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LYAPUNOV STABILITY OF CLOSED SETS IN IMPULSIVE
SEMIDYNAMICAL SYSTEMS

EVERALDO M. BONOTTO, NIVALDO G. GRULHA JR.

Abstract. In this article, we consider impulsive semidynamical systems, de-
fined in a metric space, with impulse effects at variable times. Converse-type

theorems are included in our results giving necessary and sufficient conditions

for various types of stability of closed subsets of the metric space. These re-
sults are achieved by means of Lyapunov functionals which indicate how the

solutions behave when entering a “stable” set.

1. Introduction

Impulsive semidynamical systems present interesting and important phenomena
such as “beating”, “dying”, “merging”, “noncontinuation of solutions”, etc. These
systems present a more complex structure than the non-impulsive systems because
of their irregularity. In recent years, the theory of such systems has been studied
and developed intensively. See for instance [2]-[12].

Lyapunov stability theory has been studied by several authors in investigations
of continuous dynamical systems and impulsive dynamical systems. The majority
of these papers in the impulsive case deal with systems with impulse effects at pre-
assigned times. In [11], the author considers a more general case where the impulsive
semidynamical system admits impulse effects at variable times. He considers an
impulsive semidynamical system (Ω, π̃), where Ω ⊂ X is an open set in a metric
space X and the continuous impulsive function I is defined from ∂Ω to X (∂Ω is
the boundary of Ω in X). He introduces a continuous Lyapunov function in (Ω, π̃)
denoted by V : G → R, where G ⊂ Ω is a positively invariant closed set and G
denotes the closure of a set G in X. The derivative of the function V is defined by

V̇ (x) = lim
t→0+

V (π̃(x, t))− V (x)
t

and the set E by {x ∈ G : V̇ (x) = 0}. Considering A ⊂ E as being the largest
invariant set under π̃, Kaul proved that A is asymptotically stable, provided A ⊂
intG and V (A) = a for some a ∈ R. The converse result is given as follows: if A is
asymptotically stable, then there exists a positively invariant set G in Ω containing
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A which admits a Lyapunov function V : G → R+ satisfying some properties. We
can observe that the set A does not contain points of ∂Ω where the discontinuities
of the impulsive system occur.

In the present paper, we extend the results from [1] for the impulsive case. In [1]
the authors present several results which give necessary and sufficient conditions
for the stability of closed sets in non-impulsive dynamical systems defined in a
metric space. We consider impulsive semidynamical systems of type (X,π;M, I)
subject to impulse action which varies in time, where X is a metric space, (X,π)
is a semidynamical system, M is a non-empty closed subset of X that denotes the
impulsive set and I : M → X is the impulse function. We give necessary and
sufficient conditions for various types of stability of closed sets of X. In other
words, we establish necessary and sufficient conditions so that the solutions of the
impulsive system become “stable” in some sense after entering a closed subset of
X. Converse-type results are included in the main theorems. In contrast to the
paper [11], the set which we prove to be “stable” can contain points of M where
the discontinuities of the impulsive system occur.

In the first part of this article, we present the basis of the theory of impul-
sive semidynamical systems. We present basic definitions and notations and then
we discuss the continuity of a function which describes the times of reaching the
impulsive set. We also present additional useful definitions.

The second part of the paper concerns the main results. We introduce two new
concepts of stability of sets in impulsive semidynamical systems and we relate these
concepts of stability to other known concepts. We give necessary and sufficient
conditions for the various types of stability of closed sets of X. We prove that
there exists a functional which plays the role of a Lyapunov functional indicating
how the solutions behave when entering a “stable” closed set provided this set is
“stable” and we also state the reciprocal of this fact. In addition, we show that this
Lyapunov functional is continuous when the impulsive set is contained in the closed
set. Finally we present two examples to show how the theory can be employed.

2. Preliminaries

In this section we present the basic definitions and notation of the theory of
impulsive semidynamical systems. We also include some fundamental results which
are necessary for understanding the basis of the theory.

2.1. Basic definitions and terminology. LetX be a metric space and R+ be the
set of non-negative real numbers. The triple (X,π,R+) is called a semidynamical
system, if the function π : X × R+ → X is continuous with π(x, 0) = x and
π(π(x, t), s) = π(x, t + s), for all x ∈ X and t, s ∈ R+. We denote such system by
(X,π,R+) or simply (X,π). When R+ is replaced by R in the definition above, the
triple (X,π,R) is a dynamical system. For every x ∈ X, we consider the continuous
function πx : R+ → X given by πx(t) = π(x, t) and we call it the motion of x.

Let (X,π) be a semidynamical system. Given x ∈ X, the positive orbit of x is
given by C+(x) = {π(x, t) : t ∈ R+} which we also denote by π+(x). For t ≥ 0 and
x ∈ X, we define F (x, t) = {y ∈ X : π(y, t) = x} and, for ∆ ⊂ [0,+∞) and D ⊂ X,
we define

F (D,∆) = ∪{F (x, t) : x ∈ D and t ∈ ∆}.
Then a point x ∈ X is called an initial point, if F (x, t) = ∅ for all t > 0.
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Now we define semidynamical systems with impulse action. An impulsive semi-
dynamical system (X,π;M, I) consists of a semidynamical system, (X,π), a non-
empty closed subset M of X such that for every x ∈ M , there exists εx > 0 such
that

F (x, (0, εx)) ∩M = ∅ and π(x, (0, εx)) ∩M = ∅,
and a continuous function I : M → X whose action we explain below in the
description of the impulsive trajectory of an impulsive semidynamical system. The
points of M are isolated in every trajectory of system (X,π). The set M is called
the impulsive set, the function I is called impulse function and we write N = I(M).
We also define

M+(x) = (π+(x) ∩M) \ {x}.
Another property of the impulsive set M is that M is a meager set in X as

shown by the next lemma.

Lemma 2.1. Let (X,π;M, I) be an impulsive semidynamical system. The impul-
sive set M is a meager set in X.

Proof. The proof is immediate because the points of M are isolated in every tra-
jectory of the system (X,π). Therefore int(M) = ∅ in X and the result follows. �

Given an impulsive semidynamical systems (X,π;M, I) and x ∈ X such that
M+(x) 6= ∅, it is always possible to find a smallest number s such that the trajectory
πx(t) for 0 < t < s does not intercept the set M . This result is stated next and a
proof of it can be found in [2].

Lemma 2.2. Let (X,π;M, I) be an impulsive semidynamical system. Then for
every x ∈ X, there is a positive number s, 0 < s ≤ +∞, such that π(x, t) /∈ M ,
whenever 0 < t < s, and π(x, s) ∈M if M+(x) 6= ∅.

Let (X,π;M, I) be an impulsive semidynamical system and x ∈ X. By means
of Lemma 2.2, it is possible to define a function φ : X → (0,+∞] in the following
manner

φ(x) =

{
s, if π(x, s) ∈M and π(x, t) /∈M for 0 < t < s,
+∞, if M+(x) = ∅.

This means that φ(x) is the least positive time for which the trajectory of x meets
M . Thus for each x ∈ X, we call π(x, φ(x)) the impulsive point of x.

The impulsive trajectory of x in (X,π;M, I) is an X−valued function π̃x defined
on the subset [0, s) of R+ (s may be +∞). The description of such trajectory
follows inductively as described in the following lines.

If M+(x) = ∅, then π̃x(t) = π(x, t), for all t ∈ R+, and φ(x) = +∞. However if
M+(x) 6= ∅, it follows from Lemma 2.2 that there is a smallest positive number s0
such that π(x, s0) = x1 ∈ M and π(x, t) /∈ M , for 0 < t < s0. Then we define π̃x

on [0, s0] by

π̃x(t) =

{
π(x, t), 0 ≤ t < s0

x+
1 , t = s0,

where x+
1 = I(x1) and φ(x) = s0.

Since s0 < +∞, the process now continues from x+
1 onwards. If M+(x+

1 ) = ∅,
then we define π̃x(t) = π(x+

1 , t − s0), for s0 ≤ t < +∞, and φ(x+
1 ) = +∞. When

M+(x+
1 ) 6= ∅, it follows again from Lemma 2.2 that there is a smallest positive
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number s1 such that π(x+
1 , s1) = x2 ∈M and π(x+

1 , t−s0) /∈M , for s0 < t < s0+s1.
Then we define π̃x on [s0, s0 + s1] by

π̃x(t) =

{
π(x+

1 , t− s0), s0 ≤ t < s0 + s1

x+
2 , t = s0 + s1,

where x+
2 = I(x2) and φ(x+

1 ) = s1, and so on. Notice that π̃x is defined on each
interval [tn, tn+1], where tn+1 =

∑n
i=0 si. Hence π̃x is defined on [0, tn+1].

The process above ends after a finite number of steps, whenever M+(x+
n ) = ∅

for some n. Or it continues infinitely, if M+(x+
n ) 6= ∅, n = 1, 2, 3, . . . , and if π̃x is

defined on the interval [0, T (x)), where T (x) =
∑∞

i=0 si.
Also given x ∈ X, one of the three properties hold:

i) M+(x) = ∅ and hence the trajectory of x has no discontinuities.
ii) For some n ≥ 1, each x+

k , k = 1, 2, . . . , n, is defined and M+(x+
n ) = ∅. In

this case, the trajectory of x has a finite number of discontinuities.
iii) For all k ≥ 1, x+

k is defined and M+(x+
k ) 6= ∅. In this case, the trajectory

of x has infinitely many discontinuities.

Let (X,π;M, I) be an impulsive semidynamical system. Given x ∈ X, the
impulsive positive orbit of x is defined by the set

C̃
+
(x) = {π̃(x, t) : t ∈ R+},

which we also denote by π̃+(x). We denote the closure of C̃
+
(x) in X by K̃+(x).

Analogously to the non-impulsive case, an impulsive semidynamical system sat-
isfies standard properties which follow straightforwardly from the definition. See
the next proposition and [3] for a proof of it.

Proposition 2.3. Let (X,π;M, I) be an impulsive semidynamical system and x ∈
X. The following properties hold:

i) π̃(x, 0) = x,
ii) π̃(π̃(x, t), s) = π̃(x, t+ s), for all t, s ∈ [0, T (x)) such that t+ s ∈ [0, T (x)).

2.2. Semicontinuity and continuity of φ. The result of this section is borrowed
from [7]. It concerns the function φ defined previously which indicates the moments
of impulse action of a trajectory in an impulsive system. Such result is applied
sometimes intrinsically in the proofs of the main theorems of the next section.

Let (X,π) be a semidynamical system. Any closed set S ⊂ X containing x
(x ∈ X) is called a section or a λ-section through x, with λ > 0, if there exists a
closed set L ⊂ X such that

(a) F (L, λ) = S;
(b) F (L, [0, 2λ]) is a neighborhood of x;
(c) F (L, µ) ∩ F (L, ν) = ∅, for 0 ≤ µ < ν ≤ 2λ.

The set F (L, [0, 2λ]) is called a tube or a λ-tube and the set L is called a bar. Let
(X,π) be a semidynamical system. We now present the conditions TC and STC
for a tube.

Any tube F (L, [0, 2λ]) given by a section S through x ∈ X such that S ⊂
M ∩ F (L, [0, 2λ]) is called TC-tube on x. We say that a point x ∈ M fulfills the
Tube Condition and we write (TC), if there exists a TC-tube F (L, [0, 2λ]) through
x. In particular, if S = M ∩F (L, [0, 2λ]) we have a STC-tube on x and we say that
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a point x ∈ M fulfills the Strong Tube Condition (we write (STC)), if there exists
a STC-tube F (L, [0, 2λ]) through x.

The following theorem concerns the continuity of φ which is accomplished outside
M for M satisfying the condition TC. See [7], Theorem 3.8.

Theorem 2.4. Consider an impulsive semidynamical system (X,π;M, I). Assume
that no initial point in (X,π) belongs to the impulsive set M and that each element
of M satisfies the condition (TC). Then φ is continuous at x if and only if x /∈M .

Remark 2.5. Suppose the conditions of Theorem 2.4 are true. Although the func-
tion π̃ is not continuous, by the continuity of the impulse function I : M → I(M)
and function φ, we can obtain the following result: Suppose x ∈ X \M . Given
ε > 0, for each k = 0, 1, 2, . . . . and t ∈ [0, φ(x+

k )], there is a δk > 0 such that
ρ(π(x+

k , t), π(y+
k , t)) < ε whenever ρ(y+

k , x
+
k ) < δk (ρ is a metric in X and x+

0 = x).
This result is applied in the proofs of the main theorems of the next section.

2.3. Additional definitions. Let us consider a metric space X with metric ρ. By
B(x, δ) we mean the open ball with center at x ∈ X and ratio δ. Let B(A, δ) = {x ∈
X : ρA(x) < δ} and B[A, δ] = {x ∈ X : ρA(x) ≤ δ}, where ρA(x) = inf{ρ(x, y) :
y ∈ A}. Throughout this paper, we use the notation ∂A, int(A) and A to denote
respectively the boundary, interior and closure of A in X.

In what follows, (X,π;M, I) is an impulsive semidynamical system and x ∈ X.
We define the prolongation set of x in (X,π;M, I) by

D̃+(x) = {y ∈ X : π̃(xn, tn) n→+∞→ y, for some xn
n→+∞→ x and tn ∈ [0,+∞)}.

For a set A ⊂ X we consider D̃+(A) = ∪{D̃+(x) : x ∈ A}.
If π̃+(A) ⊂ A, we say that A is π̃-invariant.
A point x ∈ X is called stationary or rest point with respect to π̃, if π̃(x, t) = x

for all t ≥ 0, it is a periodic point with respect to π̃, if π̃(x, t) = x for some t > 0
and x is not stationary, and it is a regular point if it is neither a rest point nor a
periodic point.

Let A ⊂ X. If for every ε > 0 and every x ∈ A, there is δ = δ(x, ε) > 0
such that π̃(B(x, δ), [0,+∞)) ⊂ B(A, ε), then A is called π̃-stable. The set A is
orbitally π̃-stable if for every neighborhood U of A, there is a positively π̃−invariant
neighborhood V of A, V ⊂ U . If for all x ∈ A and all y /∈ A, there exist a
neighborhood V of x and a neighborhood W of y such that W ∩ π̃(V, [0,+∞)) = ∅,
we say that A is π̃-stable according to Bhatia-Hajek [1]. We define the set

P̃+
W (A) =

{
x ∈ X : for every neighborhood U of A, there is a sequence

{tn} ⊂ R+, tn
n→+∞→ +∞ such that π̃(x, tn) ∈ U}.

The set P̃+
W (A) is called region of weak attraction of A with respect to π̃. If

x ∈ P̃+
W (A), then we say that x is π̃-weakly attracted to A. A subset A ⊂ X is

called a weak π̃-attractor, if P̃+
W (A) is a neighborhood of A. A set A ⊂ X is called

asymptotically π̃-stable, if it is both a weak π̃-attractor and orbitally π̃-stable.
For results concerning the stability and invariancy of sets in an impulsive system,

the reader may want to consult [2], [3], [8] and [11].
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3. Main Results

We divide this section into two parts. The first part concerns the relations among
some concepts of stability. In the second part, we discuss Lyapunov stability of
closed sets in impulsive semidynamical systems where the results give necessary
and sufficient conditions for various types of stability of closed sets.

Let (X,π;M, I) be an impulsive semidynamical system where X is a metric
space. We assume the following additional hypotheses:
• No initial point in (X,π) belongs to the impulsive set M , that is, given x ∈M

there are y ∈ X and t ∈ R+ such that π(y, t) = x.
• Each element ofM satisfies the condition (STC) (consequently, φ is continuous

on X \M).
• M ∩ I(M) = ∅.
• For all x ∈ X and for all k ≥ 1, x+

k is defined and M+(x+
k ) 6= ∅, that is, the

trajectory of x ∈ X has infinitely many discontinuities. Consequently, φ(x) < +∞
for all x ∈ X.

3.1. Stability. We introduce two new concepts of stability for impulsive semidy-
namical systems. Then, we relate these new concepts to known ones.

Definition 3.1. Let (X,π;M, I) be an impulsive semidynamical system. A set
A ⊂ X is said to be

(a) equi π̃-stable, if for each x /∈ A, there is a δ = δ(x) > 0 such that

x /∈ π̃(B(A, δ), [0,+∞)).

(b) uniformly π̃-stable, if for each ε > 0, there is a δ = δ(ε) > 0 such that

π̃(B(A, δ), [0,+∞)) ⊂ B(A, ε).

The next result deals with the equivalence between equi π̃-stability and uniform
π̃-stability of a compact subset A ⊂ X. This result is also valid when we replace the
condition of equi π̃-stability by π̃-stability. The proof is similar to the continuous
case, see [1].

Theorem 3.2. Let (X,π;M, I) be an impulsive semidynamical system, X is locally
compact and A ⊂ X is compact. Then, A is equi π̃-stable if and only if A is
uniformly π̃-stable. Replacing the hypotheses equi π̃−stability by π̃−stability, the
result remains true.

Remark 3.3. If the set A ⊂ X is closed but not compact, then the sufficiency
of the theorem does not necessarily hold. Indeed, consider the discontinuous flow
shown in Figure 3.1, where M̂ = {(−1, x2) : x2 ∈ R}, N̂ = {(2, x2) : x2 ∈ R},
p = (x′1, 0) ∈ R2 and the impulsive function I1 : M̂ → N̂ is given by I1(−1, x2) =
(2, x′2) such that x′2 < x′′2 < x2, where x′′2 is such that for some unique λ > 0,
π((2, x′2), λ) = (x′1, x

′′
2).

Note that the trajectories for x1 > x′1 are straight lines parallel to the axis 0x1.
This discontinuous flow has the property that for all x ∈ R2, limt→−∞ π̃(x, t) = 0.
Now, consider the sets

M = M̂ ∪+∞
n=1 {(x′1 + 3n, x2) : x2 ∈ R},

N = N̂ ∪+∞
n=1 {(x′1 + 3n+ 1, x2) : x2 ∈ R}
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x2

M̂ N̂

x′1 x1

Figure 1. Discontinuous flow

and define the function I : M → N as follows

I(−1, x2) = I1(−1, x2) for all x2 ∈ R

and

I(x′1 + 3n, x2) = (x′1 + 3n+ 1, x2) for all x2 ∈ R and n = 1, 2, . . . .

Then, the impulsive semidynamical system (R2, π;M, I) has infinitely many dis-
continuities. Let A = {(x1, x2) ∈ R2 : x2 = 0}. Clearly A is π̃-stable, but it is not
uniformly π̃-stable.

The next result shows the equivalence between the orbital stability and the
uniform stability in impulsive semidynamical systems. The proof is similar to the
continuous case, see [1].

Theorem 3.4. Let (X,π;M, I) be an impulsive semidynamical system. Assume
that X is locally compact and A ⊂ X is compact. Then A is orbitally π̃-stable if
and only if A is uniformly π̃-stable.

By [8, Theorem 4.1] and Theorems 3.2 and 3.4 above, we have the following
result which relates various concepts of stability.

Theorem 3.5. Let (X,π;M, I) be an impulsive semidynamical system. Assume
that X is locally compact and A is a compact subset of X. Then the following
conditions are equivalent:

(a) A is π̃-stable.
(b) A is orbitally π̃-stable.
(c) A is π̃-stable in the sense of Bhatia and Hajek.
(d) A is uniformly π̃-stable.
(e) A is equi π̃-stable.
(f) D̃+(A) = A.

The π̃-stability of a closed subset A of X implies that I(M) ⊂ A, for M ⊂ A, as
shown by the next lemma.

Lemma 3.6. Let (X,π;M, I) be an impulsive semidynamical system and A ⊂ X
be closed. If A is π̃-stable and M ⊂ A, then I(M) ⊂ A.
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Proof. Given x ∈ A and ε > 0, there is a δ = δ(x, ε) > 0 such that

π̃(B(x, δ), [0,+∞)) ⊂ B(A, ε).

Since ε is arbitrary, we have π̃+(x) ⊂ A = A. Therefore, I(M) ⊂ A provided
M ⊂ A. �

3.2. Lyapunov Stability. In this section, we shall present the results that concern
the Lyapunov stability of certain closed sets of X. These results are achieved by
means of functionals which play the role of a Lyapunov functional indicating how
the solutions behave when entering a “stable” set. The results give necessary and
sufficient conditions for the various types of stability of closed sets of X. We start
by presenting a result on π̃-stability.

Theorem 3.7. Let (X,π;M, I) be an impulsive semidynamical system and A ⊂ X
be closed.

(1) If there exists a functional ψ : X → R+ with the following properties:
(a) ψ is continuous in X \ (M \A).
(b) For every ε > 0, there is a δ > 0 such that ψ(x) ≥ δ whenever

ρ(x,A) ≥ ε and x /∈ M , and for any sequence {wn}n≥1 ⊂ X such
that wn

n→+∞→ x ∈ A implies ψ(wn) n→+∞→ 0.
(c) ψ(π(x, t)) ≤ ψ(x) if x ∈ X \M and 0 ≤ t ≤ φ(x), and ψ(I(x)) ≤ ψ(x)

if x ∈M .
Then A is π̃-stable.

(2) Reciprocally, if A is π̃-stable, then there is a functional ψ : X → R+ satis-
fying conditions a), b) and c) above.

Proof. Let us prove the necessary condition. Given ε > 0 and x ∈ A, set µ =
inf{ψ(w) : w /∈ M and ρ(w,A) ≥ ε

2}. Note that µ > 0, because by item (b), there
is a δ > 0 such that ψ(a) ≥ δ whenever ρ(a,A) ≥ ε

2 and a /∈M . We have two cases
to consider: when x ∈ int(A) and when x ∈ ∂A.

First, suppose x ∈ int(A). Then, by the second part of item (b) and by the
continuity of ψ in A, there is a δ1 > 0 such that

ψ(y) < µ for all y ∈ B(x, δ1) ⊂ A. (3.1)

We suppose by contradiction that π̃(B(x, δ1), [0,+∞)) is not contained in B(A, ε).
Thus, there are z ∈ B(x, δ1) and t1 ∈ (0,+∞) such that

π̃(z, t1) /∈ B(A, ε). (3.2)

Note that π̃(z, t1) /∈M because M∩I(M) = ∅. By equation (3.2), ρ(π̃(z, t1), A) ≥ ε
and this implies

ψ(π̃(z, t1)) ≥ inf
{
ψ(w) : w /∈M and ρ(w,A) ≥ ε

2
}

= µ. (3.3)

We have two cases to consider: when z ∈M and when z /∈M . First suppose that
z /∈M . Note that as z ∈ B(x, δ1), then ψ(z) < µ by (3.1). Hence for 0 ≤ t < φ(z),
we have

ψ(π̃(z, t)) = ψ(π(z, t))
(c)

≤ ψ(z) < µ.

If t = φ(z) and remembering from the definition of π̃ that z1 = π(z, φ(z)), then

ψ(π̃(z, t)) = ψ(π̃(z, φ(z))) = ψ(I(z1))
(c)

≤ ψ(z1) = ψ(π(z, φ(z)))
(c)

≤ ψ(z) < µ. (3.4)
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Now if φ(z) < t < φ(z) + φ(z+
1 ), then

ψ(π̃(z, t)) = ψ(π(z+
1 , t− φ(z)))

(c)

≤ ψ(z+
1 ) = ψ(π̃(z, φ(z)))

(3.4)
< µ.

Repeating this argument, we get ψ(π̃(z, t)) < µ for all t ≥ 0. In particular for t = t1,
ψ(π̃(z, t1)) < µ which is a contradiction by (3.3). Hence, π̃(B(x, δ1), [0,+∞)) ⊂
B(A, ε). Now, suppose z ∈ M . Take ν > 0, ν < t1, such that π̃(z, ν) = π(z, ν) ∈
B(x, δ1)\M . By the same argument used above for z /∈M , we get ψ(π̃(π̃(z, ν), t)) <
µ for all t ≥ 0. In particular for t = t1 − ν, ψ(π̃(z, t1)) = ψ(π̃(π̃(z, ν), t1 − ν)) < µ
which is a contradiction by (3.3). Therefore, we get again π̃(B(x, δ1), [0,+∞)) ⊂
B(A, ε).

Now we assume that x ∈ ∂A. Since ψ is continuous in X \ (M \ A), M is a
meager set in X and by the second part of item (b), there is a δ2 > 0, δ2 < ε,
such that ψ(y) < µ for all y ∈ B(x, δ2) \M . Supposing that π̃(B(x, δ2), [0,+∞))
is not contained in B(A, ε), there are z ∈ B(x, δ2) and t2 ∈ (0,+∞) such that
π̃(z, t2) /∈ B(A, ε). Thus ρ(π̃(z, t2), A) ≥ ε, π̃(z, t2) /∈ M because M ∩ I(M) = ∅
and therefore

ψ(π̃(z, t2)) ≥ inf
{
ψ(w) : w /∈M and ρ(w,A) ≥ ε

2
}

= µ. (3.5)

If z ∈ B(x, δ2) \M , then it can be shown that ψ(π̃(z, t)) < µ for all t ≥ 0 as
we did before. Hence, ψ(π̃(z, t2)) < µ which is a contradiction by (3.5). Also, if
z ∈ B(x, δ2) ∩ M , then z is an initial point for the impulsive system and there
is a time τ > 0 such that π̃(z, (0, τ)) = π(z, (0, τ)) ⊂ B(x, δ2) \M . Taking t∗,
0 < t∗ < τ . By the previous case, ψ(π̃(π(z, t∗), t)) < µ for all t ≥ 0. As a
result, ψ(π̃(z, t2)) = ψ(π̃(π(z, t∗), t2 − t∗)) < µ and this is a contradiction by (3.5).
Therefore, π̃(B(x, δ2), [0,+∞)) ⊂ B(A, ε). Consequently, A is π̃-stable.

Let us prove the sufficient condition. Define the function ψ : X → R+ by

ψ(x) =

supk≥0

(
sup0≤t≤φ(x+

k )
ρ(π(x+

k ,t),A)

1+ρ(π(x+
k ,t),A)

)
, if x ∈ X \M,

ψ(I(x)), if x ∈M,

where x+
0 = x. We shall verify that ψ satisfies conditions (a), (b) and (c).

(a) Take x ∈ X \M . Since {x} is compact and M is closed, there is an η > 0,
such that B(x, η)∩M = ∅. Given a sequence {wn}n≥1 ⊂ X such that wn

n→+∞→ x,
there is an integer n0 > 0 such that wn ∈ B(x, η) for n > n0. Since I is a continuous
function and φ is continuous on X \M we have

(wn)+1 = I(π(wn, φ(wn))) n→+∞→ I(π(x, φ(x))) = x+
1 .

Note that x+
1 /∈M because M ∩ I(M) = ∅. But {x+

1 } is compact and M is closed,
then there is an η1 > 0 such that B(x+

1 , η1)∩M = ∅. As (wn)+1
n→+∞→ x+

1 , there is
an integer n1

0 > 0 such that (wn)+1 ∈ B(x+
1 , η1) for n > n1

0. By the continuity of φ
on X \M we have

φ((wn)+1 ) n→+∞→ φ(x+
1 ).

Then

sup
0≤t≤φ((wn)+1 )

ρ(π((wn)+1 , t), A)
1 + ρ(π((wn)+1 , t), A)

n→+∞→ sup
0≤t≤φ(x+

1 )

ρ(π(x+
1 , t), A)

1 + ρ(π(x+
1 , t), A)

.
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Analogously, since (wn)+1
n→+∞→ x+

1 and φ((wn)+1 ) n→+∞→ φ(x+
1 ), it follows

(wn)+2 = I(π((wn)+1 , φ((wn)+1 ))) n→+∞→ I(π(x+
1 , φ(x+

1 ))) = x+
2

and

sup
0≤t≤φ((wn)+2 )

ρ(π((wn)+2 , t), A)
1 + ρ(π((wn)+2 , t), A)

n→+∞→ sup
0≤t≤φ(x+

2 )

ρ(π(x+
2 , t), A)

1 + ρ(π(x+
2 , t), A)

.

We can continue with this process because x+
k /∈ M for all k ≥ 1. Thus, for each

integer k ≥ 1 we obtain

(wn)+k = I(π((wn)+k−1, φ((wn)+k−1)))
n→+∞→ I(π(x+

k−1, φ(x+
k−1))) = x+

k

and

sup
0≤t≤φ((wn)+k )

ρ(π((wn)+k , t), A)
1 + ρ(π((wn)+k , t), A)

n→+∞→ sup
0≤t≤φ(x+

k )

ρ(π(x+
k , t), A)

1 + ρ(π(x+
k , t), A)

.

Therefore,

sup
k≥0

(
sup

0≤t≤φ((wn)+k )

ρ(π((wn)+k , t), A)
1 + ρ(π((wn)+k , t), A)

)
n→+∞→ sup

k≥0

(
sup

0≤t≤φ(x+
k )

ρ(π(x+
k , t), A)

1 + ρ(π(x+
k , t), A)

)
.

In conclusion, ψ(wn) n→+∞→ ψ(x) and ψ is continuous on X \M .
Since we want to prove that ψ is continuous on X \ (M \A), it is enough to show

that ψ is continuous on A∩M . Assume that x ∈ A∩M . Since A is π̃-stable, given
ε > 0, there is a δ = δ(x, ε) > 0 such that π̃(B(x, δ), [0,+∞)) ⊂ B(A, ε). Since ε
is arbitrary, we have π̃+(x) ⊂ A = A. Thus, π(x+

k , t) ⊂ A for all 0 ≤ t ≤ φ(x+
k ),

k ≥ 0 (x+
0 = x). Consequently ρ(π(x+

k , t), A) = 0 for all 0 ≤ t ≤ φ(x+
k ), k ≥ 0.

Hence ψ(x) = ψ(I(x)) = ψ(x+
1 ) = 0.

Considering π̃(B(x, δ), [0,+∞)) ⊂ B(A, ε) from the π̃-stability of π̃, if {zn}n≥1

is a sequence in X such that zn
n→+∞→ x, then there is a positive integer n0 > 0

such that zn ∈ B(x, δ) for n > n0. Consequently, π̃(zn, [0,+∞)) ⊂ B(A, ε) for all
n > n0, that is, π((zn)+k , t)) ⊂ B(A, ε) for 0 ≤ t ≤ φ((zn)+k ), k = 0, 1, 2, . . . . and
n > n0 ((zn)+0 = zn). Then ψ(zn) < ε for all n > n0, that is, ψ(zn) n→+∞→ 0 = ψ(x).
Therefore, ψ is continuous on X \ (M \A).

(b) Consider x ∈ X \M . Given ε > 0, let δ = ε
1+ε . Thus, if ρ(x,A) ≥ ε then

ρ(x,A)
1+ρ(x,A) ≥ δ. Therefore, ψ(x) ≥ δ.

For the second part of item (b), let us assume that x ∈ A. If x /∈ M , as M is
closed and {x} is compact, there is a δ > 0 such that B(x, δ) ∩M = ∅. Thus, if
{wn}n≥1 is any sequence in X such that wn

n→+∞→ x, there exists a positive integer
N > 0 such that wn ∈ B(x, δ) for n > N , by continuity of ψ in X \ (M \A),

ψ(wn) n→+∞→ ψ(x).

Now, suppose x ∈M . First of all, we should note that if {zn}n≥1 ⊂ X \M and
zn

n→+∞→ x, then the continuity of ψ in X \ (M \A) implies

ψ(zn) n→+∞→ ψ(x).
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Also, if {zn}n≥1 ⊂M and zn
n→+∞→ x, since the impulsive operator I is continuous,

we have
I(zn) n→+∞→ I(x).

Thus, since I(zn) /∈M for all n ∈ N, I(x) /∈M and ψ is continuous in X \ (M \A),
it follows that

ψ(I(zn)) n→+∞→ ψ(I(x)),
then by the definition of ψ,

ψ(zn) n→+∞→ ψ(x).
Consequently, if {xn}n≥1 ⊂ X is any sequence such that xn → x as n→ +∞, then
ψ(xn) → ψ(x) as n → +∞. Since x ∈ A, we have ψ(x) = 0 (as shown above) and
therefore, ψ(xn) → 0 as n→ +∞.

(c) Let x ∈ X \M and 0 ≤ s < φ(x). Let y = π(x, s). Since 0 ≤ s < φ(x), we
have y+

0 = π(x, s) and y+
k = x+

k for all integers k ≥ 1. Then

ψ(π(x, s)) = ψ(y) = sup
k≥0

(
sup

0≤t≤φ(y+
k )

ρ(π(y+
k , t), A)

1 + ρ(π(y+
k , t), t), A)

)
≤ sup

k≥0

(
sup

0≤t≤φ(x+
k )

ρ(π(x+
k , t), A)

1 + ρ(π(x+
k , t), A)

)
= ψ(x).

Now, we shall prove that ψ(π(x, φ(x))) ≤ ψ(x). Since π(x, φ(x)) = x1 ∈ M , we
have

ψ(π(x, φ(x))) = ψ(x1) = ψ(I(x1)) = ψ(x+
1 )

= sup
k≥1

(
sup

0≤t≤φ(x+
k )

ρ(π(x+
k , t), A)

1 + ρ(π(x+
k , t), A)

)
≤ sup

k≥0

(
sup

0≤t≤φ(x+
k )

ρ(π(x+
k , t), A)

1 + ρ(π(x+
k , t), A)

)
= ψ(x).

Consequently, ψ(π(x, t)) ≤ ψ(x) for 0 ≤ t ≤ φ(x). Now we will prove the second
part of c). Let x ∈ M . Then by the definition of ψ, ψ(I(x)) = ψ(x) and the
theorem is proved. �

The next result is a corollary of Theorem 3.7. It says that if M ⊂ A, then we
get the continuity of the function ψ.

Corollary 3.8. Let (X,π;M, I) be an impulsive semidynamical system. A closed
subset A ⊂ X such that M ⊂ A is π̃-stable if and only if there exists a functional
ψ : X → R+, with the following properties:

(a) ψ is continuous.
(b) For every ε > 0, there is a δ > 0 such that ψ(x) ≥ δ whenever ρ(x,A) ≥ ε,

and for any sequence {xn}n≥1 ⊂ X such that xn
n→+∞→ x ∈ A implies

ψ(xn) n→+∞→ 0.
(c) ψ(π(x, t)) ≤ ψ(x) if x ∈ X \M and t ≥ 0, and, ψ(I(x)) ≤ ψ(x) if x ∈M .

Theorem 3.9 below deals with the equi π̃-stability of a closed set of X.

Theorem 3.9. Let (X,π;M, I) be an impulsive semidynamical system, A ⊂ X be
closed and I(M \A) ⊂ (X \A) \M .

(1) If there exists a functional ψ : X → R+ with the following properties:
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(a) ψ is continuous in X \ (M \A).
(b) ψ(x) = 0 for x ∈ A, ψ(x) > 0 for x /∈ A ∪M .
(c) for every ε > 0, there is a δ > 0 such that ψ(x) ≤ ε whenever ρ(x,A) ≤

δ.
(d) ψ(π(x, t)) ≤ ψ(x) for x ∈ X\M and 0 ≤ t ≤ φ(x), and ψ(I(x)) ≤ ψ(x)

for x ∈M .
Then A is equi π̃-stable.

(2) Reciprocally, if A is equi π̃-stable, then there is a functional ψ : X → R+

satisfying conditions (a), (b), (c) and (d) above.

Proof. (1) Suppose x /∈ A. We have two cases to consider: when x ∈ M and
otherwise x /∈M .

Suppose x /∈ M . Set ρ(x,A) = ε > 0. Since x /∈ M , then ψ(x) > 0. Let
ψ(x) = µ. The condition (c) says that there is an η > 0 such that

ψ(y) ≤ µ

2
(3.6)

whenever ρ(y,A) ≤ η.
Let δ < min{η, ε}. We assert that x /∈ π̃(B(A, δ), [0,+∞)). Indeed. Suppose the

contrary. Then there are sequences {yn}n≥1 ⊆ B(A, δ) and {Tn}n≥1 ⊆ [0,+∞)
such that

π̃(yn, Tn) n→+∞→ x.

Since x /∈M , {x} is compact and M is closed, there is a % > 0 such that B(x, %) ∩
M = ∅. Moreover, there is an integer n0 > 0 such that π̃(yn, Tn) ∈ B(x, %) for all
n > n0. Since ψ is a continuous function on X \ (M \ A), there exists an integer
n1 > n0 such that

|ψ(π̃(yn, Tn))− ψ(x)| < µ

3
for all n ≥ n1. As ψ(x) = µ, we have

2µ
3
< ψ(π̃(yn1 , Tn1)) <

4µ
3
. (3.7)

Now note that ψ(π̃(w, t)) ≤ ψ(w) for all t ≥ 0 and w ∈ X \M . In fact, given
w ∈ X \M we have ψ(π(w, t)) ≤ ψ(w) for 0 ≤ t ≤ φ(w) and ψ(w+

1 ) = ψ(I(w1)) ≤
ψ(w1) = ψ(π(w, φ(w))) ≤ ψ(w). If φ(w) < t < φ(w) + φ(w+

1 ), it follows that

ψ(π̃(w, t)) = ψ(π(w+
1 , t− φ(w))) ≤ ψ(w+

1 ) = ψ(π̃(w, φ(w))) ≤ ψ(w).

For t = φ(w) + φ(w+
1 ),

ψ(π̃(x, t)) = ψ(w+
2 ) = ψ(I(w2)) ≤ ψ(w2) = ψ(π(w+

1 , φ(w+
1 ))) ≤ ψ(w+

1 ) ≤ ψ(w),

and so on. Thus, ψ(π̃(w, t)) ≤ ψ(w) for all t ≥ 0 and w ∈ X \M . Using this fact
and (3.6) we have

ψ(π̃(yn1 , Tn1)) ≤ ψ(yn1) ≤
µ

2
which contradicts (3.7). Hence, x /∈ π̃(B(A, δ), [0,+∞)).

Now we assume that x ∈ M . Suppose x ∈ π̃(B(A, δ), [0,+∞)) for every δ > 0.
Then, there are sequences {wδ

n}n≥1 ⊂ B(A, δ) and {tδn}n≥1 ⊂ [0,+∞) such that

π̃(wδ
n, t

δ
n) n→+∞→ x,

for each δ > 0. Since each element of M satisfies the condition STC, we have two
cases to consider.
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Case 1: There are countably many elements of {π̃(wδ
n, t

δ
n)}n≥1, denoted by

{π̃(wδ
nk
, tδnk

)}k≥1, such that

π(π̃(wδ
nk
, tδnk

), φ(π̃(wδ
nk
, tδnk

))) k→+∞→ x.

In this case, since π(π̃(wδ
nk
, tδnk

), φ(π̃(wδ
nk
, tδnk

))) ∈M and I is continuous, we have

π̃(π̃(wδ
nk
, tδnk

), φ(π̃(wδ
nk
, tδnk

))) k→+∞→ I(x);

that is,

π̃(wδ
nk
, tδnk

+ φ(π̃(wδ
nk
, tδnk

))) k→+∞→ I(x).

But this is a contradiction, because I(x) /∈ A ∪M and by the previous case, there
is a δ > 0 such that I(x) /∈ π̃(B(A, δ), [0,+∞)).

Case 2: There are countably many elements of {π̃(wδ
n, t

δ
n)}n≥1, denoted by

{π̃(wδ
nk
, tδnk

)}k≥1, such that φ(π̃(wδ
nk
, tδnk

)) k→+∞→ φ(x). In this case,

π(π̃(wδ
nk
, tδnk

), t) k→+∞→ π(x, t),

for all 0 ≤ t < φ(x). Let 0 < t0 < φ(x). Thus, π(x, t0) /∈M and π(π̃(wδ
nk
, tδnk

), t0) =
π̃(wδ

nk
, tδnk

+ t0). This is a contradiction.
Therefore, if x ∈ M \ A, there is a δ > 0 such that x /∈ π̃(B(A, δ), [0,+∞)) and

A is equi π̃-stable.
(2) Consider the function ψ(x) defined in Theorem 3.7. The result follows simi-

larly as in Theorem 3.7 . �

We have the following corollary where we obtain the continuity of the function
ψ, provided M ⊂ A.

Corollary 3.10. Let (X,π;M, I) be an impulsive semidynamical system. A closed
subset A ⊂ X such that M ⊂ A is equi π̃-stable if and only if there exists a
functional ψ : X → R+, with the following properties:

(a) ψ is continuous.
(b) ψ(x) = 0 for x ∈ A, ψ(x) > 0 for x /∈ A.
(c) for every ε > 0, there is a δ > 0 such that ψ(x) ≤ ε whenever ρ(x,A) ≤ δ.
d) ψ(π(x, t)) ≤ ψ(x) for x ∈ X \M and t ≥ 0, and ψ(I(x)) ≤ ψ(x) for x ∈M .

Lemma 3.11 will be necessary to prove Theorem 3.12.

Lemma 3.11. Let (X,π;M, I) be an impulsive semidynamical system and A ⊂ X
be closed. Let ψ : X → R+ be a continuous function on X \ (M \A) satisfying:

(1) for every ε > 0, there is a δ > 0 such that ψ(x) ≥ δ whenever ρ(x,A) ≥ ε
and x /∈M .

(2) for every ε > 0, there is a δ > 0 such that ψ(x) ≤ ε whenever ρ(x,A) ≤ δ.

Suppose there is a δ̃ > 0 such that ψ(π̃(w, t)) ≤ ψ(w) for all t ≥ 0 and w ∈ B(A, δ̃)\
M . Then, there is a δ > 0, 0 < δ ≤ δ̃, such that π̃(B(A, δ), [0,+∞)) ⊂ B(A, δ̃).

Proof. We shall suppose that for each δn = eδ
n > 0, n ∈ N, there are wn ∈ B

(
A, δ̃/n

)
and tn0 ∈ (0,+∞) such that

π̃(wn, t
n
0 ) /∈ B

(
A, δ̃

)
.
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Take µ = inf
{
ψ(x) : x /∈ M and ρ(x,A) ≥ δ̃

}
. Note that µ > 0 by item (1). By

item (2), there is an η > 0, η < δ̃, such that ψ(y) ≤ µ
2 whenever ρ(y,A) ≤ η.

Note that, there is a positive integer nk0 such that B(A, δnk0
) ⊂ B(A, η). Since

wnk0
∈ B(A, δnk0

) we have ψ(wnk0
) ≤ µ

2 . We have two cases to consider: when
wnk0

∈M and otherwise wnk0
/∈M .

First, suppose wnk0
/∈M . Then, wnk0

∈ B(A, δ̃) \M . Thus, ψ(π̃(wnk0
, t

nk0
0 )) ≤

ψ(wnk0
) ≤ µ/2, which leads to a contradiction because ρ(π̃(wnk0

, t
nk0
0 ), A) ≥ δ̃ and

π̃(wnk0
, t

nk0
0 ) /∈M (M ∩ I(M) = ∅).

Now we assume that wnk0
∈M . Then there is an 0 < εk0 < t

nk0
0 such that

π̃(wnk0
, εk0) = π(wnk0

, εk0) ∈ B
(
A, δ̃/nk0

)
\M ⊂ B(A, η) \M.

Thus,
ψ(π̃(wnk0

, εk0)) ≤
µ

2
and

ψ(π̃(wnk0
, t

nk0
0 )) = ψ(π̃(π̃(wnk0

, εk0), t
nk0
0 − εk0)) ≤ ψ(π̃(wnk0

, εk0)) ≤
µ

2
.

But this is a contradiction. Hence, there is a δ > 0, 0 < δ ≤ δ̃, such that
π̃(B(A, δ), [0,+∞)) ⊂ B(A, δ̃). �

For the case of uniformly π̃-stability, we have the following result.

Theorem 3.12. Let (X,π;M, I) be an impulsive semidynamical system and A ⊂ X
be closed.

(1) If there exists a functional ψ : X → R+ with the following properties:
(a) ψ is continuous in X \ (M \A).
(b) for every ε > 0, there is a δ > 0 such that ψ(x) ≥ δ whenever ρ(x,A) ≥

ε and x /∈M .
(c) for every ε > 0, there is a δ > 0 such that ψ(x) ≤ ε wherever ρ(x,A) ≤

δ.
(d) ψ(π(x, t)) ≤ ψ(x) if x ∈ X \M and 0 ≤ t ≤ φ(x), and ψ(I(x)) ≤ ψ(x)

if x ∈M .
Then A is uniformly π̃-stable.

(2) Reciprocally, if A is uniformly π̃-stable, then there is a functional ψ : X →
R+ satisfying conditions (a), (b), (c) and (d) above.

Proof. (1) Note that ψ(π̃(x, t)) ≤ ψ(x) for all t ≥ 0 and x ∈ X \M (the proof
is the same as in Theorem 3.9 item (1). Given ε > 0, in particular we have
ψ(π̃(x, t)) ≤ ψ(x) for all t ≥ 0 and x ∈ B(A, ε) \M . By Lemma 3.11 there exists a
δ > 0 such that π̃(B(A, δ), [0,+∞)) ⊂ B(A, ε). Therefore, A is uniformly π̃-stable.

To prove condition (2), note that A is uniformly π̃-stable, then A is π̃-stable.
Thus, the proof follows as in Theorem 3.7. �

Corollary 3.13. Let (X,π;M, I) be an impulsive semidynamical system. A closed
subset A ⊂ X such that M ⊂ A is uniformly π̃-stable if and only if there exists a
functional ψ : X → R+ with the following properties:

(a) ψ is continuous.
(b) for every ε > 0, there is a δ > 0 such that ψ(x) ≥ δ whenever ρ(x,A) ≥ ε.
(c) for every ε > 0, there is a δ > 0 such that ψ(x) ≤ ε wherever ρ(x,A) ≤ δ.
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(d) ψ(π(x, t)) ≤ ψ(x) if x ∈ X \M and t ≥ 0, and, ψ(I(x)) ≤ ψ(x) if x ∈M .

Now, we present the result concerning asymptotically π̃-stability. In this case
we consider the stability of a compact set.

Theorem 3.14. Let (X,π;M, I) be an impulsive semidynamical system, X be
locally compact and A ⊂ X be compact.

(1) If there exists a functional ψ : X → R+ with the following properties:
(a) ψ is continuous in X \ (M \A).
(b) for every ε > 0, there is a δ > 0 such that ψ(x) ≤ ε wherever ρ(x,A) ≤

δ.
(c) for every ε > 0, there is a δ > 0 such that ψ(x) ≥ δ whenever ρ(x,A) ≥

ε and x /∈M .
(d) ψ(π(x, t)) ≤ ψ(x) if x ∈ X \M and 0 ≤ t ≤ φ(x), and ψ(I(x)) ≤ ψ(x)

if x ∈M .
(e) there is a δ > 0 such that if x ∈ B(A, δ) \ A, then ψ(π̃(x, t)) → 0 as

t→ +∞.
Then A is asymptotically π̃-stable.

(2) Reciprocally, if A is asymptotically π̃-stable, then there is a functional ψ :
X → R+ satisfying conditions (a), (b), (c) , (d) and (e) above.

Proof. (1) By Theorem 3.12, A is uniformly π̃-stable, and by Theorem 3.4 A is
orbitally π̃-stable. The condition e) says that B(A, δ) ⊂ P̃+

W (A), then A is a weak
π̃−attractor. Hence, A is asymptotically π̃-stable.

(2) Clearly the functional ψ given by

ψ(x) =

supk≥0

(
sup0≤t≤φ(x+

k )
ρ(π(x+

k ,t),A)

1+ρ(π(x+
k ,t),A)

)
, if x ∈ X \M,

ψ(I(x)), if x ∈M,

where x+
0 = x, satisfies the conditions of the theorem. �

Corollary 3.15. Let (X,π;M, I) be an impulsive semidynamical system, X be
locally compact, A ⊂ X be compact and M ⊂ A. Then, A is asymptotically π̃-
stable if and only if there exists a functional ψ : X → R+, with the following
properties:

(a) ψ is continuous.
(b) for every ε > 0, there is a δ > 0 such that ψ(x) ≤ ε wherever ρ(x,A) ≤ δ.
(c) for every ε > 0, there is a δ > 0 such that ψ(x) ≥ δ whenever ρ(x,A) ≥ ε.
(d) ψ(π(x, t)) ≤ ψ(x) if x ∈ X \M and t ≥ 0, and, ψ(I(x)) ≤ ψ(x) if x ∈M .
(e) there is a δ > 0 such that if x ∈ B(A, δ) \ A, then ψ(π̃(x, t)) → 0 as

t→ +∞.

3.3. Examples. We apply the results above to two examples presented in [8].

Example 3.16. Let X = {(x, y) ∈ R2 : 1 ≤ x2 + y2 ≤ 4}. Consider the planar
dynamical system

ẋ = −y,
ẏ = x.

Let A1 = {(x, y) ∈ R2 : x2 + y2 = 1}, A2 = {(x, y) ∈ R2 : x2 + y2 = 4} and
A = A1 ∪ A2. Set M = {(x, y) ∈ R2 : x = 0,−2 ≤ y ≤ −1} and consider the
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impulsive function I given by I((0, y)) = (0, y+3) for y ∈ [−2,−1]. Now define the
function

ψ(x, y) =



0, if
√
x2 + y2 = 1,√

x2+y2−1√
x2+y2

, if 1 <
√
x2 + y2 ≤ 3

2 ,

2−
√

x2+y2

3−
√

x2+y2
, if 3

2 <
√
x2 + y2 < 2,

0, if
√
x2 + y2 = 2.

Let us show that the set A is π̃-stable. In order to do this, we are going to show
that the three conditions of item (1) from Theorem 3.7 are satisfied. In fact:

(a) ψ is continuous in X and in particular in X \ (M \A).
(b) Given ε > 0, let (x, y) ∈ X be such that ρ((x, y), A) ≥ ε and (x, y) /∈ M .

Taking δ = ε
1+ε , we have two cases to consider:

• If ρ((x, y), A) ≥ ε and 1 <
√
x2 + y2 ≤ 3

2 , then√
x2 + y2 − 1√
x2 + y2

≥ ε

1 + ε
= δ.

• If ρ((x, y), A) ≥ ε and 3
2 <

√
x2 + y2 < 2, then

2−
√
x2 + y2

3−
√
x2 + y2

≥ ε

1 + ε
= δ.

Therefore, given ε > 0 there is a δ > 0 such that ψ(x, y) ≥ δ whenever ρ((x, y), A) ≥
ε and (x, y) /∈M . On the other hand, for any sequence {(wn, kn)}n≥1 ⊂ X such that
(wn, yn) n→+∞→ (x, y) ∈ A, we have ψ((wn, kn)) n→+∞→ 0, because w2

n + k2
n

n→+∞→ 1
if (x, y) ∈ A1 and w2

n + k2
n

n→+∞→ 4 if (x, y) ∈ A2.
(c) If 1 <

√
x2 + y2 ≤ 3

2 , we have

ψ̇(x, y) =
−xy

(x2 + y2)
√
x2 + y2

+
xy

(x2 + y2)
√
x2 + y2

= 0

and if 3
2 <

√
x2 + y2 < 2,

ψ̇(x, y) =
xy

(x2 + y2)[3−
√
x2 + y2]2

+
−xy

(x2 + y2)[3−
√
x2 + y2]2

= 0.

Therefore, ψ̇(x, y) = 0 for all (x, y) ∈ X. Then ψ(π((x, y), t)) = ψ((x, y)) if (x, y) ∈
X \M and 0 ≤ t ≤ φ((x, y)). Furthermore, ψ(I(x, y)) = ψ(x, y) if (x, y) ∈ M . By
Theorem 3.7, A is π̃-stable.

Example 3.17. Consider the space X = R2 × {0, 1} and the dynamical system

ẋ = −x,
ẏ = −y, (3.8)

on R2×{0} and R2×{1}, independently. Now let M0 = {(x, y, z) ∈ R3 : x2 + y2 =
1, z = 0}, M1 = {(x, y, z) ∈ R3 : x2+y2 = 1/4, z = 1} andM = M0∪M1. We define
I(x, y, 0) = (x, y, 1) for (x, y, 0) ∈ M0 and I(x, y, 1) = (x, y, 0) for (x, y, 1) ∈ M1.
Take A0 = {(x, y) ∈ R2 : x2 +y2 ≤ 1}×{0}, A1 = {(x, y) ∈ R2 : x2 +y2 ≤ 1}×{1}
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and A = A0 ∪ A1. We claim that the set A is π̃−asymptotically stable. In fact.
Consider the function

ψ(x, y, z) =


√

x2+y2−1√
x2+y2

, if
√
x2 + y2 > 1 and z ∈ {0, 1},

0, if
√
x2 + y2 ≤ 1 and z ∈ {0, 1}.

We are going to use Corollary 3.15 to prove it, because M ⊂ A. Let us start by
verifying the five conditions of Corollary 3.15:

(a) It is easy to see that the function ψ is continuous on X.
(b) Given ε > 0, ε < 1, if ρ((x, y, 0), A0) < ε

1−ε then√
x2 + y2 − 1 ≤ ε

1− ε
⇒ 1− 1√

x2 + y2
≤ ε.

Thus, ψ(x, y, 0) < ε. Analogously, if ρ((x, y, 1), A1) < ε
1−ε then ψ(x, y, 1) < ε.

Hence, given ε > 0, there is δ > 0 such that ψ(x, y, z) ≤ ε whenever ρ((x, y, z), A) ≤
δ.

(c) Given ε > 0, there is a δ = ε
1+ε such that

ψ(x, y, z) ≥ ε

1 + ε
:= δ,

whenever ρ((x, y, z), A) ≥ ε.
(d) Consider the two flows ϕ1((x0, y0, 0), t) = (x(x0, t), y(y0, t), 0) and

ϕ2((x0, y0, 1), t) = (x(x0, t), y(y0, t), 1) such that (x(t), y(t)) = (x(x0, t), y(y0, t))
satisfies system (3.8) and (x(0), y(0)) = (x0, y0). Let z0 = (x0, y0, 0) and w0 =
(x0, y0, 1).

If
√
x2 + y2 > 1, we have

ψ̇(ϕ1(z0, t)) =
∂ψ

∂x
ẋ(x0, t) +

∂ψ

∂y
ẏ(y0, t) +

∂ψ

∂z
ż(z0, t) = − 1√

x2(x0, t) + y2(y0, t)
< 0

and

ψ̇(ϕ2(w0, t)) = − x2(x0, t) + y2(y0, t)√
x2(x0, t) + y2(y0, t)

[
1
2 +

√
x2(x0, t) + y2(y0, t)

]2 < 0,

for 0 ≤ t < φ(z0). Hence, ψ̇(ϕ1(z0, t)) ≤ 0 and ψ̇(ϕ2(w0, t)) ≤ 0 whenever (x0, y0) ∈
R2 and t ≥ 0. Then, ψ(ϕ1(z0, t)) ≤ ψ(z0) and ψ(ϕ2(w0, t)) ≤ ψ(w0) whenever
(x0, y0) ∈ R2 and t ≥ 0.

Since ψ(x, y, z) = 0 for each (x, y, z) ∈ A and I(x, y, z) ⊂ A for (x, y, z) ∈M , we
have ψ(I(x, y, z)) = ψ(x, y, z) = 0 if (x, y, z) ∈M .

(e) Let ϕ1 and ϕ2 be flows in R2×{0} and R2×{1} respectively. Now, consider
π̃ an impulsive flow in X obtained from ϕ1 and ϕ2. By Corollary 3.8, A is π̃-stable
and by Theorem 3.5, A is uniformly π̃-stable. Then, given ε > 0, there is a δ > 0
such that

π̃(B(A, δ)) ⊂ B(A, ε).

Let (x0, y0, 0) ∈ B(A1, δ) \A1. Since

d

dt
ψ(ϕ1((x0, y0, 0), t)) ≤ 0

for t ≥ 0, the limit limt→+∞ ψ(ϕ1((x0, y0, 0), t)) exists.
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Suppose limt→+∞ ψ(ϕ1((x0, y0, 0), t)) := ` > 0. Define K = {(x, y, z) ∈ R2 ×
{0} : ρ((x, y, z), A1) ≤ ε and ψ(x, y, z) ≥ `}. It is clear that K is compact. Note
ϕ1((x0, y0, 0), t) ∈ K for all t ≥ 0. Now, define

η := min{−ψ̇(w) : w ∈ K}.
Since A is not contained in K, then η > 0. Thus

−ψ̇(ϕ1((x0, y0, 0), t)) ≥ η

for all t ≥ 0. Then, integrating the inequality above from 0 to t, we have

ψ(ϕ1((x0, y0, 0), t)) ≤ ψ(x0, y0, 0)− ηt,

for all t ≥ 0, which is a contradiction since ψ is positive. Therefore, ` = 0.
If (x0, y0, 0) ∈ B(A2, δ) \ A2, the result follows analogously. By Corollary 3.15,

A is π̃-asymptotically stable.
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