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OSCILLATION CRITERIA FOR FORCED SECOND-ORDER
MIXED TYPE QUASILINEAR DELAY DIFFERENTIAL

EQUATIONS

SOWDAIYAN MURUGADASS, ETHIRAJU THANDAPANI, SANDRA PINELAS

Abstract. This article presents new oscillation criteria for the second-order

delay differential equation

(p(t)(x′(t))α)′ + q(t)xα(t− τ) +

nX
i=1

qi(t)x
αi (t− τ) = e(t)

where τ ≥ 0, p(t) ∈ C1[0,∞), q(t), qi(t), e(t) ∈ C[0,∞), p(t) > 0, α1 > · · · >
αm > α > αm+1 > · · · > αn > 0 (n > m ≥ 1), α1, . . . , αn and α are

ratio of odd positive integers. Without assuming that q(t), qi(t) and e(t) are

nonnegative, the results in [6, 8] have been extended and a mistake in the proof
of the results in [3] is corrected.

1. Introduction

In this paper, we are concerned with the oscillatory behavior of the quasilinear
delay differential equation

(p(t)(x′(t))α)′ + q(t)xα(t− τ) +
n∑

i=1

qi(t)xαi(t− τ) = e(t) (1.1)

where τ ≥ 0, p(t), q(t), qi(t) ∈ C[0,∞), p(t) is positive, nondecreasing and differen-
tiable, α1, . . . , αn, α are ratio of odd positive integers, and α1 > · · · > αm > α >
αm+1 > · · · > αn > 0.

A solution x(t) of (1.1) is said to be oscillatory if it is defined on some ray [T,∞)
with T ≥ 0 and has unbounded set of zeros. Equation (1.1) is said to be oscillatory
if all solutions extendable throughout [0,∞) are oscillatory.

For τ = 0 and α = 1, the oscillatory behavior of (1.1) has been studied in Sun
and Wong [8] and Sun and Meng [6]. When α = 1, Chen and Li [3] extended the
results established by Sun and Meng [6] to (1.1). A close look into the proof of [3,
Theorem 1] reveals that the authors used x′′(t) ≤ 0 for t ∈ [a1 − τ, b1] instead of
taking (p(t)x′(t))′ ≤ 0 for t ∈ [a1 − τ, b1]. We wish not only to correct the proof of
the theorem but also extend the results given in [1, 2, 4, 8] for ordinary and delay
differential equations.
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In Section 2, we present some new oscillation criteria for the (1.1) and in Section
3 we provide some examples to illustrate the results.

2. Oscillation Results

We first present a lemma which is a generalization of Lemma 1 of Sun and Wong
[8].

Lemma 2.1. Let {αi}, i = 1, 2, . . . , n be the n-tuple satisfying α1 > · · · > αm >
α > αm+1 > · · · > αn > 0. Then there is an n-tuple (η1, η2, . . . , ηn) satisfying

n∑
i=1

αiηi = α (2.1)

which also satisfies
n∑

i=1

ηi < 1, 0 < ηi < 1, (2.2)

or
n∑

i=1

ηi = 1, 0 < ηi < 1. (2.3)

Lemma 2.2. Suppose X and Y are nonnegative, then

Xγ − γ Y γ−1X + (γ − 1)Y γ ≥ 0, γ > 1,

where the equality holds if and only if X = Y .

The proof of the above lemma can be found in [5].
Following Philos [1], we say a continuous function H(t, s) belongs to a function

class Da,b, denoted by H ∈ Da,b, if H(b, b) = H(a, a) = 0, H(b, s) > 0 and
H(s, a) > 0 for b > s > a, and H(t, s) has continuous partial derivatives with
∂H(t,s)

∂t and ∂H(t,s)
∂s in [a, b]× [a, b]. Set

∂H(t, s)
∂t

= (α + 1)h1(t, s)
√

H(t, s),
∂H(t, s)

∂s
= −(α + 1)h2(t, s)

√
H(t, s). (2.4)

Theorem 2.3. If for any T ≥ 0, there exist a1, b1, c1, a2, b2 and c2 such that
T ≤ a1 < c1 < b1, T ≤ a2 < c2 < b2 and

qi(t) ≥ 0, q(t) ≥ 0, t ∈ [a1 − τ, b1] ∪ [a2 − τ, b2], i = 1, 2, . . . , n,

e(t) ≤ 0, t ∈ [a1 − τ, b1],

e(t) ≥ 0, t ∈ [a2 − τ, b2],
(2.5)

and there exist Hj ∈ Daj ,bj
, j = 1, 2, such that

1
Hj(cj , aj)

∫ cj

aj

Hj(s, aj)
[
Qj(s)−

p(s)
αα

( hj1(s, aj)√
Hj(s, aj)

)α+1]
ds

+
1

Hj(bj , cj)

∫ bj

cj

Hj(bj , s)
[
Qj(s)−

p(s)
αα

( hj2(bj , s)√
Hj(bj , s)

)α+1]
ds > 0

(2.6)

where hj1 and hj2 are defined as in (2.4),

Qj(t) = βj(t)
[
q(t) + k0|e(t)|η0

n∏
i=1

qηi

i (t)
]
, k0 =

n∏
i=0

η−ηi

i , η0 = 1−
n∑

i=1

ηi, (2.7)
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and η1, η2, . . . , ηn are positive constants satisfying (a) and (b) in Lemma 2.1 and

βj(t) =
(

(t−aj)
(t−aj+τ)

)α

then (1.1) is oscillatory.

Proof. Suppose that x(t) is a nonoscillatory solution of (1.1). Without loss of
generality, we may assume that x(t) > 0 for t ≥ t0 − 2τ > 0 where t0 depends
on the solution x(t). When x(t) is eventually negative, the proof follows the same
argument by using the interval [a2, b2] instead of [a1, b1]. Choose a1, b1 ≥ t0 such
that qi(t) ≥ 0, q(t) ≥ 0 and e(t) ≤ 0 for t ∈ [a1 − τ, b1] and i = 1, 2, . . . , n. From
(1.1), we have (p(t)(x′(t))α)′ ≤ 0 for t ∈ [a1− τ, b1]. Therefore for a1− τ < s < t ≤
b1, we have

x(t)− x(a1 − τ) =
p

1
α (s)x′(s)
p

1
α (s)

(t− a1 + τ)

or

x(t) ≥ p
1
α (t)x′(t)
p

1
α (s)

(t− a1 + τ)

where t ∈ (a1− τ, b1]. Noting that x(a1− τ) > 0 and p(t) is nondecreasing, we have

1
(t− a1 + τ)

≥ x′(t)
x(t)

, t ∈ (a1 − τ, b1]. (2.8)

Integrating (2.8) from t− τ to t > a1, we obtain

x(t− τ)
x(t)

≥ t− a1

t− a1 + τ
, t ∈ (a1, b1]. (2.9)

Define w(t) = −p(t) (x′(t))α

xα(t) . From (1.1) and (2.9) we find that w(t) satisfies the
inequality

w′(t) ≥ q(t)β1(t) +
n∑

i=1

qi(t)β1(t)xαi−α(t− τ)

− e(t)β1(t)x−α(t− τ) + α
|w(t)|1+ 1

α

p1/α(t)
, t ∈ [a1, b1].

(2.10)

Recall the arithmetic-geometric mean inequality

n∑
i=0

ηiui ≥
n∏

i=0

uηi

i , ui ≥ 0, (2.11)

where η0 = 1 −
∑n

i=1 ηi and ηi > 0, i = 1, 2, . . . , n, are chosen according to given
α1, . . . , αn as in Lemma 2.1 satisfying (a) and (b). Now return to (2.10) and identify
u0 = η−1

0 |e(t)|x−α(t− τ) and ui = η−1
i qi(t)xαi−α(t− τ) in (2.11) to obtain

w′(t) ≥ β1(t)q(t) +
α|w(t)|1+ 1

α

p
1
α (t)

+ β1(t)η
−η0
0 |e(t)|η0

n∏
i=1

η−ηi

i qηi

i (t)

= Q1(t) +
α|w(t)|1+ 1

α

p
1
α (t)

, t ∈ [a1, b1],

(2.12)
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where Q1(t) is defined by (2.7). Multiply (2.12) by H1(b1, t) ∈ Da1,b1 and integrat-
ing by parts, we find

−H1(b1, c1)w(c1)

≥
∫ b1

c1

Q1(s)H1(b1, s)ds

+
∫ b1

c1

[
− |w(s)|(α + 1)h12(b1, s)

√
H1(b1, s) +

α|w(s)|1+ 1
α

p
1
α (s)

H1(b1, s)
]
ds.

Using Lemma 2.2 to the right side of the last inequality, we have

−H1(b1, c1)w(c1) ≥
∫ b1

c1

[
Q1(s)H1(b1, s)−

p(s)
αα

H1(b1, s)
( h12(b1, s)√

H1(b1, s)

)α+1]
ds.

It follows that

−w(c1) ≥
1

H1(b1, c1)

∫ b1

c1

[
Q1(s)H1(b1, s)−

p(s)
αα

H1(b1, s)
( h12(b1, s)√

H1(b1, s)

)α+1]
ds.

(2.13)
On the other hand, multiplying both sides of (2.12) by H1(t, a1) ∈ Da1,b1 , integrat-
ing by parts, and similar to the above analysis we can easily obtain

w(c1) ≥
1

H1(c1, a1)

∫ c1

a1

[
Q1(s)H1(s, a1)−

p(s)
αα

H1(s, a1)
( h11(s, a1)√

H1(s, a1)

)α+1]
ds.

(2.14)
From (2.13) and (2.14) we have

1
H1(c1, a1)

∫ c1

a1

[
Q1(s)H1(s, a1)−

p(s)
αα

H1(s, a1)
( h11(s, a1)√

H1(s, a1)

)α+1]
ds

+
1

H1(b1, c1)

∫ b1

c1

[
Q1(s)H1(b1, s)−

p(s)
αα

H1(b1, s)
( h12(b1, s)√

H1(b1, s)

)α+1]
ds ≤ 0

which contradicts (2.6) for j = 1. The proof is now complete. �

The following theorem gives an interval oscillation criteria for the unforced (1.1)
with e(t) ≡ 0.

Theorem 2.4. If for any T > 0 there exist a, b and c such that T ≤ a < c < b and
q(t) ≥ 0, qi(t) ≥ 0 for t ∈ [a − τ, b] and i = 1, 2, . . . , n, and there exists H ∈ Da,b

such that
1

H(c, a)

∫ c

a

H(s, a)
[
Q(s)− p(s)

αα

( h1(s, a)√
H(s, a)

)α+1]
ds

+
1

H(b, c)

∫ b

c

H(b, s)
[
Q(s)− p(s)

αα

( h2(b, s)√
H(b, s)

)α+1]
ds > 0

where h1 and h2 are defined by (2.4),

Q(t) = β(t)
[
q(t) + k1

n∏
i=1

qηi

i (t)
]
, k1 =

n∏
i=1

η−ηi

i ,

and η1, η2, . . . , ηn are positive constants satisfying (a) and (c) of Lemma 2.1, β(t) =( (t−a)
(t−a+τ)

)α, then (1.1) with e(t) ≡ 0 is oscillatory.
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The proof of the above theorem is in fact a particular version of the proof of
Theorem 2.3. We need only to note that e(t) ≡ 0 and η0 = 0 and apply conditions
(a) and (c) of Lemma 2.1.

Remark 2.5. When τ = 0, Theorems 2.3 and 2.4 reduce to the main results in [9].
Moreover if τ = 0 and α = 1, then Theorems 2.3 and 2.4 reduce to [6, Theorems 1
and 2].

Before stating the next result we introduce another function class. Say u(t) ∈
Ea,b if u ∈ C1[a, b], uα+1(t) > 0, and u(a) = u(b) = 0.

Theorem 2.6. If for any T ≥ 0, there exist a1, b1 and a2, b2 such that T ≤ a1 <
b1, T ≤ a2 < b2 and (2.5) holds, and there exists Hj ∈ Eaj ,bj

and a positive
nondecreasing function φ ∈ C1([0,∞), R) such that∫ bj

aj

φ(t)
[
Qj(t)Hα+1

j (t)− p(t)
(
|H ′

j(t)|+
Hj(t)φ′(t)
(α + 1)φ(t)

)α+1]
dt > 0 (2.15)

for j = 1, 2, where

Qj(t) = βj(t)
[
q(t) + k0|e(t)|η0

n∏
i=1

qηi

i (t)
]
, k0 =

n∏
i=0

η−ηi

i ,

βj(t) =
( (t− aj)

(t− aj + τ)

)α
(2.16)

then (1.1) is oscillatory.

Proof. Suppose that x(t) is a nonoscillatory solution of (1.1). Without loss of
generality, we may assume that x(t) > 0 for t ≥ t0 − 2τ > 0 where t0 depends
on the solution x(t). When x(t) is eventually negative, the proof follows the same
argument by using the interval [a2, b2] instead of [a1, b1]. Choose q(t) ≥ 0, qi(t) ≥ 0
and e(t) ≤ 0 for t ∈ [a1 − τ, b1] and i = 1, 2, . . . , n. As in the proof of Theorem 2.3(x(t− τ)

x(t)

)α

≥ β1(t), t ∈ (a1, b1]. (2.17)

Define w(t) = −φ(t)p(t)(x′(t))α

xα(t) . From (1.1) and (2.17) we have

w′(t) ≥ φ(t)q(t)β1(t) +
n∑

i=1

φ(t)qi(t)β1(t)xαi−α(t− τ) +
w(t)φ′(t)

φ(t)

− e(t)β1(t)x−α(t− τ) +
α|w(t)|1+ 1

α

(p(t)φ(t))1/α
.

Using Lemma 2.1, we have

w′(t) ≥ φ(t)Q1(t) +
w(t)φ′(t)

φ(t)
+

α|w(t)|1+ 1
α

(p(t)φ(t))1/α
. (2.18)

Multiply (2.18) by Hα+1(t) and integrating from a1 to b1 using the fact that
H(a1) = H(b1) = 0, we obtain

0 ≥
∫ b1

a1

Hα+1(t)φ(t)Q1(t)dt +
∫ b1

a1

{αHα+1(t)|w(t)|1+ 1
α

(p(t)φ(t))1/α

−
[
(α + 1)H(t)α|H ′(t)|+ Hα+1(t)φ′(t)

φ(t)

]
|w(t)|

}
dt.

(2.19)
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Using Lemma 2.2 in (2.19), we have

0 ≥
∫ b1

a1

φ(t)
[
Q1(t)Hα+1(t)− p(t)

(
|H ′(t)|+ H(t)φ′(t)

(α + 1)φ(t)

)α+1]
dt

which contradicts (2.15) with j = 1. This completes the proof. �

Corollary 2.7. Suppose that φ(t) ≡ 1 in Theorem 2.6, and (2.15) is replaced by∫ bj

aj

[Qj(t)Hα+1(t)− p(t)|H ′(t)|α+1]dt > 0

for j = 1, 2. Then (1.1) is oscillatory.

Theorem 2.8. Assume that for any T ≥ 0, there exist a, b such that T ≤ a < b and
q(t) ≥ 0, qi(t) ≥ 0 for t ∈ [a, b] and i = 1, 2, . . . , n. Suppose there exists H ∈ Ea,b

and a positive nondecreasing function φ ∈ C ′([0,∞), R) such that∫ b

a

φ(t)
[
Q(t)Hα+1(t)− p(t)

(
|H ′(t)|+ H(t)φ′(t)

(α + 1)φ(t)

)α+1]
dt > 0

where

Q(t) = β(t)
[
q(t) + k1

n∏
i=1

qηi

i (t)
]
, k1 =

n∏
i=1

η−ηi

i ,

β(t) =
( (t− a)

(t− a + τ)

)α

.

Then (1.1) with e(t) ≡ 0 is oscillatory.

The proof of the above theorem is in fact a particular version of the proof of
Theorem 2.6. We need only to note that e(t) ≡ 0 and η0 = 0 and apply conditions
(a) and (c) of Lemma 2.1

Remark 2.9. When τ = 0, α = 1, and φ(t) ≡ 1, then Theorem 2.6 and 2.8 reduced
to [8, Theorems 1 and 2].

If n = 1 and e(t) ≡ 0 then we see that Theorems 2.3–2.8 are not valid. Therefore
in the following we state and prove some new oscillation criteria for the equation

(p(t)(x′(t))α)′ + q(t)xα(t− τ) + q1(t)xα1(t− τ) = 0, t ≥ 0. (2.20)

Theorem 2.10. Assume that for any T ≥ 0 there exist a, b such that T ≤ a < b
and q(t) ≥ 0, q1(t) ≥ 0 for t ∈ [a, b] . Suppose there exists H ∈ Ea,b and positive
nondecreasing function φ ∈ C ′([0,∞), R) such that∫ b

a

φ(t)
[
Q3(t)Hα+1(t)− p(t)

(
|H ′(t)|+ H(t)φ′(t)

(α + 1)φ(t)

)α+1]
dt > 0 (2.21)

where

Q3(t) = β(t)[q(t)−M1q1(t)], M1 = (α1 − α− 1)
( 1

α1 − α

) (α1−α)
(α1−α−1)

,

β(t) =
( (t− a)

(t− a + τ)

)α

and α1 > α + 1, then (2.20) is oscillatory.
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Proof. Proceeding as in the proof of Theorem 2.6, we obtain

w′(t) ≥ w(t)φ′(t)
φ(t)

+
α|w(t)|1+ 1

α

(p(t)φ(t))1/α
+ φ(t)q(t)β(t) + φ(t)q1(t)β(t)xα1−α(t− τ),

≥ w(t)φ′(t)
φ(t)

+
α|w(t)|1+ 1

α

(p(t)φ(t))1/α
+ φ(t)q(t)β(t)

+ φ(t)q1(t)β(t)(xα1−α(t− τ)− x(t− τ)).
(2.22)

Set F (x) = xα1−α−x. Using differential calculus, we find that F (x) ≥ −M1. From
(2.22), we have

w′(t) ≥ φ(t)Q3(t) +
φ′(t)
φ(t)

w(t) +
α|w(t)|α+1

α

(p(t)φ(t))1/α
.

The rest of the proof is similar to that of Theorem 2.6. This completes the proof. �

Theorem 2.11. Assume that for any T ≥ 0 there exist a, b such that T ≤ a < b
and q(t) ≥ 0, q1(t) ≥ 0 for t ∈ [a, b]. Suppose there exists H ∈ Ea,b and a positive
nondecreasing function φ ∈ C ′([0,∞), R) such that∫ b

a

φ(t)
[
Q4(t)Hα+1(t)− p(t)

(
|H ′(t)|+ H(t)φ′(t)

(α + 1)φ(t)

)α+1]
dt > 0 (2.23)

where

Q4(t) = β(t)[q(t)−M2q1(t)],M2 =
(α− α1 − β)

(α− α1)

(
β

α− α1

) β
(α−α1−β)

,

and α > α1 + β, then (2.20) is oscillatory.

Proof. Proceeding as in the proof of Theorem 2.6, we obtain

w′(t) ≥ w(t)φ′(t)
φ(t)

+
α|w(t)|1+ 1

α

(p(t)φ(t))1/α
+ φ(t)q(t)β(t)

+ φ(t)q1(t)β(t)[xα1−α(t− τ)− x−β(t− τ)].
(2.24)

Set F (x) = xα1−α − x−β . Using differential calculus, we find F (x) ≥ −M2. From
(2.24), we have

w′(t) ≥ φ(t)Q4(t) +
w(t)φ′(t)

φ(t)
+

α|w(t)|1+ 1
α

(p(t)φ(t))1/α
.

The rest of the proof is similar to that of Theorem 2.6. This completes the proof. �

Remark 2.12. The results obtained here can also be extended to the following
general equation

(p(t)|(x′(t))|α−1x′(t))′ + q(t)|x(t− τ0)|α−1x(t− τ0)

+
n∑

i=1

qi(t)|x(t− τi)|αi−1x(t− τi) = e(t)

where τi ≥ 0, i = 0, 1, . . . n and we left it to interesting readers.
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3. Examples

In this section, we present some examples to illustrate the main results.

Example 3.1. Consider the delay differential equation

(t(x′(t))3)′ + l1 cos t(x(t− π/8))3

+ l2(sin t)20/11(x(t− π/8))5 + l3 cos4 t(x(t− π/8))

= −m cos5 2t,

(3.1)

where t ≥ 0, l1, l2, l3,m are positive constants. Here p(t) = t, α = 3, q(t) =
l1 cos t, q1(t) = l2(sin t)20/11, q2(t) = l3(cos t)1/4, α1 = 5, α2 = 1, τ = π

8 and
e(t) = −m cos 2t. For any T ≥ 0, we can choose a1 = 2nπ + π

8 , b1 = 2nπ + π
4 ,

a2 = 2nπ + 3π
8 , b2 = 2nπ + π

2 for sufficiently large n, where n is a positive integer.
It is easy to find that

Qj(t) = k0

[ (t− aj)
(t− aj + π/8)

]3

(l1 cos t + (cos5 2t)1/5(sin20/11 t)11/20(cos4 t)1/4)

= k0

[ (t− aj)
(t− aj + π/8)

]3

(l1 cos t + (cos 2t) sin t cos t)

where k0 = (5m)1/5( 20l2
11 )11/20(4l3)1/4. Let H1(t) = H2(t) = sin 8t and φ(t) = 1.

Based on Theorem 2.6, we have (3.1) is oscillatory if∫ bj

aj

[
k0

( t− aj

t− aj + π/8

)3(
l1 cos t +

sin 4t

4

)
sin4 8t− 8t cos4 8t

]
dt > 0, j = 1, 2.

Example 3.2. Consider the delay differential equation

x′′(t) + k1t
−λ/3(sin t)x(t− π/2) + t−δx3(t− π/2) = 0, t ≥ 1, (3.2)

where k1, λ, δ > 0 are constants and α = 1, α1 = 3, τ = π
2 in Theorem 2.10. Since

α < α1 and e(t) ≡ 0, Theorem 2.4 and Theorem 2.8 are not applicable to this case.
However, we can obtain oscillation of (3.2) with H(t) = sin 2t and φ(t) = 1. For
any t0 ≥ 1, we can choose a = 2kπ +π/2, b = 2kπ +π for sufficiently large k, where
k is a positive integer. It is easy to find that

Q3(t) =
( t− a

t− a + π/2

)[
k1t

−λ/3 sin t− t−δ

4

]
,∫ b

a

[ t− a

t− a + π/2

(
k1t

−λ/3 sin t− t−δ

4

)
sin2 2t− 4 cos2 2t

]
dt > 0.

So by Theorem 2.10, Equation (3.2) is oscillatory if∫ 2kπ+π

2kπ+π/2

( t− a

t− a + π/2

)(
k1t

−λ/3 sin t− t−δ

4

)
sin2 2t dt > π.

Example 3.3. Consider the delay differential equation

((x′(t))3)′ + k1t
−λ(sin t) x3(t− π/4) + k2t

−λx(t− π/4) = 0, (3.3)

where t ≥ 1, k1, k2 and λ are positive constants and α = 3, α1 = 1 in Theorem
2.11. Since other theorems cannot be applicable to this case but we can obtain
oscillation of (3.3) with β = 1,H(t) = sin 4t and φ(t) = 1. For any t0 ≥ 1, let



EJDE-2010/73 OSCILLATION CRITERIA 9

a = 2nπ + π/4, b = 2nπ + π/2 for n sufficiently large and n is a positive integer. It
is easy to see that∫ b

a

Q4(t)H4(t)− (H ′(t))4

=
∫ b

a

[( t− a

t− a + π/4

)3(
k1t

−λ sin t− 1
4
k2t

−λ
)

sin4 4t− 256 cos4 4t
]
dt.

So by Theorem 2.11, Equation (3.3) is oscillatory if∫ 2nπ+π/2

2nπ+π/4

( t− a

t− a + π/4

)3(
k1t

−λ sin t− 1
4
k2t

−λ
)

sin4 4t dt >
3π

32
.
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