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A HOLMGREN TYPE THEOREM FOR PARTIAL
DIFFERENTIAL EQUATIONS WHOSE COEFFICIENTS ARE

GEVREY FUNCTIONS

MASAKI KAWAGISHI

Dedicated to Prof. Takesi Yamanaka on his 77th birthday

Abstract. In this article, we consider a uniqueness theorem of Holmgren

type for p-th order Kovalevskaja linear partial differential equations whose
coefficients are Gevrey functions. We prove that the only Cp-solution to the

zero initial-valued problem is the identically zero function. To prove this result

we use the uniqueness theorem for higher-order ordinary differential equations
in Banach scales.

1. Introduction

In this article we consider the linear partial differential equation

∂pv(t, x)
∂tp

=
∑

α∈Zn
+, λ|α|+j≤p, j≤p−1

aα,j(t, x)
∂j+|α|v(t, x)

∂tj∂xα
, (1.1)

where p is an integer ≥ 1, λ is a real constant > 1 and aα,j(t, x), v(t, x) are C-
valued functions of (t, x) ∈ R × Rn. We denote by Zn

+ the set of n-dimensional
multi-indices. We write |α| = α1 + · · · + αn for α = (α1, . . . , αn) ∈ Zn

+. Each
aα,j(t, x) is assumed to be continuous in t and Gevrey function of order λ in x.

The purpose of this paper is to prove that the only Cp-solution of (1.1) which
satisfies the following condition

v(0, x) =
∂v(0, x)

∂t
= · · · = ∂p−1v(0, x)

∂tp−1
= 0 (1.2)

is v(t, x) ≡ 0. An exact statement of the above result will be given in §4 as Theorem
4.1.

To prove the result mentioned above, we use the result given in [1] on the unique-
ness of the solution of a non-linear ODE in a Banach scale.

The outline of the proof of the Holmgren type uniqueness theorem in this paper
is as follows: First we construct a Banach scale consisting of the duals of some
normed spaces of Gevrey functions, and define the adjoint equation to the equation
(1.1) on the above dual Banach scale. Then it is shown, by the uniqueness, that
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the only solution of 0-initial value problem of the adjoint equation in a Banach
scale is identically 0. On the other hand the given solution v(t, x) of the problem
(1.1)–(1.2) gives rise to a solution L(t) of the 0-initial value problem for the adjoint
equation. From these facts we conclude that v(t, x) ≡ 0.

As a preparation for performing our plan as mentioned above, we shall prepare
in §2 some important properties of Gevrey functions. Especially, a problem of
approximation in Gevrey class is important for our purpose. We shall state that
problem in Lemma 2.7 and Theorem 2.8, and at the end of §2 we construct a dual
Banach scale. §3 is devoted to showing the uniqueness of the solution of initial
value problem in a Banach scale. In §4 we shall state and prove the main result in
the paper, i.e., a Holmgren type uniqueness theorem for the initial value problem
(1.1)–(1.2).

Here we review the definition of Banach scale. Let J be an interval of real
numbers. A family {Eσ}σ∈J of Banach spaces Eσ is called a Banach scale, if δ < σ
(σ, δ ∈ J), then Eσ ⊂ Eδ and ‖u‖δ ≤ ‖u‖σ (u ∈ Eσ).

Finally we define the notation for partial differential operators. If f(x) is a
function of x = (x1, . . . , xn) ∈ Rn, we write ∂if(x) = ∂f(x)/∂xi and ∂αf(x) =
∂α1
1 . . . ∂αn

n f(x) = ∂|α|f(x)/∂xα1
1 . . . ∂xαn

n for α = (α1, . . . , αn) ∈ Zn
+.

2. Preparation: Gevrey functions

Throughout this paper, λ denotes a fixed real constant > 1 and Ω a fixed open
set ⊂ Rn. We write α! = α1! . . . αn! for α = (α1, . . . , αn) ∈ Zn

+. A C∞-function
f : Ω → C is said to be in the Gevrey class of order λ if there exists a positive
constant σ such that

sup
α∈Zn

+, x∈Ω
|∂αf(x)| σ|α|

(α!)λ
< ∞.

It is easily seen that a C∞-function f : Ω → C is in the Gevrey class of order λ if
and only if there exists a positive constant ρ such that

sup
α∈Zn

+, x∈Ω
|∂αf(x)| ρ|α|

(α!)λ
(1 + |α|)2n < ∞. (2.1)

We denote by Gλ,ρ(Ω) the set of all C∞-functions f : Ω → C which satisfy the
condition (2.1) and define the norm |f |λ,ρ of f ∈ Gλ,ρ(Ω) by

|f |λ,ρ = sup
α∈Zn

+, x∈Ω
|∂αf(x)| ρ|α|

(α!)λ
(1 + |α|)2n.

Then Gλ,ρ(Ω) is a Banach space with the norm | · |λ,ρ and the family {Gλ,ρ(Ω)}ρ>0

forms a Banach scale.
In the following two theorems some important properties of elements of the

Gevrey class Gλ,ρ(Ω) are stated. These results were given in [2] and [5]. However,
it may not be considered quite suitable for our present situation without some
modification. So we shall state and prove these results as Theorem 2.1 and 2.2

Theorem 2.1. If f, g ∈ Gλ,ρ(Ω), then the product fg is again in Gλ,ρ(Ω) and

|fg|λ,ρ ≤ 23n|f |λ,ρ|g|λ,ρ. (2.2)
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Proof. For any α ∈ Zn
+, we have

|∂α(fg)(x)| ≤
∑

β∈Zn
+, β≤α

αCβ |∂βf(x)||∂α−βg(x)|

≤ |f |λ,ρ|g|λ,ρ
(α!)λ

ρ|α|
1

(2 + |α|)2n

∑
β≤α

(αCβ)1−λ
{ 1

1 + |β|
+

1
1 + |α− β|

}2n

≤ |f |λ,ρ|g|λ,ρ
(α!)λ

ρ|α|
22n

(1 + |α|)2n

∑
β≤α

{ 1
1 + |β|

}2n

≤ |f |λ,ρ|g|λ,ρ
(α!)λ

ρ|α|
22n

(1 + |α|)2n

( ∞∑
k=0

1
(1 + k)2

)n

≤ |f |λ,ρ|g|λ,ρ
(α!)λ

ρ|α|
23n

(1 + |α|)2n
,

which shows the theorem. �

In what follows we restrict the range of the scale parameter ρ for the sake of
simplicity of calculation. We restrict ρ to the range m−1 ≤ ρ ≤ em−1, where m is
a positive integer.

Theorem 2.2. If f ∈ Gλ,ρ(Ω), m−1 ≤ σ < ρ ≤ em−1, then, for α ∈ Zn
+, ∂αf ∈

Gλ,σ(Ω) and

|∂αf |λ,σ ≤ (λ|α|)λ|α| |f |λ,ρ

(ρ− σ)λ|α| . (2.3)

Proof. Note first that, if a, b ∈ Z+ and 0 < σ < ρ ≤ em−1, then(
σ

ρ

)a+b (
(a + b)!

b!

)λ

≤ sup
s∈R, s≥0

(
σ

ρ

)s

sλa

≤
(

λρa

e

)λa 1
(ρ− σ)λa

≤ 1
mλa

(λa)λa

(ρ− σ)λa
.

(2.4)

If β ∈ Zn
+, we have, using (2.4) and the condition m−1 ≤ σ,

|∂β(∂αf)(x)| ≤ |f |λ,ρ
((α + β)!)λ

ρ|α+β|
1

(1 + |α + β|)2n

≤ |f |λ,ρ
(β!)λ

σ|β|
1

(1 + |β|)2n

1
σ|α|

(
σ

ρ

)|α+β| ( (α + β)!
β!

)λ

≤ |f |λ,ρ
(β!)λ

σ|β|
1

(1 + |β|)2n
(λ|α|)λ|α| 1

(ρ− σ)λ|α| ,

which shows the theorem. �

Let us state the following important fact which is known as that the Gevrey
space Gλ,ρ(Ω) is sufficiently rich.
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Theorem 2.3. Let λ > 1Cρ a positive constant and Ω an open set in Rn. Let
a point x0 ∈ Ω and a neighborhood V ⊂ Ω of x0 be given. Then there exists an
element ϕ ∈ Gλ,ρ(Ω) such that

suppϕ ⊂ V, ϕ(x0) > 0, ϕ(x) ≥ 0 (∀x ∈ Ω),

where supp ϕ means the support of ϕ.

Proof. Here we give a sketch of the proof. Let q be an integer ≥ 2. Define a
C∞-function fq : R → R by

fq(t) =

{
exp (−1/tq) (t > 0),
0 (t ≤ 0).

We can show that, if 1 + q−1 < λ, then there exists a positive constant c such that
the function

fc,q(t) = fq(ct)
belongs to Gλ,ρ(R).

Write x0 = (x01, . . . , x0n). Take r > 0 such that

[x01 − r, x01 + r]× · · · × [x0n − r, x0n + r] ⊂ V.

For x = (x1, . . . , xn) ∈ Ω, define

ϕ(x) =
n∏

i=1

fc,q(xi − x0i + r)fc,q(x0i + r − xi).

Then ϕ ∈ Gλ,ρ(Ω) and satisfies all requirements in the theorem. �

Lemma 2.4 and Lemma 2.5 stated below will play important roles when we
discuss the problem concerning the approximation of functions on Gevrey spaces
(Lemma 2.7). However, the proofs of two lemmas can be performed by a standard
method similar to the case of C∞-functions as can be seen in Treves [3]. So we
omit the proofs.

Lemma 2.4. Let ϕ ∈ Gλ,ρ(Rn) be a function such that

supp ϕ ⊂ {x ∈ Rn : ‖x‖ ≤ 1}, ϕ(0) > 0, ϕ(x) ≥ 0 (∀x ∈ Rn).

For ε > 0, define
ϕε(x) = ε−naϕ(ε−1x) (x ∈ Rn),

where
a =

( ∫
‖x‖≤1

ϕ(x)dx
)−1

.

Then ϕε has the following properties:
(i) ϕε ∈ Gλ,ερ(Rn), |ϕε|λ,ερ ≤ ε−na|ϕ|λ,ρ,
(ii) suppϕε ⊂ {x ∈ Rn : ‖x‖ ≤ ε},

∫
Rn ϕε(x)dx = 1.

Lemma 2.5. Let ϕε ∈ Gλ,ερ(Rn) be the function defined in Lemma 2.4. Let f :
Rn → C be a continuous function such that supp f is compact. Then the convolution

ϕε ∗ f(x) =
∫

Rn

ϕε(y)f(x− y)dy
(

=
∫

Rn

ϕε(x− y)f(y)dy
)

of ϕε and f satisfies the following properties:
(i) ϕε ∗ f ∈ Gλ,ερ(Rn), |ϕε ∗ f |λ,ερ ≤

{∫
Rn |f(y)|dy

}
|ϕε|λ,ερ.

(ii) suppϕε ∗ f ⊂ {x ∈ Rn : d(x, supp f) ≤ ε},
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where the letter d denotes distance.

Lemma 2.6. Let f ∈ Gλ,ρ(Rn) and y ∈ Rn be given. Define the function fy by
fy(x) = f(x− y). If 0 < σ < ρ, then fy ∈ Gλ,σ(Rn) and the map

Rn 3 y 7→ fy ∈ Gλ,σ(Rn)

is continuous.

Proof. Fix y0, y ∈ Rn and α ∈ Zn
+ arbitrarily. Define the function k(θ) by

k(θ) = ∂αf(x− y0 + θ(y0 − y)) (0 ≤ θ ≤ 1).

Write y = (y1, . . . , yn), y0 = (y01, . . . , y0n). Then we obtain

∂αfy(x)− ∂αfy0(x) = ∂αf(x− y)− ∂αf(x− y0) = k(1)− (0)

=
∫ 1

0

k′(θ)dθ

=
∫ 1

0

{ n∑
j=1

∂j(∂αf)(x− y0 + θ(y0 − y))(yj − y0j)
}

dθ.

On the other hand, by Theorem 2.2, we know that ∂jf ∈ Gλ,σ(Rn). Hence, from
the above equalities, it follows that

|∂αfy(x)− ∂αfy0(x)| ≤
n∑

j=1

∫ 1

0

|∂α(∂jf)(x− y0 + θ(y0 − y))||yj − y0j |dθ

≤
n∑

j=1

|∂jf |λ,σ|yj − y0j |
(α!)λ

σ|α|
1

(1 + |α|)2n

≤
{ n∑

j=1

|∂jf |λ,σ

}
‖y − y0‖

(α!)λ

σ|α|
1

(1 + |α|)2n
,

and we obtain the inequality

|fy − fy0 |λ,σ ≤
{ n∑

j=1

|∂jf |λ,σ

}
‖y − y0‖,

which shows the continuity of the map y 7→ fy ∈ Gλ,σ(Rn). �

Let us define the subset Gc
λ,ρ(Ω) of Gλ,ρ(Ω) by

Gc
λ,ρ(Ω) = {f ∈ Gλ,ρ(Ω) : supp f is compact},

and give Gc
λ,ρ(Ω) the norm | · |λ,ρ defined on Gλ,ρ(Ω).

Lemma 2.4, Lemma 2.5 and Lemma 2.6 yield the next lemma.

Lemma 2.7. If 0 < δ < σ < ρ, then Gc
λ,ρ(Ω) is a dense subspace of Gc

λ,σ(Ω) with
respect to the norm of Gc

λ,δ(Ω). In other words, if f ∈ Gc
λ,σ(Ω) and ε > 0, then

there exists an element g ∈ Gc
λ,ρ(Ω) such that

|f − g|λ,δ < ε.

Proof. Let f ∈ Gc
λ,σ(Ω) and ε > 0 be given. If 0 < δ < σ, then, by Lemma 2.6,

there exists r > 0 such that

‖y‖ < r ⇒ |fy − f |λ,δ < ε.
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We can take the number r so that {x ∈ Rn : d(x, supp f) ≤ r} ⊂ Ω. For the
numbers r and ρ taken above, we take a third number s such that ρ < rs and fix it.
Next, we take the function ϕr ∈ Gλ,rs(Rn) defined in Lemma 2.4. Then, by Lemma
2.5, the relation

supp ϕr ∗ f ⊂ {x : d(x, supp f) ≤ r} ⊂ Ω
holds. It follows that

ϕr ∗ f ∈ Gc
λ,rs(Ω) ⊂ Gc

λ,ρ(Ω).
Since ∫

Rn

ϕr(y)dy =
∫
‖y‖≤r

ϕr(y)dy = 1,

we have
ϕr ∗ f(x)− f(x) =

∫
‖y‖≤r

ϕr(y)(f(x− y)− f(x))dy

and, for any α ∈ Zn
+,

|∂α(ϕr ∗ f)(x)− ∂αf(x)| ≤
∫
‖y‖≤r

ϕr(y)|∂αfy(x)− ∂αf(x)|dy

≤
∫
‖y‖≤r

ϕr(y)
{
|fy − f |λ,δ

(α!)λ

δ|α|
1

(1 + |α|)2n

}
dy

≤ (α!)λ

δ|α|
1

(1 + |α|)2n
ε,

which shows that |ϕr ∗ f − f |λ,δ ≤ ε. This completes the proof. �

Using Lemma 2.7, we can prove the next theorem.

Theorem 2.8. For σ > 0, define a subspace Gc
λ,σ(Ω) of Gc

λ,σ(Ω) by

Gc
λ,σ(Ω) =

⋃
σ<ρ

Gc
λ,ρ(Ω).

In Gc
λ,σ(Ω), we adopt the same norm | · |λ,σ as in Gλ,σ(Ω). If σ < δ, then

Gc
λ,δ(Ω) ⊂ Gc

λ,σ(Ω)

and Gc
λ,δ(Ω) is a dense subspace of Gc

λ,σ(Ω).

Proof. The relation Gc
λ,δ(Ω) ⊂ Gc

λ,σ(Ω) is clear. In order to see that Gc
λ,δ(Ω) is

dense in Gc
λ,σ(Ω), take f ∈ Gc

λ,σ(Ω) and ε > 0. Then f ∈ Gc
λ,σ1

(Ω) for some number
σ1 such that σ < σ1 < δ. Take two numbers σ2 and δ1 such that σ < σ2 < σ1 <
δ < δ1. Then, by Lemma 2.7, there exists g ∈ Gc

λ,δ1
(Ω) such that |f − g|λ,σ2 < ε.

On the other hand, g belongs to Gc
λ,δ(Ω) and satisfies the inequality

|f − g|λ,σ ≤ |f − g|λ,σ2 < ε.

Hence, this shows that Gc
λ,δ(Ω) is a dense subspace of Gc

λ,σ(Ω). �

Concerning the product of two functions and differential operators on a function,
the family {Gc

λ,σ(Ω)}σ>0 defined in Theorem 2.8 has the same properties as those
in the Gevrey class {Gλ,σ(Ω)}σ>0. In other words, the implication

f, g ∈ Gc
λ,σ(Ω) ⇒ fg ∈ Gc

λ,σ(Ω)

holds and, if 0 < σ < ρ, α ∈ Zn
+, then the implication

f ∈ Gc
λ,ρ(Ω) ⇒ ∂αf ∈ Gc

λ,σ(Ω)
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holds.
Now, it is easy, by Theorem 2.8, to construct a Banach scale consisting of dual

Banach spaces. If (X, ‖ · ‖X) is a normed space, then the dual space X∗ of X is
defined as usual. Let Y be a linear subspace of X and (Y, ‖ · ‖Y ) a normed space
such that ‖y‖X ≤ ‖y‖Y for y ∈ Y . Then the map i : Y 3 y 7→ y ∈ X is continuous,
and the adjoint operator i∗ : X∗ → Y ∗ of i satisfies the inequality

‖i∗(u)‖Y ≤ ‖u‖X (u ∈ X∗). (2.5)

Here we want to identify X∗ with i∗(X∗). This is possible if Y is dense in X, since
i∗ is injective in that case. Then we have, by (2.5),

‖u‖Y ≤ ‖u‖X (u ∈ X∗).

We have the following theorem.

Theorem 2.9. Fix a number ρ > 0 arbitrarily. For σ such that 0 < σ < ρ, put

Dλ,σ(Ω) = {Gc
λ,ρ−σ(Ω)}∗,

and denote by ‖·‖λ,σ the norm on Dλ,σ(Ω). Then the family {Dλ,σ(Ω)}0<σ<ρ forms
a Banach scale.

The proof of the above theorem is obvious from the arguments preceding the
theorem.

3. Uniqueness of the solution of the initial value problem in a
Banach scale

In this section, we shall prove the uniqueness of the solution of the initial value
problem in a Banach scale, and we use this result in showing our main theorem of
this paper.

Let {Eσ}σ0<σ≤δ0 be a scale of Banach spaces, where 0 ≤ σ0 < δ0 < ∞. Let I be
an interval which contains 0 as an inner point. Let F be a map of the form

F : I ×
⋃

σ0<σ≤δ0

Eσ × · · · × Eσ︸ ︷︷ ︸
p−times

→
⋃

σ0<σ≤δ0

Eσ

such that if σ0 < δ < σ ≤ δ0, then F (I × Eσ × · · · × Eσ) ⊂ Eδ and the map

F : I × Eσ × · · · × Eσ → Eδ

is continuous. Further we assume that there exists a positive constant C such that
if σ0 < δ < σ ≤ δ0, then the inequality

‖F (t, u)− F (t, v)‖δ ≤ C

p−1∑
j=0

‖uj − vj‖σ

(σ − δ)p−j
(∀t ∈ I) (3.1)

holds for u = (u0, . . . , up−1), v = (v0, . . . , vp−1) ∈ Eσ × · · · × Eσ.
For such a map F we can consider an initial value problem of the form

u(p)(t) = F (t, u(t), u′(t), . . . , u(p−1)(t)), (3.2)

u(0) = b0, u
′(0) = b1, . . . , u

(p−1)(0) = bp−1, (3.3)
where

b0, . . . , bp−1 ∈ Eδ0 .
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Concerning the above mentioned problem, the author proved, in [1], the exis-
tence and the uniqueness of the solution. However, in this paper, we only use the
uniqueness of the solution. Here we state and prove a uniqueness result which is
simpler than the uniqueness part of the result given in [1].

Theorem 3.1. Let T > 0 such that [−T, T ] ⊂ I. Let u, v be Cp- maps from the
interval [−T, T ] to Eδ0 . If u and v are the solutions of the problem (3.2)-(3.3), then
for t ∈ [−T, T ]

u(t) = v(t).

Proof. The problem (3.2)-(3.3) is rewritten as a system of first order equations of
the form 

u′1(t) = u2(t)
...

u′p−1(t) = up(t)
u′p(t) = F (t, u1(t), . . . , up(t))

(3.4)

u1(0) = b0, . . . , up(0) = bp−1 (3.5)
in the unknown functions u1(t), . . . , up(t). Further the problem (3.4)-(3.5) is equiv-
alent to the integral equation of the formu1(t)

...
up(t)

 =

 b0

...
bp−1

 +
∫ t

0


u2(τ)

...
up(τ)

F (τ, u1(τ), . . . , up(τ))

 dτ. (3.6)

From (3.6) it follows that each uj(t) satisfies

uj(t) = bj−1 + tbj + · · ·+ tp−j

(p− j)!
bp−1

+
∫ t

0

(t− τ)p−j

(p− j)!
F (τ, u1(τ), . . . , up(τ))dτ.

(3.7)

If u(t), v(t) are Cp-solutions of the problem (3.2)-(3.3) , then (u1(t), . . . , up(t)) =
(u(t), u′(t), . . . , u(p−1)(t)) and (v1(t), . . . , vp(t)) = (v(t), v′(t), . . . , v(p−1)(t)) are so-
lutions of the integral equation (3.6). uj(t), vj(t) are continuous maps from [−T, T ]
to the Banach space Eδ0 .

To prove the theorem, it is sufficient to prove uj(t) = vj(t). If σ0 < ν < µ ≤ δ0,
then, by (3.1) and by (3.7), we have, for t ∈ [−T, T ],

‖uj(t)− vj(t)‖ν ≤
∫ |t|

0

(|t| − τ)p−j

(p− j)!
‖F (τ, u1(τ). . . . , up(τ))

− F (τ, v1(τ). . . . , vp(τ))‖νdτ

≤ C

p∑
i=1

1
(µ− ν)p+1−j

∫ |t|

0

(|t| − τ)p−j

(p− j)!
‖ui(τ)− vi(τ)‖µdτ.

(3.8)

For the moment we assume that 0 ≤ t ≤ T and put

M = max
0≤t≤T

p∑
j=1

‖uj(t)− vj(t)‖δ0 .
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Let µ = δ0, ν = δ0 − ξ (0 < ξ < δ0 − σ0). We have, by (3.8),

‖uj(t)− vj(t)‖δo−ξ ≤ C

p∑
i=1

1
ξp+1−i

∫ t

0

(t− τ)p−j

(p− j)!
‖ui(τ)− vi(τ)‖δ0dτ

≤ MC

p∑
l=1

1
ξj−l

1
ξp+1−j

tp+1−j

(p + 1− j)!

≤ MC

p∑
l=1

1
ξj−l

p∑
k=1

1
ξk

tk

k!
.

(3.9)

Next let µ = δ0 − ξ, ν = δ0 − 2ξ (0 < 2ξ < δ0 − σ0), we have, by (3.8) and (3.9),

‖uj(t)− vj(t)‖δ0−2ξ ≤ MC2

p∑
i=1

1
ξp+1−i

∫ t

0

(t− τ)p−j

(p− j)!

{ p∑
l=1

1
ξi−l

p∑
k=1

1
ξk

τk

k!
}
dτ

= MC2

p∑
i=1

1
ξp+1−i

( p∑
l=1

1
ξi−l

) p∑
k=1

1
ξk

∫ t

0

(t− τ)p−j

(p− j)!
τk

k!
dτ

= MpC2

p∑
l=1

1
ξp+1−l

p∑
k=1

1
ξk

tp+1+k−j

(p + 1 + k − j)!

= MpC2

p∑
l=1

1
ξj−l

p∑
k=1

1
ξp+1+k−j

tp+1+k−j

(p + 1 + k − j)!

≤ MpC2

p∑
l=1

1
ξj−l

2p∑
k=2

1
ξk

tk

k!
.

Repeating this process, we can show that, if n is a natural number and ξ is a
positive number such that nξ < δ0 − σ0, then the inequality

‖uj(t)− vj(t)‖δ0−nξ ≤ Mpn−1Cn

p∑
l=1

1
ξj−l

np∑
k=n

1
ξk

tk

k!
(3.10)

holds for 0 ≤ t ≤ T . Writing µ = δ0 − nξ, (3.10) is rewritten as

‖uj(t)− vj(t)‖µ ≤ Mpn−1Cn

p∑
l=1

nj−l

(δ0 − µ)j−l

np∑
k=n

nk

(δ0 − µ)k

tk

k!
. (3.11)

In (3.11), µ can be any number such that σ0 < µ < δ0. Moreover, since en > nk/k!,
we see that the inequality

‖uj(t)− vj(t)‖µ ≤
M

p

( peCt

δ0 − µ

)n( p∑
l=1

nj−l

(δ0 − µ)j−l

) n(p−1)∑
k=0

( t

δ0 − µ

)k

holds. Let L = min {1/peC, 1}. For each t ∈ [0, T ] such that t < L(δ0−µ), we have

‖uj(t)− vj(t)‖µ ≤
M

p

(
peCt

δ0 − µ

)n ( p∑
l=1

nj−l

(δ0 − µ)j−l

) 1
1− t

δ0−µ

. (3.12)

Letting n →∞ in (3.12), we know that ‖uj(t)−vj(t)‖µ = 0 for t ∈ [0, T ]∩[0, L(δ0−
µ)), since

lim
n→∞

(
peCt

δ0 − µ

)n
nj−l

(δ0 − µ)j−l
= 0.
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Thus we have shown that uj(t) = vj(t) for t ∈ [0, T ] ∩ [0, L(δ0 − µ)). Further,
since µ can be taken as close to σ0 as desired, we see that uj(t) = vj(t) for t ∈
[0, T ] ∩ [0, L(δ0 − σ0)]. If L(δ0 − σ0) < T , then by a similar argument as above, we
conclude that uj(t) = vj(t) for t ∈ [0, T ] such that L(δ0 − σ0) ≤ t ≤ 2L(δ0 − σ0),
and hence uj(t) = vj(t) for t ∈ [0, T ] ∩ [0, 2L(δ0 − σ0)]. Repeating this argument,
we conclude that uj(t) = vj(t) for ∀t ∈ [0, T ]. Finally, it is clear by (3.8) that a
similar argument as above is valid in the case for t ∈ [−T, 0], too. This completes
the proof. �

4. Main theorem

The purpose of this paper is to give a proof of the following theorem.

Theorem 4.1. Let Ω ⊂ Rn be an open set and I ⊂ R be an interval of the form
I = [−T, T ], where T is a positive constant. Let λ be a constant > 1. Write ρ0 =
m−1(1+e), where m is a positive integer. In the differential equation (1.1), assume
that each coefficient aα,j(t, x) satisfies the condition that the function x 7→ aα,j(t, x)
belongs to Gλ,ρ0(Ω) for each fixed t ∈ I and the map I 3 t 7→ aα,j(t, ·) ∈ Gλ,ρ0(Ω) is
continuous. Then the only Cp-solution v(t, x) in the domain (t, x) ∈ I × Ω of the
initial value problem (1.1)–(1.2) is v(t, x) ≡ 0.

Proof. We first introduce an initial value problem on the dual Banach scale which
is called ‘adjoint’ to the problem (1.1)-(1.2).

Let Ψ ⊂ Rn be an open set such that its closure Ψ is compact and is contained
in Ω. For δ such that m−1 < δ ≤ m−1e, put Dλ,δ(Ψ) = {Gc

λ,ρ0−δ(Ψ)}∗. Then, by
Theorem 2.9, {Dλ,δ(Ψ)}m−1<δ≤m−1e forms a Banach scale, and we use this scale
throughout the rest of this paper.

Using the dual scale, we can define the adjoint equation to the problem (1.1).
For δ, σ such that m−1 < δ < σ ≤ m−1e, we define a map

F : I ×Dλ,σ(Ψ)× . . .Dλ,σ(Ψ)︸ ︷︷ ︸
p−times

→ Dλ,δ(Ψ)

by
F (t, L0, . . . , Lp−1) =

∑
α∈Zn

+, λ|α|+j≤p, j≤p−1

(−1)|α|A∗
α,j(t)(Lj), (4.1)

where A∗
α,j(t) is the adjoint of the linear map Aα,j(t) which is defined by

Aα,j(t) : Gc
λ,ρ0−δ(Ψ) → Gc

λ,ρ0−σ(Ψ), Aα,j(t)(ϕ)(x) = ∂α(aα,j(t, x)ϕ(x)).

We have to verify that F is well defined. If m−1 < δ < σ ≤ m−1e and ϕ ∈
Gc

λ,ρ0−δ(Ψ), then, by Theorem 2.1, the product aα,j(t, ·)ϕ(·) is in Gc
λ,ρ0−δ(Ψ). Then,

by Theorem 2.2, ∂α(aα,j(t, ·)ϕ(·)) is in Gc
λ,ρ0−σ(Ψ). Hence the map Aα,j(t) is well

defined. The continuity of Aα,j(t) as a linear map from Gc
λ,ρ0−δ(Ψ) to Gc

λ,ρ0−σ(Ψ)
follows immediately from Theorem 2.1 and Theorem 2.2. This shows that if δ < σ,
then the adjoint map

A∗
α,j(t) : Dλ,σ(Ψ) → Dλ,δ(Ψ)

of Aα,j(t) is well defined, and the map F is well defined, too.
Here, by the above arguments, we can define an ODE on the Banach scale

{Dλ,σ(Ψ)}m−1<σ≤m−1e, by

L(p)(t) = F (t, L(t), L′(t), . . . , L(p−1)(t)), (4.2)
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which is the ‘adjoint’ equation to the given equation (1.1).
Now we show the following fact as the first step of the proof.

Assertion (?): The only Cp -solution of the equation (4.2) such that

L(0) = L′(0) = · · · = L(p−1)(0) = 0 (4.3)

is L(t) ≡ 0.
To prove the above result, we use Theorem 3.1. We first show that the map F

is continuous. Fix the numbers δ, σ such that m−1 < δ < σ ≤ m−1e. We show the
continuity of the adjoint operator

A∗
α,j : I ×Dλ,σ(Ψ) → Dλ,δ(Ψ).

For t ∈ I and L,L0 ∈ Dλ,σ(Ψ), the inequality

‖A∗
α,j(t)(L− L0)‖λ,δ

≤ ‖L− L0‖λ,σ sup {|Aα,j(t)ϕ|λ,ρ0−σ : ϕ ∈ Gc
λ,ρ0−δ(Ψ), |ϕ|λ,ρ0−δ ≤ 1}

(4.4)

holds. If |ϕ|λ,ρ0−δ ≤ 1, then, by (2.2) and (2.3) in §2, we obtain

|Aα,j(t)ϕ|λ,ρ0−σ = |∂α(aα,j(t, ·)ϕ(·))|λ,ρ0−σ

≤ (λ|α|)λ|α| |aα,j(t, ·)ϕ(·)|λ,ρ0−δ

(ρ0 − δ − ρ0 + σ)λ|α|

≤ pp 23n|aα,j(t, ·)|λ,ρ0−δ

(σ − δ)λ|α| .

(4.5)

Put
K = sup {|aα,j(t, ·)|λ,ρ0 : λ|α|+ j ≤ p, j ≤ p− 1, t ∈ I}.

Since the map t 7→ aα,j(t, ·) ∈ Gλ,ρ0(Ω) is continuous, we know that K is finite. It
follows, from (4.5), that

|Aα,j(t)ϕ|λ,ρ0−σ ≤ pp23nK
1

(σ − δ)λ|α|

holds. By the last inequality and (4.4), we obtain

‖A∗
α,j(t)(L− L0)‖λ,δ ≤ ‖L− L0‖λ,σ

23nppK

(σ − δ)λ|α| . (4.6)

Next, we look at the inequality

‖(A∗
α,j(t)−A∗

α,j(t0))L0‖λ,δ

≤ ‖L0‖λ,σ sup {|Aα,j(t)ϕ−Aα,j(t0)ϕ|λ,ρ0−σ : ϕ ∈ Gc
λ,ρ0−δ(Ψ), |ϕ|λ,ρ0−δ ≤ 1},

(4.7)
where t, t0 ∈ I. If we use (2.2), (2.3) and (4.5), then

|Aα,j(t)ϕ−Aα,j(t0)ϕ|λ,ρ0−σ ≤ (λ|α|)λ|α| |(aα,j(t, ·)− aα,j(t0, ·))ϕ(·)|λ,ρ0−δ

(ρ0 − δ − ρ0 + σ)λ|α|

≤ pp 23n|aα,j(t, ·)− aα,j(t0, ·)|λ,ρ0

(σ − δ)λ|α| .

The last inequality and (4.7) imply

‖(A∗
α,j(t)−A∗

α,j(t0))L0‖λ,δ ≤ ‖L0‖λ,σpp 23n|aα,j(t, ·)− aα,j(t0, ·)|λ,ρ0

(σ − δ)λ|α| . (4.8)
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From (4.6) and (4.8) it follows that

‖A∗
α,j(t)L−A∗

α,j(t0)L0‖λ,δ

≤ ‖A∗
α,j(t)(L− L0)‖λ,δ + ‖(A∗

α,j(t)−A∗
α,j(t0))L0‖λ,δ

≤ pp 23n

(σ − δ)λ|α| {K‖L− L0‖λ,σ + |aα,j(t, ·)− aα,j(t0, ·)|λ,ρ0‖L0‖λ,σ}.
(4.9)

Since the map t 7→ aα,j(t, ·) ∈ Gλ,ρ0(Ω) is continuous, (4.9) implies that the map

A∗
α,j : I ×Dλ,σ(Ψ) → Dλ,δ(Ψ)

is continuous. Hence the map F is also continuous.
Let us show that the map F satisfies the condition (3.1) in §3. Put L0 = 0 in

(4.9). Then, for t ∈ I and L ∈ Dλ,σ(Ψ), the inequality

‖A∗
α,j(t)L‖λ,δ ≤ pp23nK

‖L‖λ,σ

(σ − δ)λ|α| (4.10)

holds. For

L = (L0, . . . , Lp−1),M = (M0, . . . ,Mp−1) ∈ Dλ,σ(Ψ)× · · · × Dλ,σ(Ψ)︸ ︷︷ ︸
p−times

we have

‖F (t,L)− F (t,M)‖λ,δ ≤
∑

α∈Zn
+, λ|α|+j≤p, j≤p−1

‖A∗
α,j(t)(Lj −Mj)‖λ,δ.

Hence, by the last inequality and (4.10), we obtain

‖F (t,L)− F (t,M)‖λ,δ ≤ pp23nK
∑
α,j

‖Lj −Mj‖λ,σ

(σ − δ)λ|α| . (4.11)

Here we note that the inequality

1
(σ − δ)λ|α| =

(σ − δ)p−j−λ|α|

(σ − δ)p−j
≤ ep

(σ − δ)p−j

holds and we put

C = (ep)p23nK
∑

α∈Zn
+, λ|α|≤p

1α,

where 1α = 1. Then, by (4.11), we obtain

‖F (t,L)− F (t,M)‖λ,δ ≤ C

p−1∑
j=0

‖Lj −Mj‖λ,σ

(σ − δ)p−j
,

which shows that the map F satisfies the condition (3.1) in §3.
Consequently, we can use the Theorem 3.1 to the problem (4.2)-(4.3). As a

result, we conclude that the Assertion (?) is true.
Proof of the identity v(t, x) ≡ 0: Let us construct a solution of the problem
(4.2)-(4.3) by the given solution v(t, x) of the problem (1.1)-(1.2).

We define

Lv(t)(ϕ) =
∫

Ψ

v(t, x)ϕ(x)dx
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for ϕ ∈ Gc
λ,ρ0−m−1e(Ψ) = Gc

λ,m−1(Ψ) and t ∈ I. Then we can see that Lv(t) ∈
Dλ,m−1e(Ψ) (= {Gc

λ,m−1(Ψ)}∗) and the map I 3 t 7→ Lv(t) ∈ Dλ,m−1e(Ψ) is Cp-

class. The derivative L
(j)
v (t) of Lv(t) has the form

L(j)
v (t)(ϕ) =

∫
Ψ

∂j
t v(t, x)ϕ(x)dx (j = 1, . . . , p− 1).

These facts can be proved without difficulty by the compactness of Ψ and by the
uniform continuity of ∂j

t v(t, x) on I ×Ψ.
Now let us show that Lv(t) is a solution of the problem (4.2)-(4.3). It is obvious

by (1.2) that Lv(t) satisfies the initial condition (4.3). Let σ be a number such that
m−1 < σ < m−1e. Take ϕ ∈ Gc

λ,ρ0−σ(Ψ) arbitrarily. We have

L(p)
v (t)(ϕ) =

∫
Ψ

∂p
t v(t, x)ϕ(x)dx

=
∑

α∈Zn
+, λ|α|+j≤p, j≤p−1

∫
Ψ

∂α
x (∂j

t v(t, x))aα,j(t, x)ϕ(x)dx.

Further we have, by integration by parts in x,

L(p)
v (t)(ϕ) =

∑
α,j

(−1)|α|
∫

Ψ

∂j
t v(t, x)∂α

x (aα,j(t, x)ϕ(x))dx

=
∑
α,j

(−1)|α|L(j)
v (t)(Aα,j(t)ϕ)

=
∑
α,j

(−1)|α|A∗
α,j(t)(L

(j)
v (t))(ϕ)

= F (t, Lv(t), L′v(t), . . . , L(p−1)
v (t))(ϕ),

which shows that Lv(t) is a solution of the adjoint equation (4.2). It follows from
the Assertion (?) that Lv(t) ≡ 0, which means that for each ϕ ∈ Gc

λ,m−1(Ψ)∫
Ψ

v(t, x)ϕ(x)dx = 0 (∀t ∈ I).

Hence, by Theorem 2.3, v(t, x) ≡ 0 on I × Ψ. Further, since we can let Ψ be as
close to Ω as desired, we conclude that v(t, x) ≡ 0 on I × Ω. This completes the
proof. �
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