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OSCILLATION CRITERIA FOR FORCED SECOND-ORDER
MIXED TYPE QUASILINEAR DELAY DIFFERENTIAL
EQUATIONS

SOWDAIYAN MURUGADASS, ETHIRAJU THANDAPANI, SANDRA PINELAS

ABSTRACT. This article presents new oscillation criteria for the second-order
delay differential equation

n
(&)@ (D)) + a2t — )+ 3 a:(B)a%i (t — 7) = e(t)

i=1
where 7 > 0, p(t) € C1[0,00), q(t), ¢:(t),e(t) € C[0,00), p(t) >0, a3 > --- >
am > @ > Qmi1 > - > an >0 (n>m >1), al,...,an and « are
ratio of odd positive integers. Without assuming that ¢(t), ¢;(t) and e(t) are
nonnegative, the results in [0 [§] have been extended and a mistake in the proof
of the results in [3] is corrected.

1. INTRODUCTION

In this paper, we are concerned with the oscillatory behavior of the quasilinear
delay differential equation

n

(PO (6)*) +a(O)z™(t =)+ Y ai(t)a™ (t = ) = e(t) (L.1)

i=1
where 7 > 0, p(¢), q(t), q;(t) € C[0,00), p(t) is positive, nondecreasing and differen-
tiable, aq, ..., ay,a are ratio of odd positive integers, and oy > -+ > ay, > a >

Qg1 > - > > 0.

A solution z(t) of is said to be oscillatory if it is defined on some ray [T, 00)
with T' > 0 and has unbounded set of zeros. Equation is said to be oscillatory
if all solutions extendable throughout [0, 00) are oscillatory.

For 7 = 0 and a = 1, the oscillatory behavior of has been studied in Sun
and Wong [8] and Sun and Meng [6]. When o = 1, Chen and Li [3] extended the
results established by Sun and Meng [6] to (L.1). A close look into the proof of [3]
Theorem 1] reveals that the authors used z”(t) < 0 for t € [a; — 7, b;] instead of
taking (p(t)a’(t))’ <0 for t € [a; — 7,b1]. We wish not only to correct the proof of
the theorem but also extend the results given in [ 2 4 [§] for ordinary and delay
differential equations.
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In Section 2, we present some new oscillation criteria for the (|1.1)) and in Section
3 we provide some examples to illustrate the results.

2. OSCILLATION RESULTS

We first present a lemma which is a generalization of Lemma 1 of Sun and Wong
[8].

Lemma 2.1. Let {a;}, i = 1,2,...,n be the n-tuple satisfying aq > -+ > am >
Q> Qg1 > - > ap > 0. Then there is an n-tuple (n1,1M2, ..., 1) satisfying

iami =a (2.1)
i=1

which also satisfies

domi<1, 0<n <1, (2.2)
=1

or
domi=1, 0<n <L (2.3)
=1

Lemma 2.2. Suppose X and Y are nonnegative, then
XYY" X+ (y-1)Y" >0, 4>1,
where the equality holds if and only if X =Y.

The proof of the above lemma can be found in [5].

Following Philos [I], we say a continuous function H (¢, s) belongs to a function
class D,p, denoted by H € Dy, if H(b,b) = H(a,a) = 0, H(b,s) > 0 and
H(s,a) > 0 for b > s > a, and H(t,s) has continuous partial derivatives with
aHa(f’s) and aHa(z’S) in [a,b] X [a,b]. Set

OH(t, OH(t,

# = (a+ 1)hy(t,s)\/H(t,s), % = —(a+ 1)ha(t,s)\/H(t,s). (2.4)

Theorem 2.3. If for any T > 0, there exist a1,b1,c1,a2,b and co such that
T<a <c1<b, T<as<cy<by and

q;(t) >0, q(t)>0, te€as—7,b0|Ulag—T1,b3],i=1,2,...,n,
e(t) <0, tela—T,b1], (2.5)
e(t) >0, te€lag— T, b,
and there exist Hy € Dy, p,, 7 = 1,2, such that

Ha(clyaa) /: H;(s ;) [Qi(s) _p) (M)aﬂ}ds

ao Hj(s,a;
Lo p(s) (b (bz5) Y+ 20
+I—Ij(ijcj>/cj Hj(ijs)[Qj(s)fﬁ(m) }d5>0

where hj, and hj, are defined as in (2.4)),

n

Q;(t) = B;(t) [Q(t) + kole(t)|™ qui(t)}, ko=]]m™ mo=1->Y_m, (27)
i=1 i=0

i=1
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and n1,M2, ..., Nn are positive constants satisfying (a) and (b) in Lemma 2.1 and

B;(t) = ((t(tafjr)r)) then (1.1) is oscillatory.

Proof. Suppose that z(t) is a nonoscillatory solution of (L.I). Without loss of
generality, we may assume that x(t) > 0 for ¢ > t; — 27 > 0 where ¢y depends
on the solution x(¢). When x(t) is eventually negative, the proof follows the same
argument by using the interval [ag, bo] instead of [a1,b1]. Choose ay,by > to such
that ¢;(¢t) > 0,q(t) > 0 and e(t) < 0 for ¢t € [a; — 7,b1] and ¢ = 1,2,...,n. From
(L.1), we have (p(t)(a'(t))*)" < 0 for t € [a; — 7, b1]. Therefore for a; —7 < s <t <
b1, we have

2(t) — x(ay —7) = p= (s)a'(s) (‘f)"””/(s) (t—aj +7)
pe(s)
or
o) > EOTO oy
p=(s)

where ¢t € (a1 — 7, b1]. Noting that x(a; —7) > 0 and p(¢) is nondecreasing, we have

1 ' (t)
Gt = 20

te (a1 - T, bl] (28)

Integrating (2.8)) from ¢t — 7 to t > a;, we obtain

x(t—17) S _t-a

20 Zi—a+r [Clanhl) (2.9)

Define w(t) = —p(t) “;'ES?Q)Q From (1.1)) and (2.9) we find that w(t) satisfies the
inequality

w'(t) > q(t)Ba(t) + Z gi(t) )z " (t —7)

()]

—e(t)B )zt —71)+ aW, t € la, by].

(2.10)

Recall the arithmetic-geometric mean inequality

n
Zniui > Hu?, u; > 0, (2.11)
; i=0

where ng = 1 — Z?:l n; and n; > 0,4 = 1,2,...,n, are chosen according to given
Q1,...,0p as in Lemma 2.1 satisfying (a) and (b). Now return to (2.10) and identify
up =1y He(®)|z™(t — 7) and u; = n; 'qi(t)z*~*(t — 7) in ([2.11) to obtain

afw(t)[* =

w'(t) > B (t)a(t) + g Aon o "0le(t)|™ Hm mig)
1 (2.12)
:Ql(t)+M7 t € [ar, bi],

pa(t)
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where Q1(t) is defined by (2.7). Multiply (2.12)) by Hi(b1,t) € Dq, », and integrat-
ing by parts, we find

— Hy(b1, c1)w(er)
by
> Q1(s)Hy (b1, s)ds

c1
b1 alw(s)|t =
+/ [*|w(5)|(a+1)h12(b1,s)\/H1(b1,s)+7| ﬁ?') Hl(bl,s)]ds.
ci pals
Using Lemma 2.2 to the right side of the last inequality, we have
b1
p(s) hia(by,s) \ot!
—Hy(by,c1)w(c 2/ $)H1(b1,8) — —=H;(by,s)| ———= ds.
breduie) 2 | Qi) s) - TR (JEEES)
It follows that

1 by p(s) h12(b1, 8) otl
—w(cy) > Hi(brcr) /Cl [Ql(s)Hl(blas) - EHl(bl’s)<m) }ds
(2.13)

On the other hand, multiplying both sides of (2.12) by H1(¢,a1) € D, »,, integrat-
ing by parts, and similar to the above analysis we can easily obtain

w(ey) = S /;1 [Ql(s)H1(s,a1) - I)(?Hl(s,al)<}”1(3’a1)))a+l}d&

= Hi(ei,a1) Jq, «@ Hy(s,a1
(2.14)
From ([2.13) and (2.14) we have
1 e p(s) hi1(s,a1) yot!
S H By Y d
Hl(chal) »/al |:Q1(S) 1(S’a1) a“ 1(8’(11)( H1(85a1)> :| ’
1 b1 p(S) hlg(bh S) a+1
_— Hi(b — ——2H(b —_— ds <0
+ ACRD /C1 {Ql(S) 1(b1, 5) e 1( 1,5)( Hl(b1,3)> } s <
which contradicts (2.6]) for j = 1. The proof is now complete. ([

The following theorem gives an interval oscillation criteria for the unforced (|1.1))
with e(t) = 0.

Theorem 2.4. If for any T > 0 there exist a,b and ¢ such that T < a < ¢ <b and
q(t) > 0,q(t) >0 fort € [a—71,b] and i =1,2,...,n, and there exists H € Dy

such that
1 c — p(s) /1 hi(s,a) \ot!
H(c,a)/a H(S’a)[Q(S)_aia( H(s,a)> }ds
+ 7H(2, J /Cb H(b,s) [@(s) - pcii) (%)aﬂ]ds >0

where hy and ho are defined by ;
Q) =5 {Q(t) +h qu‘i(t)}’ k=[]
i=1 i=1

and N1,Mz, - . ., Ny, are positive constants satisfying (a) and (c) of Lemma 2.1, B(t) =

((t(f;j_)ﬂ)a, then (1.1) with e(t) = 0 is oscillatory.
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The proof of the above theorem is in fact a particular version of the proof of
Theorem We need only to note that e(t) = 0 and ny = 0 and apply conditions
(a) and (c) of Lemma 2.1.

Remark 2.5. When 7 = 0, Theorems [2.3]and [2.4] reduce to the main results in [9].
Moreover if 7 = 0 and o = 1, then Theorems and reduce to [6, Theorems 1
and 2].

Before stating the next result we introduce another function class. Say wu(t) €
Eqp if u € Cta,b], u*™(t) > 0, and u(a) = u(b) = 0.

Theorem 2.6. If for any T > 0, there exist a1,b; and ag, by such that T < ap <
bi, T < az < by and (2.5) holds, and there exists H; € E,, 3, and a positive
nondecreasing function ¢ € C*([0,00),R) such that

ot N HULIORGS
/ o[ Qi H 0 —p (1m0l + L) Je=0 @as)

for 5 =1,2, where

Qj(t) = B;(®)[alt) + Kole(t Wqu 0], ko =TT
i=0

@mZ((“_%)Qa

t—a; +7

(2.16)

then (1.1)) is oscillatory.

Proof. Suppose that z(t) is a nonoscillatory solution of (L.I). Without loss of
generality, we may assume that x(t) > 0 for ¢ > t; — 27 > 0 where ¢y depends
on the solution x(¢). When z(t) is eventually negative, the proof follows the same
argument by using the interval [ag, bo] instead of [a1, b1]. Choose ¢(t) > 0,¢;(¢t) > 0
and e(t) < 0 fort € [a; —7,b1] and i = 1,2,...,n. As in the proof of Theorem 2.3

x(t—T1)\
&0 ) 2 Bi®), te (ar,bi] (2.17)
Define w(t) = —(b(t)w From and we have
W) 2 60u )+ Y om0 (0ot =)+ 2
a|w(t)| e
—e(®)b(t)a™*(t —71)+ M&»Ua.

Using Lemma 2.1, we have
wt)g'(t) | aw(t)|t=

w2 00T =5 G
Multiply (2.18) by H**l(t) and integrating from a; to b; using the fact that
H(ay) = H(by) = 0, we obtain
g QH (1) (8)[
0> HO () p(H) Q1 (t)dt
> [ e +/al (S omamne -

at1 ,
O (o) ar

(2.18)

- [+ VO H®)] +
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Using Lemma 2.2 in (2.19)), we have

" H(t)¢'(t) ot
a+1 /
0= [ ow[@mnte - (1o + )
which contradicts (2.15)) with 7 = 1. This completes the proof. O

Corollary 2.7. Suppose that ¢(t) =1 in Theorem and (2.15)) is replaced by

[ Q@m0 — s @) it > 0

for 5 =1,2. Then (1.1) is oscillatory.

Theorem 2.8. Assume that for any T > 0, there exist a,b such that T < a < b and
q(t) > 0,q;(t) > 0 fort € [a,b] and i = 1,2,...,n. Suppose there exists H € E,
and a positive nondecreasing function ¢ € C'([0,00),R) such that

VN 2 HE () Yo
[ e @m+o) —pw (1o + 250 a0

where

Q) =80 [a) + k1 [T ®] k=TT

0= (L)

Then (1.1) with e(t) = 0 is oscillatory.
The proof of the above theorem is in fact a particular version of the proof of

Theorem [2.6] We need only to note that e(t) = 0 and 7y = 0 and apply conditions
(a) and (c) of Lemma 2.1

Remark 2.9. When 7 = 0, = 1,and ¢(t) = 1, then Theoremandreduced
to [8, Theorems 1 and 2].

If n = 1 and e(¢) = 0 then we see that Theorems are not valid. Therefore
in the following we state and prove some new oscillation criteria for the equation
(@)@ @)Y) +qt)z*(t — 1)+ @ (t)z* (¢t —7) =0, t>0. (2.20)

Theorem 2.10. Assume that for any T > 0 there exist a,b such that T < a < b
and q(t) > 0,q1(t) > 0 fort € [a,b] . Suppose there exists H € E, 3 and positive
nondecreasing function ¢ € C'(]0,00),R) such that

’ a1 , H()¢' (1) o+
/a o(t) [ Qs H (1) — p(t) (1 (t)|+m) Jat>0 (21

where

(a1 —a)
Qs(t) = B1)[a(t) = Miqa(t)], My = (01— — 1)(a1 L )

0= (Glai)’

and ay > a+ 1, then (2.20)) is oscillatory.
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Proof. Proceeding as in the proof of Theorem [2.6] we obtain
) w(t)g'(t) | alw()|t=
50 T hmem
w)@'(t) | aw(t)|'E
20w T wmeye WA
+ o) (1) B(t) (™ 7 (t — 7) — 2(t — 7).

+ o(t)q()B(t) + o(t)qr (1) B(t)z™ ~* (t — 7),

(2.22)
Set F(x) = x®~* —z. Using differential calculus, we find that F(z) > —M;. From

(2.22), we have

/ RO IO
w'(t) > (t)Qs(t) + 0 w(t) + PO

The rest of the proof is similar to that of Theorem This completes the proof. O

Theorem 2.11. Assume that for any T > 0 there exist a,b such that T < a < b
and q(t) > 0, q1(t) > 0 for t € [a,b]. Suppose there exists H € E,;, and a positive
nondecreasing function ¢ € C'(]0,00),R) such that

b / a+1
[ ew[eiomo s o+ o) a0 )

where

Qa(t) = B(#)[a(t) — Maq1(1)], M2 =

(a—a; —f) < 8 ) @mar=

(v — ) a—a
and o > a1 + 3, then (2.20) is oscillatory.
Proof. Proceeding as in the proof of Theorem we obtain

wt)d' () alw(t)|tw
o) e o(t)a(t)B(t)

+ o) ()BH)[a™(t —7) —a Pt = 7)].

Set F(z) = 291~ — =8, Using differential calculus, we find F(x) > —M,. From
(2.24)), we have

w'(t) >

(2.24)

wOF(0) | ol
(t) (p()p(t))1 />
The rest of the proof is similar to that of Theorem[2.6] This completes the proof. [0

w'(t) = (1) Qa(t) +

Remark 2.12. The results obtained here can also be extended to the following
general equation

(P (O)*12" () + a(t) |2t — 70)|* " x(t — 7o)

+> ()t — )
i=1

"‘Flw(t —1;) = e(t)

where 7, > 0, i =0,1,...n and we left it to interesting readers.
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3. EXAMPLES

In this section, we present some examples to illustrate the main results.
Example 3.1. Consider the delay differential equation
(t(2'(t))®) + 1y cost(z(t — 7/8))>
+ Iy (sint) 2/ (z(t — 7/8))° + Is cos™ t(x(t — 7/8)) (3.1)

= —mcos® 2,

where t > 0, ly,ls,l3,m are positive constants. Here p(t) = ¢, « = 3, ¢(t) =
licost, qi(t) = lo(sint)?/1 go(t) = l3(cost)/*, oy =5, ap = 1, 7 = % and
e(t) = —mcos2t. For any T' > 0, we can choose a1 = 2nm + 5,01 = 2n7w + T,
as = 2nm + 3%, by = 2n7 + 5 for sufficiently large n, where n is a positive integer.
It is easy to find that

Q;(t) = ko {(t—(zj—%} 3(11 cost + (cos® 26)1/5(sin20/11 £)11/20 (cost 1) 1/4)

(t—a;) 13 ‘ o ‘
0 [m} (I1 cost + (cos 2t) sint cost)

where kg = (5m)1/®(222)11/20(413)1/%. Let Hi(t) = Ha(t) = sin8t and ¢(t) = 1.
Based on Theorem [2.6) we have (3.1]) is oscillatory if

b t—a; \3 in 4t
/aj {ko(t—aji—&—a]ﬂ'/S) (l1 cost + %) sin? 8t — 8t cos* St} dt >0, j=1,2.

Example 3.2. Consider the delay differential equation
2" (t) 4 kit M3 (sint)a(t — n/2) +t 023 (t —7/2) =0, t > 1, (3.2)

where k1, A, > 0 are constants and o = 1,1 = 3,7 = £ in Theorem Since
a < ap and e(t) =0, Theorem and Theorem are not applicable to this case.
However, we can obtain oscillation of with H(t) = sin2¢ and ¢(¢t) = 1. For
any to > 1, we can choose a = 2km +7/2,b = 2kw + 7 for sufficiently large k, where
k is a positive integer. It is easy to find that

INIE

4

S (RS  PRFESVE I _t;}
@s(t) = (tfa+7r/2)[k1t sint 4 1
’ t—a A t° 2 2
/ {m (k]_t_ /3 sint — T) sin® 2t — 4 cos 2ti| dt > 0.
a — ™

So by Theorem Equation (3.2)) is oscillatory if
-5

2kt t—a t
/ (7) (klt_k/?’ sint — —) sin? 2t dt > 7.
Shrprs2 N —a+m/2 4
Example 3.3. Consider the delay differential equation
(@' (1)) + kit~ (sint) 23 (t — 7/4) + kot *a(t — 7/4) = 0, (3.3)

where t > 1,ky, ke and A are positive constants and a = 3,a; = 1 in Theorem
[2.11] Since other theorems cannot be applicable to this case but we can obtain
oscillation of (3.3) with g = 1, H(t) = sin4t and ¢(t) = 1. For any t; > 1, let



EJDE-2010/73 OSCILLATION CRITERIA 9

a =2nm+w/4,b = 2nm + 7 /2 for n sufficiently large and n is a positive integer. It
is easy to see that

b
/ Qu(t)H(t) — (H' (1))

’ t—a 3 A 1 A wid
:/ {(7> (klt* sint — —kot™ )sin At — 256 cos* 4t dt.
o LNt—a+7/4 4

So by Theorem Equation (3.3)) is oscillatory if

2nm+m/2 t— 3 1 3
/ (7a) (k:lt_’\sint - *kgt_/\) sintatdt > X
2nm+mw/4 t*a+7l'/4 4 32
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