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SOLUTIONS OF A PARTIAL DIFFERENTIAL EQUATION
RELATED TO THE OPLUS OPERATOR

WANCHAK SATSANIT

Abstract. In this article, we consider the equation

⊕ku(x) =
mX

r=0

cr ⊕r δ

where ⊕k is the operator iterated k times and defined by

⊕k =
““ pX

i=1

∂2

∂x2
i

”4
−

“ p+qX
j=p+1

∂2

∂x2
j

”4”k
,

where p + q = n, x = (x1, x2, . . . , xn) is in the n-dimensional Euclidian space

Rn, cr is a constant, δ is the Dirac-delta distribution, ⊕0δ = δ, and k =
0, 1, 2, 3, . . . . It is shown that, depending on the relationship between k and m,

the solution to this equation can be ordinary functions, tempered distributions,

or singular distributions.

1. Introduction

The diamond operator, iterated k times, was studied by Kananthai [2], and is
defined by

♦k =
(( p∑

i=1

∂2

∂x2
i

)2

−
( p+q∑

j=p+1

∂2

∂x2
j

)2)k

, p + q = n, (1.1)

where n is the dimension of the space Rn, x = (x1, x2, . . . , xn) ∈ Rn, and k is a
nonnegative integer. This operator can be expressed as

♦k = ∆k�k = �k∆k (1.2)

where ∆k is the Laplacian operator iterated k times, defined by

∆k =
( ∂2

∂x2
1

+
∂2

∂x2
2

+ · · ·+ ∂2

∂x2
n

)k

, (1.3)

and �k is the Ultra-hyperbolic operator iterated k times, defined by

�k =
( ∂2

∂x2
1

+
∂2

∂x2
2

+ · · ·+ ∂2

∂x2
p

− ∂2

∂x2
p+1

− ∂2

∂x2
p+2

− · · · − ∂2

∂x2
p+q

)k

. (1.4)
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Kananthai [2] showed that the convolution

u(x) = (−1)kRe
2k(x) ∗RH

2k(x)

is a unique elementary solution of the operator ♦k, where Re
2k(x) and RH

2k(x) are
defined by (2.5) and (2.2) with α = 2k respectively; that is,

♦k
(
(−1)kRe

2k(x) ∗RH
2k(x)

)
= δ . (1.5)

Satsanit [7] introduced the }k operator, defined by

}k =
(( p∑

i=1

∂2

∂x2
i

)2

+
( p+q∑

j=p+1

∂2

∂x2
j

)2)k

.

From (1.3) and (1.4), we obtain

}k =
(( p∑

i=1

∂2

∂x2
i

)2

+
( p+q∑

j=p+1

∂2

∂x2
j

)2)k

=
((∆ + �

2

)2

+
(∆−�

2

)2)k

=
(∆2 + �2

2

)k

.

(1.6)

The ⊕k operator has been studied by Kananthai, Suantai and Longani [4], and can
be expressed in the form

⊕k =
[( p∑

i=1

∂2

∂x2
i

)2

−
( p+q∑

j=p+1

∂2

∂x2
j

)2]k

·
[( p∑

i=1

∂2

∂x2
i

)2

+
( p+q∑

j=p+1

∂2

∂x2
j

)2]k

(1.7)

Thus, (1.7) can be written as
⊕k = ♦k}k, (1.8)

where ♦k and }k are defined by (1.1), (1.6) respectively.
The purpose of this article, is finding the solution to the equation

⊕ku(x) =
m∑

r=0

cr ⊕r δ (1.9)

by using convolutions of the generalized function. It is also shown that the type of
solution to (1.9) depends on the relationship between k and m, according to the
following cases:

(1) If m < k and m = 0, then (1.9) has the solution

u(x) = c0

(
((−1)3kRe

6k(x) ∗RH
6k(x)) ∗ (C∗k(x))∗−1

)
which is an elementary solution of the ⊕k operator in Theorem 3.1, is
an ordinary function when 6k ≥ n, and is a tempered distribution when
6k < n.

(2) If 0 < m < k then the solution of (1.9) is

u(x) =
m∑

r=1

cr

(
((−1)3(k−r)Re

6(k−r)(x) ∗RH
6(k−r)(x)) ∗ (C∗(k−r)(x))∗−1

)
which is an ordinary function when 6k−6r ≥ n and is tempered distribution
when 6k − 6r < n.
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(3) If m ≥ k and k ≤ m ≤ M , then (1.9) has the solution

u(x) =
M∑

r=k

cr ⊕r−k δ

which is only a singular distribution.
Before going that point, the following definitions and some concepts are needed.

2. Preliminaries

Definition 2.1. Let x = (x1, x2, . . . , xn) be a point in Rn. Define

υ = x2
1 + x2

2 + · · ·+ x2
p − x2

p+1 − x2
p+2 − · · · − x2

p+q, (2.1)

where p + q = n is the dimension of the space Rn.
Let Γ+ = {x ∈ Rn : x1 > 0 and u > 0} be the interior of a forward cone and let

Γ+ denote its closure. For any complex number α, define the function

RH
α (υ) =

{
υ(α−n)/2

Kn(α) , for x ∈ Γ+,

0, for x 6∈ Γ+,
(2.2)

where

Kn(α) =
π

n−1
2 Γ( 2+α−n

2 )Γ( 1−α
2 )Γ(α)

Γ( 2+α−p
2 )Γ(p−α

2 )
. (2.3)

The function RH
α (υ) was introduced by Nozaki [5, p. 72] and is called the Ultra-

hyperbolic kernel of Marcel Riesz.

It is well known that RH
α (υ) is an ordinary function if Re(α) ≥ n and is a

distribution of α if Re(α) < n. Let suppRH
α (υ) denote the support of RH

α (υ) and
suppose suppRH

α (υ) ⊂ Γ̄+, that is suppRH
α (υ) is compact.

From Trione [9, p. 11], RH
2k(υ) is an elementary solution of the operator �k; that

is,
�kRH

2k(υ) = δ(x) . (2.4)

Definition 2.2. Let x = (x1, x2, . . . , xn) and |x| = (x2
1 + x2

2 + · · · + x2
n)1/2. The

elliptic kernel of Marcel Riesz and is defined as

Re
α(x) =

|x|α−n

Wn(α)
(2.5)

where

Wn(α) =
π

n
2 2αΓ

(
α
2

)
Γ

(
n−α

2

) , (2.6)

α is a complex parameter, and n is the dimension of Rn.

It can be shown that Re
−2k(x) = (−1)k∆kδ(x) where ∆k is defined by (1.3). It

follows that Re
0(x) = δ(x), [2, p. 118]. Moreover, (−1)kRe

2k(x) is an elementary
solution of the operator ∆k [2, Lemma 2.4]; that is,

∆k((−1)kRe
2k(x) = δ(x) . (2.7)

Lemma 2.3. The functions RH
2k(υ) and (−1)kRe

2k(x) are the elementary solutions
of the operators �k and ∆k, defined by (1.4) and (1.3) respectively. The function
RH

2k(υ) is defined by (2.2) with α = 2k, and Re
2k(x) is defined by (2.5) with α = 2k.
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Proof. We need to show that �kRH
2k(υ) = δ(x) which is done in [9, Lemma 2.4].

Also we need to show that ∆k((−1)kRe
2k(x) = δ(x). which is done in [2, p. 31]. �

Lemma 2.4. The convolution RH
2k(υ) ∗ (−1)kRe

2k(x) is an elementary solution of
the operator ♦k iterated k as defined by (1.1).

For the proof of the above lemma see [2, p. 33].

Lemma 2.5. The functions RH
α (x) and Re

α(x) defined by (2.2) and (2.5) respec-
tively, for Re(α), are homogeneous distributions of order α−n and also a tempered
distributions.

Proof. Since RH
α (x) and Re

α(x) satisfy the Euler equation,

(α− n)RH
α (x) =

n∑
i=1

xi
∂

∂xi
RH

α (x),

(α− n)Re
α(x) =

n∑
i=1

xi
∂

∂xi
Re

α(x),

we have that RH
α (x) and Re

α(x) are homogeneous distributions of order α − n.
Donoghue [1, pp. 154-155] proved that the every homogeneous distribution is a
tempered distribution. This completes the proof. �

Lemma 2.6. The convolution Re
α(x)∗RH

α (x) exists and is a tempered distribution.

Proof. Choose suppRH
α (x) = K ⊂ Γ+ where K is a compact set. Then RH

α (x)
is a tempered distribution with compact support. By Donoghue [1, pp. 156-159],
Re

α(x) ∗RH
α (x) exists and is a tempered distribution. �

Lemma 2.7 (Convolution of Re
α(x) and RH

α (x)). Let Re
α(x) and RH

α (x) defined by
(2.5) and (2.2) respectively, then we obtain the following:

(1) Re
α(x) ∗Re

β(x) = Re
α+β(x) when α and β are complex parameters;

(2) RH
α (x) ∗RH

β (x) = RH
α+β(x) when α and β are integers, except when both α

and β are odd.

Proof. For the first formula, see [1, p. 158]. For the second formula, when α and
β are both even integers; see [3]. For the case α is odd and β is even or α is even
and β is odd, by Trione [8], we have

�kRH
α (x) = RH

α−2k(x) (2.8)

and
�kRH

2k(x) = δ(x), k = 0, 1, 2, 3, . . . (2.9)

where �k is the Ultra-hyperbolic operator iterated k-times defined by

�k =
( p∑

i=1

∂2

∂x2
i

−
p+q∑

j=p+1

∂2

∂x2
j

)k

.

Now let m be an odd integer. We have �kRH
m(x) = RH

m−2k(x) and

RH
2k(x) ∗�kRH

m(x) = RH
2k(x) ∗RH

m−2k(x)
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or (
�kRH

2k(x)
)
∗RH

m(x) = RH
2k(x) ∗RH

m−2k(x),

δ ∗RH
m(x) = RH

2k(x) ∗RH
m−2k(x).

Thus
RH

m(x) = RH
2k(x) ∗RH

m−2k(x).

Since m is odd, hence m − 2k is odd and 2k is a positive even. Put α = 2k, β =
m− 2k, we obtain

RH
α (x) ∗RH

β (x) = RH
α+β(x)

when α is nonnegative even and β is odd.
For the case when α is negative even and β is odd, by (2.8) we have

�kRH
0 (x) = RH

−2k(x)

or �kδ = RH
−2k(x), where RH

0 (x) = δ. Now when m is odd,

RH
−2k(x) ∗�kRH

m(x) = RH
−2k(x) ∗RH

m−2k(x)

or (
�kδ

)
∗�kRH

m(x) = RH
−2k(x) ∗RH

m−2k(x),

δ ∗�2kRH
m(x) = RH

−2k(x) ∗RH
m−2k(x).

Thus
RH

m−2(2k)(x) = RH
−2k(x) ∗RH

m−2k(x).

Put α = −2k and β = m − 2k, now α is negative even and β is odd. Then we
obtain

RH
α (x) ∗RH

β (x) = RH
α+β(x).

That completes the proof. �

3. Main Results

Theorem 3.1. Given the equation

⊕kG(x) = δ(x), (3.1)

where ⊕k is the oplus operator iterated k times defined by (1.8), δ(x) is the Dirac-
delta distribution, x ∈ Rn, and k is a nonnegative integer. Then

G(x) =
(
RH

6k(υ) ∗ (−1)3kRe
6k(x)

)
∗

(
C∗k(x)

)∗−1
(3.2)

is a Green’s function or an elementary solution for the operator ⊕k, where

C(x) =
1
2
RH

4 (x) +
1
2
(−1)2Re

4(x), (3.3)

where C∗k(x) denotes the convolution of C with itself k times,
(
C∗k(x)

)∗−1 denotes
the inverse of C∗k(x) in the convolution algebra. Moreover G(x) is a tempered
distribution.

For a proof of the above theorem, see [6].
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Theorem 3.2. For 0 < r < k,

⊕r
(
((−1)3kRe

6k(x) ∗RH
6k(x)) ∗ (C∗k(x))∗−1

)
=

(
((−1)3(k−r)Re

6(k−r)(x) ∗RH
6(k−r)(x)) ∗ (C∗(k−r)(x))∗−1

) (3.4)

and for k ≤ m,

⊕m
(
((−1)3kRe

6k(x) ∗RH
6k(x)) ∗ (C∗k(x))∗−1

)
= ⊕m−kδ. (3.5)

Proof. For 0 < r < k, from (3.1),

⊕k
(
((−1)3kRe

6k(x) ∗RH
6k(x)) ∗ (C∗k(x))∗−1

)
= δ.

Thus,
⊕k−r ⊕r

(
((−1)3kRe

6k(x) ∗RH
6k(x)) ∗ (C∗k(x))∗−1

)
= δ

or
⊕k−rδ ∗ ⊕r

(
((−1)3kRe

6k(x) ∗RH
6k(x)) ∗ (C∗k(x))∗−1

)
= δ.

Convolving both sides by
(
((−1)3(k−r)Re

6(k−r)(x) ∗RH
6(k−r)(x)) ∗ (C∗k(x))∗−1

)
, we

obtain

⊕k−r
(
((−1)3(k−r)Re

6(k−r)(x) ∗RH
6(k−r)(x)) ∗ (C∗k(x))∗−1

)
∗ ⊕r

(
((−1)3kRe

6k(x) ∗RH
6k(x)) ∗ (C∗k(x))∗−1

)
=

(
((−1)3(k−r)Re

6(k−r)(x) ∗RH
6(k−r)(x)) ∗ (C∗(k−r)(x))∗−1

)
∗ δ.

By theorem 3.1,

δ ∗ ⊕r
(
((−1)3kRe

6k(x) ∗RH
6k(x)) ∗ (C∗k(x))∗−1

)
=

(
((−1)3(k−r)Re

6(k−r)(x) ∗RH
6(k−r)(x)) ∗ (C∗(k−r)(x))∗−1

)
∗ δ.

It follows that

⊕r
(
((−1)3kRe

6k(x) ∗RH
6k(x)) ∗ (C∗k(x))∗−1

)
=

(
((−1)3(k−r)Re

6(k−r)(x) ∗RH
6(k−r)(x)) ∗ (C∗(k−r)(x))∗−1

)
as required. For k ≤ m

⊕m
(
((−1)3kRe

6k(x) ∗RH
6k(x)) ∗ (C∗k(x))∗−1

)
= ⊕m−k ⊕k

(
((−1)3kRe

6k(x) ∗RH
6k(x)) ∗ (C∗k(x))∗−1

)
.

It follows that

⊕m
(
((−1)3kRe

6k(x) ∗RH
6k(x)) ∗ (C∗k(x))∗−1

)
= ⊕m−kδ

by Theorem 3.1. This completes the proof. �

Theorem 3.3. Consider the linear differential equation

⊕ku(x) =
m∑

r=0

cr ⊕r δ, (3.6)

where

⊕k =
(( p∑

i=1

∂2

∂x2
i

)4

−
( p+q∑

j=p+1

∂2

∂x2
j

)4)k

,
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p + q = n, n is odd with p odd and q even, or n is even with p odd and q odd,
x ∈ Rn, cr is a constant, δ is the Dirac-delta distribution, and ⊕0δ = δ. Then the
type of solution to (3.6) depends on the relationship between k and m, according to
the following cases:

(1) If m < k and m = 0, then (3.6) has solution

u(x) = c0

(
((−1)3kRe

6k(x) ∗RH
6k(x)) ∗ (C∗k(x))∗−1

)
which is an elementary solution of the ⊕k operator in Theorem 3.1, when
6k ≥ n, and is a tempered distribution when 6k < n.

(2) If 0 < m < k, then the solution of (3.6) is

u(x) =
m∑

r=1

cr

(
((−1)3(k−r)Re

6(k−r)(x) ∗RH
6(k−r)(x)) ∗ (C∗(k−r)(x))∗−1

)
which is an ordinary function when 6k − 6r ≥ n, and is a tempered distri-
bution when 6k − 6r < n.

(3) If m ≥ k and k ≤ m ≤ M , then (3.6) has solution

u(x) =
M∑

r=k

cr ⊕r−k δ

which is only a singular distribution.

Proof. (1) For m = 0, we have ⊕ku(x) = c0δ, and by Theorem 3.1 we obtain

u(x) =
(
((−1)3kRe

6k(x) ∗RH
6k(x)) ∗ (C∗k(x))∗−1

)
Now, (−1)3kRe

6k(x) and RH
6k(x) are the analytic function for 6k ≥ n and also

(−1)3kRe
6k(x) ∗ RH

6k(x) ∗ (C∗k(x))−1 exists and is an analytic function by (3.2). It
follows that (−1)3kRe

6k(x) ∗RH
6k(x) ∗ (S∗k(x))−1 is an ordinary function for 6k ≥ n.

By Lemma 2.3 with α = 6k, (−1)3kRe
6k(x) and with α = 6k, RH

6k(x) are tempered
distribution with 6k < n, we obtain (−1)3kRe

6k(x) ∗RH
6k(x) ∗ (C∗k(x))−1 exists and

is a tempered distribution.
(2) For the case 0 < m < k, we have

⊕ku(x) = c1 ⊕ δ + c2 ⊕2 δ + · · ·+ cm ⊕m δ.

We convolved both sides of the above equation by (−1)3kRe
6k(x)∗RH

6k(x)∗(C∗k(x))−1

to obtain

⊕k
(
((−1)3kRe

6k(x) ∗RH
6k(x)) ∗ (C∗k(x))−1

)
∗ u(x)

= c1 ⊕
(
((−1)3kRe

6k(x) ∗RH
6k(x)) ∗ (C∗k(x))−1

)
+ c2 ⊕2

(
((−1)3kRe

6k(x) ∗RH
6k(x)) ∗ (C∗k(x))−1

)
+ · · ·+ cm ⊕m

(
((−1)3kRe

6k(x) ∗RH
6k(x)) ∗ (C∗k(x))−1

)
.

By Theorems 3.1 and 3.2, we obtain

u(x) = c1

(
((−1)3(k−1)Re

6(k−1)(x) ∗RH
6(k−1)(x)) ∗ (C∗(k−1)(x))∗−1

)
+ c2

(
((−1)4(k−2)Re

6(k−2)(x) ∗RH
6(k−2)(x)) ∗ (C∗(k−2)(x))∗−1

)
+ · · ·+ cm

(
((−1)3(k−m)Re

6(k−m)(x) ∗RH
6(k−m)(x)) ∗ (C∗(k−m)(x))∗−1

)



8 W. SATSANIT EJDE-2010/76

or

u(x) =
m∑

r=1

cr

(
((−1)3(k−r)Re

6(k−r)(x) ∗RH
6(k−r)(x)) ∗ (C∗(k−r)(x))∗−1

)
.

Similarly, as in the case(1), u(x) is an ordinary function for 6k − 6r ≥ n and is a
tempered distribution for and 6k − 6r < n.

(3) For the case m ≥ k and k ≤ m ≤ M , we have

⊕ku(x) = ck ⊕k δ + ck+1 ⊕k+1 δ + · · ·+ cM ⊕M δ.

Convolved both sides of the above equation by (−1)3kRe
6k(x)∗R6k(x)∗(C∗k(x))∗−1

to obtain

⊕k
(
((−1)3kRe

4k(x) ∗RH
6k(x)) ∗ (S∗k(x))∗−1

)
∗ u(x)

= ck ⊕k
(
((−1)2kRe

6k(x) ∗RH
6k(x)) ∗ (S∗k(x))−1

)
+ ck+1 ⊕k+1

(
((−1)3kRe

6k(x) ∗RH
6k(x)) ∗ (C∗k(x))∗−1

)
+ · · ·+ cM ⊕M

(
((−1)3kRe

6k(x) ∗RH
6k(x)) ∗ (C∗k(x))∗−1

)
.

By Theorems 3.1 and 3.2 again, we obtain

u(x) = ckδ + ck+1 ⊕ δ + ck+2 ⊕2 δ + · · ·+ cM ⊕M−k δ =
M∑

r=k

cr ⊕r−k δ.

Since ⊕r−kδ is a singular distribution, hence u(x) is only the singular distribution.
This completes the proofs. �
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