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SOLUTIONS OF A PARTIAL DIFFERENTIAL EQUATION
RELATED TO THE OPLUS OPERATOR

WANCHAK SATSANIT

ABSTRACT. In this article, we consider the equation
m
®Fu(z) = Z o @76
r=0

where @* is the operator iterated k times and defined by

p 2 4 p+aq 2 4\ k
= ((Ta2) - (X 7))
i=1 "1 j=p+1 "3
where p + ¢ =n, x = (z1,22,...,%n) is in the n-dimensional Euclidian space
R™, ¢, is a constant, § is the Dirac-delta distribution, %5 = §, and k =
0,1,2,3,.... It is shown that, depending on the relationship between k and m,

the solution to this equation can be ordinary functions, tempered distributions,
or singular distributions.

1. INTRODUCTION

The diamond operator, iterated k times, was studied by Kananthai [2], and is
defined by

P 2 p+q 2
92\ 2 92 \ 2\ K
ko_ —

= ((Xgm) (X 52)) pra=n D

i=1 j=p+1 3
where n is the dimension of the space R, z = (x1,22,...,2,) € R" and k is a

nonnegative integer. This operator can be expressed as

OF = AFOF = OFAF (1.2)

where A is the Laplacian operator iterated k times, defined by

02 0? 0% \*k
A= (b =+t — 1.3
(8$%+3x§+ +8x,21) ’ (13)
and [J* is the Ultra-hyperbolic operator iterated k times, defined by
0? 0? 0? 0? 0? 0% \Fk
k= = ...y = = __Z ... ). 1.4
<3x% + 0x3 ot dx2 Qa2 Oxl,, 8x12)+q) (14)
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Kananthai [2] showed that the convolution

u() = (—1)"Rgy (x) * Ry} (x)
is a unique elementary solution of the operator {*, where RS, (z) and RIL(z) are
defined by (2.5) and (2.2) with o = 2k respectively; that is,

OF ()" Ry () * Rij(«)) = . (1.5)
Satsanit [7] introduced the @* operator, defined by

S (L)LY
i=1 "t j=p+1 "7
From and , we obtain
S (I (X 2y
i=1 t j=p+1 7
(D) (A0 @s)
- (My

The @* operator has been studied by Kananthai, Suantai and Longani [4], and can
be expressed in the form

P 2 p+q 2 P ptq 2
92 \2 92 \ 21k 2 92 \ 27k
k
_ A il . - — 1.7
= (Xae) (X ) | I(Xae) + (X 52)] an
i=1 z Jj=p+1 J T
Thus, (1.7) can be written as
oF = Ok, (1.8)
where ¥ and ©* are defined by (I.1)), (1.6]) respectively.
The purpose of this article, is finding the solution to the equation

oru(r) = i @9 (1.9)
r=0

by using convolutions of the generalized function. It is also shown that the type of
solution to (1.9) depends on the relationship between & and m, according to the
following cases:

(1) If m < k and m = 0, then has the solution
u(x) = o ((=1)* Ry (2) * Rej(x)) * (C*(2))")

which is an elementary solution of the @&F operator in Theorem is
an ordinary function when 6k > n, and is a tempered distribution when
6k < n.
(2) If 0 < m < k then the solution of ([1.9) is
w(e) = " e (1" IRy (@) = RE (@) + (€ (@) 1)
r=1

which is an ordinary function when 6k—6r > n and is tempered distribution
when 6k — 6r < n.



EJDE-2010/76 SOLUTION OF A PDE 3

(3) f m >k and k <m < M, then (1.9) has the solution

M
u,(;];) = ZCT @r—k 5
r==k

which is only a singular distribution.

Before going that point, the following definitions and some concepts are needed.

2. PRELIMINARIES
Definition 2.1. Let = (21, z2,...,2,) be a point in R™. Define
2, .2 2 .2 2 2
V=] a5t T, T — T~ Tt (2.1)

where p + ¢ = n is the dimension of the space R™.
Let Ty = {x € R" : 1 > 0 and u > 0} be the interior of a forward cone and let
I'; denote its closure. For any complex number «, define the function

ez r
RI () ={ Kul@) 7 orzecly, (2.2)
0, forx ¢ T4,

where

7 (2510 (1521 (o)
D(H5=2)0(25*)

The function RZ(v) was introduced by Nozaki [5, p. 72] and is called the Ultra-

hyperbolic kernel of Marcel Riesz.

Ky (a) = (2.3)

It is well known that RZ(v) is an ordinary function if Re(a) > n and is a
distribution of a if Re(a) < n. Let supp R (v) denote the support of R (v) and
suppose supp RY (v) ¢ Ty, that is supp R (v) is compact.

From Trione [9, p. 11], RE (v) is an elementary solution of the operator O¥; that
is,

OFRE (v) = 6(x). (2.4)

Definition 2.2. Let © = (z1,%,...,2,) and |z| = (22 + 22 +--- + 22)'/2. The
elliptic kernel of Marcel Riesz and is defined as
B ‘m|o¢—n

RZ(x) - Wn(Oé) (25)

where .
r3207 (3)
I (*3%)
« is a complex parameter, and n is the dimension of R™.

It can be shown that R®,, (z) = (—1)*A*§(x) where A is defined by (T.3)). It

follows that R§(x) = d(x), [2, p. 118]. Moreover, (—1)*RS, (z) is an elementary
solution of the operator A¥ [2| Lemma 2.4]; that is,

AR((=1) Ry () = 6(=). (2.7)

Lemma 2.3. The functions RE (v) and (—1)* RS, () are the elementary solutions
of the operators % and AF, defined by (1.4) and (1.3) respectively. The function
R (v) is defined by ([2.2) with o = 2k, and RS, (z) is defined by [2.5) with o = 2k.

Wn(a) =
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Proof. We need to show that OF R (v) = §(x) which is done in [9, Lemma 2.4].
Also we need to show that AF((=1)*Rg, (z) = 6(x). which is done in [2, p. 31]. O

Lemma 2.4. The convolution RE (v)* (=1)*RS, (z) is an elementary solution of
the operator F dterated k as defined by (1.1)).

For the proof of the above lemma see [2], p. 33].

Lemma 2.5. The functions R () and RS (x) defined by (2.2) and (2.5) respec-
tively, for Re(a), are homogeneous distributions of order a—n and also a tempered
distributions.

Proof. Since RX(z) and R (x) satisfy the Euler equation,

n a
(o —=n)R (2) = in%Rf(x),
i=1 ¢

(0= )R () = 3wz R (1),
i=1 '

we have that RX(z) and R¢(x) are homogeneous distributions of order a — n.
Donoghue [I, pp. 154-155] proved that the every homogeneous distribution is a
tempered distribution. This completes the proof. (Il

Lemma 2.6. The convolution RS,(z)* RH (2) ewists and is a tempered distribution.

Proof. Choose supp R (z) = K C T'y where K is a compact set. Then R (z)
is a tempered distribution with compact support. By Donoghue [I, pp. 156-159],
R (z) * RE (x) exists and is a tempered distribution. O

Lemma 2.7 (Convolution of RS (x) and RY (x)). Let RS (z) and R (z) defined by
(2.5) and (2.2) respectively, then we obtain the following:
(1) R (z) x RG(x) = RE,, 5(w) when o and 3 are complex parameters;
(2) RH(z)* Rg (x) = Rﬂ_ﬂ(ac) when a and B are integers, except when both «
and B are odd.

Proof. For the first formula, see [T, p. 158]. For the second formula, when « and
B are both even integers; see [3]. For the case « is odd and 3 is even or « is even
and (3 is odd, by Trione [§], we have

O°RY (z) = RY_o () (2.8)
and
OFRE (z) = 6(x), k=0,1,2,3,... (2.9)
where (0% is the Ultra-hyperbolic operator iterated k-times defined by
o = ( ~ 0 pig ai)’“
Loz ox?)
i=1 7 j=pt1 0T

Now let m be an odd integer. We have O R (z) = RE _,, (z) and

Ry () * OFRii (2) = Rij(x) * Ry oy (@)
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or
(DkRgc(x)) * Rﬁ(m) = Rgc(x) * Rgfzk(x)a
§x Rl (x) = Ry (z) x RIf_ o (2).
Thus

Ry (x) = Rij(w) * Ry oy ().

Since m is odd, hence m — 2k is odd and 2k is a positive even. Put o = 2k, 3 =
m — 2k, we obtain

R (z) * R (z) = R\ 5(x)

when « is nonnegative even and ( is odd.
For the case when « is negative even and 3 is odd, by (2.8)) we have

DRl (z) = R,y (2)
or Ok§ = RH,, (x), where RE () = §. Now when m is odd,

Ry () » OF Ry (2) = Ry (2) * Ry o ()

or
(O%6) « D" Ry () = Ry () » Ryy_oy (),

0« O Ry} () = REy (2) + Ry o (@)
Thus

Rﬁ,g(%)(x) = R¥2k(z) * Rfifzk(w)'
Put @« = —2k and 8 = m — 2k, now « is negative even and [ is odd. Then we
obtain

Ril () * Rff (z) = R, 5(2).

That completes the proof. (I

3. MAIN RESULTS
Theorem 3.1. Given the equation
rG(x) = §(x), (3.1)

where ©F is the oplus operator iterated k times defined by (1.8), 5(x) is the Dirac-
delta distribution, x € R™, and k is a nonnegative integer. Then

« *—1
G(z) = (Rgj,(v) * (=1)* Rg (2)) * (C*(2)) (3.2)
is a Green’s function or an elementary solution for the operator ©F, where
1 1 .
Clw) = S RY (@) + 5 (-17Rs (@), (33)

where C**(x) denotes the convolution of C with itself k times, (C*k(:v))*_l denotes
the inverse of C**(z) in the convolution algebra. Moreover G(z) is a tempered
distribution.

For a proof of the above theorem, see [6].
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Theorem 3.2. For0 <r <k,
@ (((—1)°* Ry, (x) * Rgi (2)) * (C™* ()" )
= (1" R (@) % RE (@) % (CTF7 (@) )
and for k < m,
@™ ((~1)*" Rgy(x) * Rj. () * (C*(2))" 1) = @™ . (3.5)
Proof. For 0 <r < k, from 7
®F ((=1)°"Rgy(x) * Rk (2)) * (C**(x))*~

(3.4)

Ju

) =4
Thus,
" (((—1)* Rgp,(2) * Réjy(x)) * (C*(2))* ™) =6
S5 @ ((—1)* Rey () * RE(2) » (CF(2))) = 4.

Convolving both sides by (((71)3@”)35(,6_7") () * RE, ) (2)) * (C*k(x))**l), we
obtain
& (1" Ry (@)  Rify_ () + (C(@)) )
# @ (=) Ry () + REL (@) + (C* (@)™
= ()" Rg @) * REfy (@) * (CF (@)1 ) w6,
By theorem [3.1]
6+ & ((—1)™ Ry (@) * RE () + (C™F(@)"7)
= (1" Ry @) * REfy (@) + (CF7 @)1 ) w0,
It follows that
& ((~)*™ Ry () + RfL (@) * (C** (@) ™)
= (15 Ry (@) + REy (@) (C (@)
as required. For k <m
& (=) Ry () + REL (@) + (C** (@) ™)
= ©" @ (1) Rey(@) « Rl (2)) = (CF(@)) 7).
It follows that
& (((—1)™ Ry (@) * Rk(2)) + (C*(2)) ") = & ¥

by Theorem This completes the proof. (Il
Theorem 3.3. Consider the linear differential equation
eru(z) = e @4, (3.6)
r=0
where
pt+q 52

o= (X2 aa;3>4 (X ax2)4)k’

j=p+1 7
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p+q=mn, n is odd with p odd and q even, or n is even with p odd and q odd,
x € R”, ¢, is a constant, & is the Dirac-delta distribution, and @°5 = 5. Then the
type of solution to depends on the relationship between k and m, according to
the following cases:

(1) If m <k and m =0, then has solution
u(z) = co (1) Ry (2) * Rj.(2)) * (C**(2))"")

which is an elementary solution of the ®F operator in Theorem when

6k > n, and is a tempered distribution when 6k < n.
(2) If 0 <m < k, then the solution of (3.6) is

m

u@) = 3 e (((1PE Ry () # Ry (@) 5 (€7 (@)

r=1
which is an ordinary function when 6k — 6r > n, and is a tempered distri-

bution when 6k — 6r < n.
3) If m>k and k <m < M, then (3.6) has solution

M
= Z e @RS
r=~k
which is only a singular distribution.
Proof. (1) For m = 0, we have ®*u(x) = ¢y, and by Theorem [3.1/ we obtain

u(@) = (((=1)** Ry (2) * Ry () * (C**(x))*7")

Now, (—1)3*R¢,(z) and RE (z) are the analytic function for 6k > n and also
(—1)%%Rg, (x) = R (x) * (C**(z))~! exists and is an analytic function by (3.2). It
follows that (—1)3*R¢, (z) x R (z) * (S**(2))~! is an ordinary function for 6k > n.
By Lemma [2.3| with a = 6k, (—1)3*R¢, (z) and with o = 6k, RE (z) are tempered
distribution with 6k < n, we obtain (—1)**R¢, (z) * RE (x) x (C**(x)) ! exists and
is a tempered distribution.

(2) For the case 0 < m < k, we have

PrPu(z) =cr®5+ca @0+ + ¢ O™ 0.
We convolved both sides of the above equation by (—1)3% R¢, (x)*RE (z)+(C*F(x))~*
to obtain
&* (((=1)*" Ry () * R6k( ) *

#(C*F (@)™ * u(x)
= 1@ ((=1)* R (2) * Rk ()

)% (CF(x))7")
+e2 @ (-1 Ry () * R () = (C*M(2)7)
+o ot em @ ((F1)°M R, (2) * R (2))  (C™(2) 7).

By Theorems [3.1] and [3.2] we obtain
w(@) = e (15D Rg gy (@) * Ry (@) (€D (@) )
2 ((FD* D R ) () + REy_o) (@) + (€D ()

Yetoe, ((( )3(k m)Rﬁ(k m) ( ) * ng—m) (z)) * (C*(k—m) (x))*—l)
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or

aw) = e ((C)PE DRy () 5 RE Ly () (O @) 1)

r=1

Similarly, as in the case(1), u(z) is an ordinary function for 6k — 6r > n and is a
tempered distribution for and 6k — 67 < n.
(3) For the case m > k and k < m < M, we have

@ku(x) = @0+ T+ ey Mo

Convolved both sides of the above equation by (—1)3*R¢, (z) * Rk (z) * (C** (z))*~*
to obtain

@ ((—1)* Ry (x) * Rgj,(x)) * (™ (2))* ") * u(z)
= @ (((—1)*" Rgy,(2) * Ry (2)) = (5™ (2))71)
+ e & (D)™ Rg () * R (@) + (CF(2))" 1)
+ ot en &M (((F1)*M Ry, (2) * Rej, () * (C* () 1) .
By Theorems and again, we obtain

M
u(@) = b+ Crp1 B0+ cua @25+t @M= ¢ @ h o,
r==k

Since @"~*§ is a singular distribution, hence u(z) is only the singular distribution.
This completes the proofs. (I
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