now return to (2.10) and identify $u_0 = \eta_0^{-1} |e(t)| x^{-\alpha}(t-\tau)$ and $u_i = \eta_i^{-1} q_i(t) x^{\alpha_i - \alpha}(t-\tau)$ in (2.11) to obtain

$$w'(t) \ge \beta_1(t)q(t) + \frac{\alpha |w(t)|^{1+\frac{1}{\alpha}}}{p^{\frac{1}{\alpha}}(t)} + \beta_1(t)\eta_0^{-\eta_0} |e(t)|^{\eta_0} \prod_{i=1}^n \eta_i^{-\eta_i} q_i^{\eta_i}(t)$$

= $Q_1(t) + \frac{\alpha |w(t)|^{1+\frac{1}{\alpha}}}{p^{\frac{1}{\alpha}}(t)}, \quad t \in [a_1, b_1],$ (2.12)

where $Q_1(t)$ is defined by (2.7). Multiply (2.12) by $H_1(b_1, t) \in D_{a_1, b_1}$ and integrating by parts, we find

$$\begin{split} &-H_1(b_1,c_1)w(c_1)\\ &\geq \int_{c_1}^{b_1} Q_1(s)H_1(b_1,s)ds\\ &+\int_{c_1}^{b_1} \Big[-|w(s)|(\alpha+1)h_{12}(b_1,s)\sqrt{H_1(b_1,s)} + \frac{\alpha|w(s)|^{1+\frac{1}{\alpha}}}{p^{\frac{1}{\alpha}}(s)}H_1(b_1,s)\Big]ds. \end{split}$$

Using Lemma 2.2 to the right side of the last inequality, we have

$$-H_1(b_1,c_1)w(c_1) \ge \int_{c_1}^{b_1} \Big[Q_1(s)H_1(b_1,s) - \frac{p(s)}{\alpha^{\alpha}}H_1(b_1,s)\Big(\frac{h_{12}(b_1,s)}{\sqrt{H_1(b_1,s)}}\Big)^{\alpha+1}\Big]ds.$$

It follows that

$$-w(c_1) \ge \frac{1}{H_1(b_1, c_1)} \int_{c_1}^{b_1} \left[Q_1(s) H_1(b_1, s) - \frac{p(s)}{\alpha^{\alpha}} H_1(b_1, s) \left(\frac{h_{12}(b_1, s)}{\sqrt{H_1(b_1, s)}} \right)^{\alpha+1} \right] ds.$$
(2.13)

On the other hand, multiplying both sides of (2.12) by $H_1(t, a_1) \in D_{a_1, b_1}$, integrating by parts, and similar to the above analysis we can easily obtain

$$w(c_1) \ge \frac{1}{H_1(c_1, a_1)} \int_{a_1}^{c_1} \left[Q_1(s) H_1(s, a_1) - \frac{p(s)}{\alpha^{\alpha}} H_1(s, a_1) \left(\frac{h_{11}(s, a_1)}{\sqrt{H_1(s, a_1)}} \right)^{\alpha+1} \right] ds.$$
(2.14)

From (2.13) and (2.14) we have

$$\frac{1}{H_1(c_1,a_1)} \int_{a_1}^{c_1} \left[Q_1(s)H_1(s,a_1) - \frac{p(s)}{\alpha^{\alpha}} H_1(s,a_1) \left(\frac{h_{11}(s,a_1)}{\sqrt{H_1(s,a_1)}} \right)^{\alpha+1} \right] ds \\ + \frac{1}{H_1(b_1,c_1)} \int_{c_1}^{b_1} \left[Q_1(s)H_1(b_1,s) - \frac{p(s)}{\alpha^{\alpha}} H_1(b_1,s) \left(\frac{h_{12}(b_1,s)}{\sqrt{H_1(b_1,s)}} \right)^{\alpha+1} \right] ds \le 0$$

which contradicts (2.6) for j = 1. The proof is now complete.

The following theorem gives an interval oscillation criteria for the unforced (1.1) with $e(t) \equiv 0$.

Theorem 2.4. If for any T > 0 there exist a, b and c such that $T \le a < c < b$ and $q(t) \ge 0, q_i(t) \ge 0$ for $t \in [a - \tau, b]$ and i = 1, 2, ..., n, and there exists $H \in D_{a,b}$ such that

$$\frac{1}{H(c,a)} \int_{a}^{c} H(s,a) \Big[\overline{Q}(s) - \frac{p(s)}{\alpha^{\alpha}} \Big(\frac{h_{1}(s,a)}{\sqrt{H(s,a)}} \Big)^{\alpha+1} \Big] ds \\ + \frac{1}{H(b,c)} \int_{c}^{b} H(b,s) \Big[\overline{Q}(s) - \frac{p(s)}{\alpha^{\alpha}} \Big(\frac{h_{2}(b,s)}{\sqrt{H(b,s)}} \Big)^{\alpha+1} \Big] ds > 0$$

where h_1 and h_2 are defined by (2.4),

$$\overline{Q}(t) = \beta(t) \Big[q(t) + k_1 \prod_{i=1}^n q_i^{\eta_i}(t) \Big], \quad k_1 = \prod_{i=1}^n \eta_i^{-\eta_i},$$

and $\eta_1, \eta_2, \ldots, \eta_n$ are positive constants satisfying (a) and (c) of Lemma 2.1, $\beta(t) = \left(\frac{(t-a)}{(t-a+\tau)}\right)^{\alpha}$, then (1.1) with $e(t) \equiv 0$ is oscillatory.

The proof of the above theorem is in fact a particular version of the proof of Theorem 2.3. We need only to note that $e(t) \equiv 0$ and $\eta_0 = 0$ and apply conditions (a) and (c) of Lemma 2.1.

Remark 2.5. When $\tau = 0$, Theorems 2.3 and 2.4 reduce to the main results in [9]. Moreover if $\tau = 0$ and $\alpha = 1$, then Theorems 2.3 and 2.4 reduce to [6, Theorems 1 and 2].

Before stating the next result we introduce another function class. Say $u(t) \in E_{a,b}$ if $u \in C^1[a,b]$, $u^{\alpha+1}(t) > 0$, and u(a) = u(b) = 0.

Theorem 2.6. If for any $T \ge 0$, there exist a_1, b_1 and a_2, b_2 such that $T \le a_1 < b_1$, $T \le a_2 < b_2$ and (2.5) holds, and there exists $H_j \in E_{a_j,b_j}$ and a positive nondecreasing function $\phi \in C^1([0,\infty),\mathbb{R})$ such that

$$\int_{a_j}^{b_j} \phi(t) \Big[Q_j(t) H_j^{\alpha+1}(t) - p(t) \Big(|H_j'(t)| + \frac{H_j(t)\phi'(t)}{(\alpha+1)\phi(t)} \Big)^{\alpha+1} \Big] dt > 0$$
(2.15)

for j = 1, 2, where

$$Q_{j}(t) = \beta_{j}(t) \Big[q(t) + k_{0} |e(t)|^{\eta_{0}} \prod_{i=1}^{n} q_{i}^{\eta_{i}}(t) \Big], \ k_{0} = \prod_{i=0}^{n} \eta_{i}^{-\eta_{i}},$$

$$\beta_{j}(t) = \Big(\frac{(t-a_{j})}{(t-a_{j}+\tau)} \Big)^{\alpha}$$
(2.16)

then (1.1) is oscillatory.

Proof. Suppose that x(t) is a nonoscillatory solution of (1.1). Without loss of generality, we may assume that x(t) > 0 for $t \ge t_0 - 2\tau > 0$ where t_0 depends on the solution x(t). When x(t) is eventually negative, the proof follows the same argument by using the interval $[a_2, b_2]$ instead of $[a_1, b_1]$. Choose $q(t) \ge 0, q_i(t) \ge 0$ and $e(t) \le 0$ for $t \in [a_1 - \tau, b_1]$ and $i = 1, 2, \ldots, n$. As in the proof of Theorem 2.3

$$\left(\frac{x(t-\tau)}{x(t)}\right)^{\alpha} \ge \beta_1(t), \quad t \in (a_1, b_1].$$

$$(2.17)$$

Define $w(t) = -\phi(t) \frac{p(t)(x'(t))^{\alpha}}{x^{\alpha}(t)}$. From (1.1) and (2.17) we have

$$w'(t) \ge \phi(t)q(t)\beta_1(t) + \sum_{i=1}^n \phi(t)q_i(t)\beta_1(t)x^{\alpha_i - \alpha}(t - \tau) + \frac{w(t)\phi'(t)}{\phi(t)} - e(t)\beta_1(t)x^{-\alpha}(t - \tau) + \frac{\alpha|w(t)|^{1 + \frac{1}{\alpha}}}{(p(t)\phi(t))^{1/\alpha}}.$$

Using Lemma 2.1, we have

$$w'(t) \ge \phi(t)Q_1(t) + \frac{w(t)\phi'(t)}{\phi(t)} + \frac{\alpha|w(t)|^{1+\frac{1}{\alpha}}}{(p(t)\phi(t))^{1/\alpha}}.$$
(2.18)

Multiply (2.18) by $H^{\alpha+1}(t)$ and integrating from a_1 to b_1 using the fact that $H(a_1) = H(b_1) = 0$, we obtain

$$0 \ge \int_{a_1}^{b_1} H^{\alpha+1}(t)\phi(t)Q_1(t)dt + \int_{a_1}^{b_1} \Big\{ \frac{\alpha H^{\alpha+1}(t)|w(t)|^{1+\frac{1}{\alpha}}}{(p(t)\phi(t))^{1/\alpha}} \\ - \Big[(\alpha+1)H(t)^{\alpha}|H'(t)| + \frac{H^{\alpha+1}(t)\phi'(t)}{\phi(t)} \Big] |w(t)| \Big\} dt.$$

$$(2.19)$$

Using Lemma 2.2 in (2.19), we have

$$0 \ge \int_{a_1}^{b_1} \phi(t) \Big[Q_1(t) H^{\alpha+1}(t) - p(t) \Big(|H'(t)| + \frac{H(t)\phi'(t)}{(\alpha+1)\phi(t)} \Big)^{\alpha+1} \Big] dt$$

which contradicts (2.15) with j = 1. This completes the proof.

Corollary 2.7. Suppose that $\phi(t) \equiv 1$ in Theorem 2.6, and (2.15) is replaced by

$$\int_{a_j}^{b_j} [Q_j(t)H^{\alpha+1}(t) - p(t)|H'(t)|^{\alpha+1}]dt > 0$$

for j = 1, 2. Then (1.1) is oscillatory.

Theorem 2.8. Assume that for any $T \ge 0$, there exist a, b such that $T \le a < b$ and $q(t) \ge 0, q_i(t) \ge 0$ for $t \in [a, b]$ and i = 1, 2, ..., n. Suppose there exists $H \in E_{a,b}$ and a positive nondecreasing function $\phi \in C'([0, \infty), \mathbb{R})$ such that

$$\int_{a}^{b} \phi(t) \Big[\overline{Q}(t)H^{\alpha+1}(t) - p(t)\Big(|H'(t)| + \frac{H(t)\phi'(t)}{(\alpha+1)\phi(t)}\Big)^{\alpha+1}\Big]dt > 0$$

where

$$\overline{Q}(t) = \beta(t) \Big[q(t) + k_1 \prod_{i=1}^n q_i^{\eta_i}(t) \Big], \ k_1 = \prod_{i=1}^n \eta_i^{-\eta_i},$$
$$\beta(t) = \Big(\frac{(t-a)}{(t-a+\tau)} \Big)^{\alpha}.$$

Then (1.1) with $e(t) \equiv 0$ is oscillatory.

The proof of the above theorem is in fact a particular version of the proof of Theorem 2.6. We need only to note that $e(t) \equiv 0$ and $\eta_0 = 0$ and apply conditions (a) and (c) of Lemma 2.1

Remark 2.9. When $\tau = 0, \alpha = 1$, and $\phi(t) \equiv 1$, then Theorem 2.6 and 2.8 reduced to [8, Theorems 1 and 2].

If n = 1 and $e(t) \equiv 0$ then we see that Theorems 2.3–2.8 are not valid. Therefore in the following we state and prove some new oscillation criteria for the equation

$$(p(t)(x'(t))^{\alpha})' + q(t)x^{\alpha}(t-\tau) + q_1(t)x^{\alpha_1}(t-\tau) = 0, \quad t \ge 0.$$
(2.20)

Theorem 2.10. Assume that for any $T \ge 0$ there exist a, b such that $T \le a < b$ and $q(t) \ge 0, q_1(t) \ge 0$ for $t \in [a, b]$. Suppose there exists $H \in E_{a,b}$ and positive nondecreasing function $\phi \in C'([0, \infty), \mathbb{R})$ such that

$$\int_{a}^{b} \phi(t) \Big[Q_{3}(t) H^{\alpha+1}(t) - p(t) \Big(|H'(t)| + \frac{H(t)\phi'(t)}{(\alpha+1)\phi(t)} \Big)^{\alpha+1} \Big] dt > 0$$
 (2.21)

where

$$Q_3(t) = \beta(t)[q(t) - M_1q_1(t)], \quad M_1 = (\alpha_1 - \alpha - 1)\left(\frac{1}{\alpha_1 - \alpha}\right)^{\frac{(\alpha_1 - \alpha)}{(\alpha_1 - \alpha - 1)}},$$
$$\beta(t) = \left(\frac{(t - a)}{(t - a + \tau)}\right)^{\alpha}$$

and $\alpha_1 > \alpha + 1$, then (2.20) is oscillatory.

Proof. Proceeding as in the proof of Theorem 2.6, we obtain

a . 1

$$w'(t) \ge \frac{w(t)\phi'(t)}{\phi(t)} + \frac{\alpha |w(t)|^{1+\frac{1}{\alpha}}}{(p(t)\phi(t))^{1/\alpha}} + \phi(t)q(t)\beta(t) + \phi(t)q_1(t)\beta(t)x^{\alpha_1-\alpha}(t-\tau),$$

$$\ge \frac{w(t)\phi'(t)}{\phi(t)} + \frac{\alpha |w(t)|^{1+\frac{1}{\alpha}}}{(p(t)\phi(t))^{1/\alpha}} + \phi(t)q(t)\beta(t) + \phi(t)q_1(t)\beta(t)(x^{\alpha_1-\alpha}(t-\tau) - x(t-\tau)).$$

Set $F(x) = x^{\alpha_1 - \alpha} - x$. Using differential calculus, we find that $F(x) \ge -M_1$. From (2.22), we have

$$w'(t) \ge \phi(t)Q_3(t) + \frac{\phi'(t)}{\phi(t)}w(t) + \frac{\alpha |w(t)|^{\frac{\alpha+1}{\alpha}}}{(p(t)\phi(t))^{1/\alpha}}.$$

The rest of the proof is similar to that of Theorem 2.6. This completes the proof. \Box

Theorem 2.11. Assume that for any $T \ge 0$ there exist a, b such that $T \le a < b$ and $q(t) \ge 0$, $q_1(t) \ge 0$ for $t \in [a, b]$. Suppose there exists $H \in E_{a,b}$ and a positive nondecreasing function $\phi \in C'([0, \infty), \mathbb{R})$ such that

$$\int_{a}^{b} \phi(t) \Big[Q_{4}(t) H^{\alpha+1}(t) - p(t) \Big(|H'(t)| + \frac{H(t)\phi'(t)}{(\alpha+1)\phi(t)} \Big)^{\alpha+1} \Big] dt > 0$$
 (2.23)

where

$$Q_4(t) = \beta(t)[q(t) - M_2q_1(t)], M_2 = \frac{(\alpha - \alpha_1 - \beta)}{(\alpha - \alpha_1)} \left(\frac{\beta}{\alpha - \alpha_1}\right)^{\frac{\beta}{(\alpha - \alpha_1 - \beta)}},$$

and $\alpha > \alpha_1 + \beta$, then (2.20) is oscillatory.

Proof. Proceeding as in the proof of Theorem 2.6, we obtain

$$w'(t) \ge \frac{w(t)\phi'(t)}{\phi(t)} + \frac{\alpha |w(t)|^{1+\frac{1}{\alpha}}}{(p(t)\phi(t))^{1/\alpha}} + \phi(t)q(t)\beta(t) + \phi(t)q_1(t)\beta(t)[x^{\alpha_1-\alpha}(t-\tau) - x^{-\beta}(t-\tau)].$$
(2.24)

Set $F(x) = x^{\alpha_1 - \alpha} - x^{-\beta}$. Using differential calculus, we find $F(x) \ge -M_2$. From (2.24), we have

$$w'(t) \ge \phi(t)Q_4(t) + \frac{w(t)\phi'(t)}{\phi(t)} + \frac{\alpha|w(t)|^{1+\frac{1}{\alpha}}}{(p(t)\phi(t))^{1/\alpha}}$$

The rest of the proof is similar to that of Theorem 2.6. This completes the proof. \Box

Remark 2.12. The results obtained here can also be extended to the following general equation

$$(p(t)|(x'(t))|^{\alpha-1}x'(t))' + q(t)|x(t-\tau_0)|^{\alpha-1}x(t-\tau_0) + \sum_{i=1}^n q_i(t)|x(t-\tau_i)|^{\alpha_i-1}x(t-\tau_i) = e(t)$$

where $\tau_i \ge 0$, $i = 0, 1, \dots n$ and we left it to interesting readers.

(2.22)

3. Examples

In this section, we present some examples to illustrate the main results.

Example 3.1. Consider the delay differential equation

$$(t(x'(t))^3)' + l_1 \cos t(x(t - \pi/8))^3 + l_2(\sin t)^{20/11}(x(t - \pi/8))^5 + l_3 \cos^4 t(x(t - \pi/8)) = -m \cos^5 2t,$$
(3.1)

where $t \geq 0$, l_1, l_2, l_3, m are positive constants. Here p(t) = t, $\alpha = 3$, $q(t) = l_1 \cos t$, $q_1(t) = l_2(\sin t)^{20/11}$, $q_2(t) = l_3(\cos t)^{1/4}$, $\alpha_1 = 5$, $\alpha_2 = 1$, $\tau = \frac{\pi}{8}$ and $e(t) = -m \cos 2t$. For any $T \geq 0$, we can choose $a_1 = 2n\pi + \frac{\pi}{8}, b_1 = 2n\pi + \frac{\pi}{4}, a_2 = 2n\pi + \frac{3\pi}{8}, b_2 = 2n\pi + \frac{\pi}{2}$ for sufficiently large n, where n is a positive integer. It is easy to find that

$$Q_{j}(t) = k_{0} \left[\frac{(t-a_{j})}{(t-a_{j}+\pi/8)} \right]^{3} (l_{1}\cos t + (\cos^{5}2t)^{1/5}(\sin^{20/11}t)^{11/20}(\cos^{4}t)^{1/4})$$
$$= k_{0} \left[\frac{(t-a_{j})}{(t-a_{j}+\pi/8)} \right]^{3} (l_{1}\cos t + (\cos 2t)\sin t\cos t)$$

where $k_0 = (5m)^{1/5} (\frac{20l_2}{11})^{11/20} (4l_3)^{1/4}$. Let $H_1(t) = H_2(t) = \sin 8t$ and $\phi(t) = 1$. Based on Theorem 2.6, we have (3.1) is oscillatory if

$$\int_{a_j}^{b_j} \left[k_0 \left(\frac{t - a_j}{t - a_j + \pi/8} \right)^3 \left(l_1 \cos t + \frac{\sin 4t}{4} \right) \sin^4 8t - 8t \cos^4 8t \right] dt > 0, \quad j = 1, 2.$$

Example 3.2. Consider the delay differential equation

$$x''(t) + k_1 t^{-\lambda/3} (\sin t) x(t - \pi/2) + t^{-\delta} x^3(t - \pi/2) = 0, \ t \ge 1,$$
(3.2)

where $k_1, \lambda, \delta > 0$ are constants and $\alpha = 1, \alpha_1 = 3, \tau = \frac{\pi}{2}$ in Theorem 2.10. Since $\alpha < \alpha_1$ and $e(t) \equiv 0$, Theorem 2.4 and Theorem 2.8 are not applicable to this case. However, we can obtain oscillation of (3.2) with $H(t) = \sin 2t$ and $\phi(t) = 1$. For any $t_0 \ge 1$, we can choose $a = 2k\pi + \pi/2, b = 2k\pi + \pi$ for sufficiently large k, where k is a positive integer. It is easy to find that

$$Q_{3}(t) = \left(\frac{t-a}{t-a+\pi/2}\right) \left[k_{1}t^{-\lambda/3}\sin t - \frac{t^{-\delta}}{4}\right],$$
$$\int_{a}^{b} \left[\frac{t-a}{t-a+\pi/2} \left(k_{1}t^{-\lambda/3}\sin t - \frac{t^{-\delta}}{4}\right)\sin^{2} 2t - 4\cos^{2} 2t\right] dt > 0.$$

So by Theorem 2.10, Equation (3.2) is oscillatory if

$$\int_{2k\pi+\pi/2}^{2k\pi+\pi} \left(\frac{t-a}{t-a+\pi/2}\right) \left(k_1 t^{-\lambda/3} \sin t - \frac{t^{-\delta}}{4}\right) \sin^2 2t \, dt > \pi.$$

Example 3.3. Consider the delay differential equation

$$((x'(t))^3)' + k_1 t^{-\lambda} (\sin t) x^3 (t - \pi/4) + k_2 t^{-\lambda} x (t - \pi/4) = 0, \qquad (3.3)$$

where $t \ge 1, k_1, k_2$ and λ are positive constants and $\alpha = 3, \alpha_1 = 1$ in Theorem 2.11. Since other theorems cannot be applicable to this case but we can obtain oscillation of (3.3) with $\beta = 1, H(t) = \sin 4t$ and $\phi(t) = 1$. For any $t_0 \ge 1$, let

 $a = 2n\pi + \pi/4, b = 2n\pi + \pi/2$ for n sufficiently large and n is a positive integer. It is easy to see that

$$\int_{a}^{b} Q_{4}(t)H^{4}(t) - (H'(t))^{4}$$

=
$$\int_{a}^{b} \left[\left(\frac{t-a}{t-a+\pi/4} \right)^{3} \left(k_{1}t^{-\lambda} \sin t - \frac{1}{4}k_{2}t^{-\lambda} \right) \sin^{4} 4t - 256 \cos^{4} 4t \right] dt.$$

So by Theorem 2.11, Equation (3.3) is oscillatory if

$$\int_{2n\pi+\pi/4}^{2n\pi+\pi/2} \left(\frac{t-a}{t-a+\pi/4}\right)^3 \left(k_1 t^{-\lambda} \sin t - \frac{1}{4} k_2 t^{-\lambda}\right) \sin^4 4t \, dt > \frac{3\pi}{32}.$$

References

- R. P. Agarwal, S. R. Grace and D. O. Regan; Oscillation Theory for Second Order Linear, Half linear, Superlinear and Sublinear Dynamic Equations, Kluwer Academic, Dordrchet, 2002.
- [2] R. P. Agarwal, S. R. Grace and D. O. Regan; Oscillation Theory for Second Order Dynamic Equations, Taylor & Francis, London, 2003.
- [3] S. Chen and C. Li; Oscillation of second order functional differential equations with mixed nonlinearities and oscillatory potentials, Appl. Math. Comput. 210(2009), 504 - 507.
- [4] J. Dzurina and I. P. Stavroulakis; Oscillation criteria for second order delay differential equations, Appl. Math. Comput. 140(2003), 445 - 453.
- [5] G. H. Hardy, J. E. Littlewood and G. Polya; *Inequalities*, Cambridge Univ Press. Cambridge, 1952.
- [6] Y. G. Sun and F. W. Meng; Interval criteria for oscillation of second order differential equations with mixed nonlinearities, Appl. Math. Comput. 198(2008), 375 - 381.
- [7] Y. G. Sun and F. W. Meng; Oscillation of second order delay differential equations with mixed nonlinearities, Appl. Math. Comput. 207(2009), 135 - 139.
- [8] Y. G. Sun and J. S. W. Wong; Oscillation criteria for second order forced ordinary differential equations with mixed nonlinearities, J. Math. Anal. Appl. 334(2007), 549 - 560.
- [9] E. Thandapani and S. Murugadass; Oscillation criteria for forced second order mixed type quasilinear differential equations, (to appear)

Sowdaiyan Murugadass

Ramanujan Institute for Advanced Study in Mathematics, University of Madras, Chennai - $600005, \, {\rm India}$

 $E\text{-}mail \ address: \texttt{murugadasssm@gmail.com}$

Ethiraju Thandapani

Ramanujan Institute for Advanced Study in Mathematics, University of Madras, Chennai - $600005,\,{\rm India}$

E-mail address: ethandapani@yahoo.co.in

Sandra Pinelas

DEPARTAMENTO DE MATEMÁTICA, UNIVERSIDADE DOS AÇORES, PORTUGAL *E-mail address:* sandra.pinelas@clix.pt