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CONTROLLABILITY OF URYSOHN INTEGRAL INCLUSIONS
OF VOLTERRA TYPE

THOMAS S. ANGELL, RAJU K. GEORGE, JAITA PANKAJ SHARMA

Abstract. The aim of this paper is to study the controllability of a system

described by an integral inclusion of Urysohn type with delay. In our approach

we reduce the controllability problem of the nonlinear system into solvability
problem of another integral inclusion. The solvability of this integral inclusion

is subsequently established by imposing suitable standard boundedness, con-

vexity and semicontinuity conditions on the set-valued mapping defining the
integral inclusion, and by employing Bohnenblust-Karlin extension of Kaku-

tani’s fixed point theorem for set-valued mappings.

1. Introduction

In recent years a number of papers appeared in the literature concerning integral
inclusions, in particular inclusions of Hammerstein type and Urysohn type; see
Rangimchannov [15], Gaidarov [8], Angel [1]. This type of inclusions have been
used to model many thermostatic devices; see Glashoff and Sperckels [9], [10].
Here we consider the nonlinear control system described by the following Urysohn
integral inclusion on the time interval [0, T ], T > 0

x(t) ∈ (Hx)(t) +
∫ t

0

g(t, s, xs)F (s, xs)ds+
∫ t

0

K(t, s)u(s)ds. (1.1)

where, for each t ∈ [0, T ] the state x(t) is in Rn and the control u(t) ∈ Rm.
For any given real number 0 < r < T and for any function x ∈ C([−r, T ]; Rn) and

s ∈ [0, T ], we define an element xs ∈ C([−r, 0]; Rn) by xs(θ) = x(s+ θ), r ≤ θ ≤ 0.
The initial conditions are

x(θ) = φ(θ),−r ≤ θ ≤ 0, (1.2)

for a fixed, φ ∈ C[−r, 0]. H : L∞([−r, T ]; Rn) → C([0, T ]; Rn) is the Urysohn
operator defined by

(Hx)(t) = φ(0) +
∫ T

0

h(t, s, xs)ds

where, h : [0, T ]× [0, T ]×L∞([−r, 0]; Rn) → Rn is a nonlinear function, g : [0, T ]×
[0, T ] × L∞([−r, 0]; Rn) → Mn×n is also a nonlinear function, where Mn×n is a
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space of n × n matrices. For (t, s) ∈ [0, T ] × [0, T ], K(t,s) is n × n matrix, F :
[0, T ]× L∞([−r, 0]; Rn) → 2R is a set valued mapping.

Chuong [6] studied a general Urysohn inclusion of Volterra type, without delay
and control. The existence for such system was established under much stronger
hypothesis on the set-valued mapping. The existence of the solution of (1.1)–(1.2)
without control was established in Angel [1]. For fixed u the solution of (1.1)–(1.2)
can be defined as follows:

Definition 1.1. A solution of (1.1)-(1.2) is a function x, defined on [−r, T ] with
x(t) = φ(t),−r ≤ t ≤ 0, where φ ∈ C([−r, 0]; Rn) and x(.) ∈ C([0, T ]; Rn) on [0, T ],
satisfying the following integral equation

x(t) = φ(0) +
∫ T

0

h(t, s, xs)ds+
∫ t

0

g(t, s, xs)v(s)ds+
∫ t

0

K(t, s)u(s)ds

for any selection v ∈ L1([0, T ]; Rn) satisfying the inclusion v(t) ∈ F (t, xt) almost
everywhere on [0, T ].

We now define controllability for (1.1)-(1.2), Rusel [16].

Definition 1.2. System (1.1)-(1.2) is said to be controllable on [0, T ] if for any
pair of vectors x0, x1 ∈ Rn, there exists a control u ∈ L2([0, T ]; Rn) such that the
solution of (1.1)–(1.2) together with x(0) = φ(0) = x0 also satisfies x(T ) = x1.

To ensure the existence of solution for (1.1)-(1.2) the following conditions on
h, g,K, F are assumed.

(H) The function h : [0, T ]×[0, T ]×L∞([−r, 0]; Rn) → Rn satisfies the following
conditions:
(a) for each (t, s) ∈ [0, T ]× [0, T ], the map φ→ h(t, s, φ) is continuous,
(b) for almost all t ∈ [0, T ],∫ T

0

sup
φ∈L∞

|h(t, s, φ)|ds <∞,

(c)

lim
t′→t′′

∫ T

0

sup
φ∈L∞

|h(t′, s, φ)− h(t′′, s, φ)|ds = 0,

(d) h(0, ·, ·) = 0.
(G) The function g : [0, T ] × [0, T ] × L∞([−r, 0]; Rn) → Mn×n satisfies the

following conditions:
(a) g is bounded,
(b) for each (t, s) ∈ [0, T ]× [0, T ], the map φ→ g(t, s, φ) is continuous,
(c) for each t′′ ∈ [0, T ] and almost every s ∈ [0, T ]

lim
t′→t′′

[ sup
φ∈L∞

|g(t′, s, φ)− g(t′′, s, φ)|] = 0.

(F) For the set-valued mapping F : [0, T ]×L∞([−r, 0]; Rn) → 2Rn

, the following
conditions are assumed:
(a) for all (t, φ) ∈ [0, T ] × L∞([−r, 0]; Rn), F (t, φ) is convex. F is upper

semicontinuous in the sense of Kurotowski (refer [12]) with respect to
φ;
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(b) for any (t, φ) ∈ [0, T ]× L∞([−r, 0]; Rn),

F (t, φ) = ∩δ>0cl ∪ {F (t, φ), ||φ− φ|| ≤ δ}
where φ ∈ L∞([−r, 0]; Rn). Since the intersection of closed set is
closed, so each of F (t, φ) is closed;

(c) there exist a measurable set-valued function P : [0, T ] → E1, a con-
stant M > 0, and for each ε > 0, a function ψε ∈ L1([0, T ]; Rn),
with ψε(t) > 0, such that, for given x ∈ L∞([−r, T ]; Rn) and selection
ξ(t) ∈ F (t, xt), there exists a selection η(t) ∈ P (t), with

(1)
∫ T

0
η(t)dt ≤M

(2) |ξ(t)| ≤ ψε(t) + εη(t)
(K) for each (t, s) ∈ [0, T ]×[0, T ], (t, s) → K(t, s) is continuous with ‖K(t, s)‖ ≤

k(t, s) for k(t, s) ∈ L2([0, T ]× [0, T ])
Here the conditions (H)(a) and (H)(b) are used to establish the complete conti-

nuity of the Urysohn operator (see Krasnoselskii, [14]), and the condition (F)(c) is
used for proving equi - absolute integrability (see Ioffe [6]) condition of the set of
selections.

Here we will use operator theory in the analysis of controllability (Joshi and
George [13]). So some basic definition regarding control operator are as follows:

Definition 1.3. The control operator C : L2([0, t]; Rm) → Rn of (1.1)-(1.2) be
defined by

Cu =
∫ T

0

K(T, τ)u(τ)dτ . (1.3)

Definition 1.4. A bounded linear operator S : Rn → L2([0, t]; Rm) is said to be
steering operator for the associated linear system

x(t) =
∫ t

0

K(t, s)u(s)ds

x(0) = 0
(1.4)

if CS = I, where I is the identity operator on Rn

Definition 1.5. An m × n matrix function P(t) with entries in L2([0, T ]; Rm) is
said to be a steering function for (1.4)on [0,T] if∫ T

0

K(T, s)P (s)ds = I

We note that if the linear system (1.4) is controllable then there exists a steering
function P(t), Russel [16].

2. Controllability and feed-back formulation

For studying the controllability of (1.1)-(1.2), we assume that the corresponding
linear system (1.4) is controllable and let P (t) be a steering function for it. Now
the nonlinear system (1.1)-(1.2) is controllable on [0, T ] if and only if there exists
a control u which steers a given initial state φ(0) of the system to a desired final
state x1. That is, there exists a control function u such that

x1 = x(T ) = φ(0) +
∫ T

0

h(T, s, xs)ds+
∫ T

0

g(T, s, xs)v(s)ds
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+
∫ T

0

K(T, s)u(s)ds, (2.1)

for any selection v ∈ L1([0, T ]; Rn) satisfying the inclusion v(t) ∈ F (t, xt) almost
everywhere on [0, T ].

Let us define a control u(t) by

u(t) = P (t)[x1 − φ(0)−
∫ T

0

h(T, s, xs)ds−
∫ T

0

g(T, s, xs)v(s)ds], (2.2)

where x(.) satisfies the nonlinear system (1.1)-(1.2). Now substituting this control
u(t) into the nonlinear integral equation (1.1)-(1.2), we get

x(t) = φ(0) +
∫ T

0

h(t, s, xs)ds+
∫ t

0

g(t, s, xs)v(s)ds+
∫ t

0

K(t, s)P (s)

×
[
x1 − φ(0)−

∫ T

0

h(T, τ, xτ )dτ −
∫ T

0

g(T, τ, xτ )v(τ)dτ
]
ds.

(2.3)

If this equation is solvable then x(t) satisfies x(0) = φ(0) and x(T ) = x1. This
implies that (1.1)-(1.2) is controllable with a control u given by (2.2). Hence the
controllability of the nonlinear integral inclusion system (1.1)-(1.2) is equivalent to
the solvability of the integral equation (2.3) with suitable selection v(t) ∈ F (t, xt).

3. Solvability of nonlinear integral equation

We apply fixed point theorem for establishing solvability of the nonlinear integral
equation (2.3). We now recast the integral equation (2.3) with a selection v as a
set-valued mapping and apply fixed point theorem for a set-valued mapping. We
introduce two set-valued mappings Φ and Ψ whose domain S is defined by

S = {x ∈ L∞([−r, T ]; Rn) : x|[−r,0] = φ, x|[0,T ] ∈ C([0, T ]; Rn)} (3.1)

The maps Φ : S → L1([0, T ]; Rn) and Ψ : S → S, are defined by

Φ(x) = {v ∈ L1([0, T ]; Rn)|v(t) ∈ F (t, xt), a.e., on[0, T ]}, (3.2)

Ψ(x) =
{
z ∈ S : z(t) = (Hx)(t) +

∫ t

0

g(t, s, xs)v(s)ds

+
∫ t

0

K(t, s)P (s)
[
x1 − φ(0)−

∫ T

0

h(T, τ, xτ )dτ

−
∫ T

0

g(T, τ, xτ )v(τ)dτ
]
ds, z|[−r,0] = φ, v ∈ Φ(x)

} (3.3)

We will use the following Bohnenblust-Karlin extension of KaKutani’s fixed point
theorem for set-valued mappings.

Theorem 3.1 (Bohnenblust-Karlin [3]). Let Σ be a non-empty, closed convex sub-
sets of a Banach space B. If Γ : Σ → 2Σ is such that

(a) Γ(a) is non-empty and convex for each a ∈ Σ,
(b) the graph of Γ, G(Γ) ⊂ Σ× Σ, is closed,
(c) ∪ {Γ(a) : a ∈ Σ} is contained in a sequentially compact set F ∈ B,

then the map Γ has a fixed point, that is, there exists a σ0 ∈ Σ such that
σ0 ∈ Γ(σ0).
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We will apply this theorem to the map Ψ defined on the closed convex set
S ⊂ L∞([−r, T ]; Rn).

In order to apply Theorem 3.1, we need to prove that the set Ψ(S) is rela-
tively sequentially compact. This property in turn, depends on the weak relative
compactness of Φ(S) in L1([0, T ]; Rn).

Theorem 3.2 (Angel [1]). The set Φ(S) defined by the relation (3.2) is an equi-
absolutely integrable set and is weakly compact in L1([0, T ]; Rn).

We have the following theorem on the relative compactness of the set Ψ(s).

Theorem 3.3. Under the hypotheses (H), (G), (F), (K), for each x ∈ S, Ψ(x) is a
non-empty and the set Ψ(S) defined by the relation (3.3) is a relatively sequentially
compact subset of L∞([0, T ]; Rn)

Proof. First we shall show that ψ(S) 6= ∅ for all x ∈ S. For a given x ∈ S we have
φ(x) 6= ∅ (Angel [1]). Hence choosing v ∈ φ(x) we define

y(t) = φ(0) +
∫ T

0

h(t, s, xs)ds+
∫ t

0

g(t, s, xs)v(s)ds

+
∫ t

0

K(t, s)P (s)
{
x1 − φ(0)−

∫ T

0

h(T, τ, xτ )dτ −
∫ T

0

g(T, τ, xτ )v(τ)dτ
}
ds

For any t′, t′′ ∈ [0, T ], we have

|y(t′)− y(t′′)|

=
∣∣∣ ∫ T

0

(h(t′, s, xs)− h(t′′, s, xs))ds+
( ∫ t′

0

g(t′, s, xs)v(s)ds

−
∫ t′′

0

g(t′′, s, xs)v(s)ds
)

+
{∫ t′

0

K(t′, s)P (s)ds−
∫ t′′

0

K(t′′, s)P (s)ds
}

×
[
x1 − φ(0)−

∫ T

0

h(T, τ, xτ )dτ −
∫ T

0

g(T, τ, xτ )v(τ)dτ
]∣∣∣

≤
∫ T

0

sup
φ∈L∞

|h(t′, s, φ)− h(t′′, s, φ)|ds+
∫ t′

0

|g(t′, s, xs)− g(t′′, s, xs)||v(s)|ds

+
∫ t′′

t′
|g(t′′, s, xs)||v(s)|ds

+
{∫ t′

0

|K(t′, s)−K(t′′, s)||P (s)|ds+
∫ t′′

t′
|K(t′′, s)||P (s)|ds

}
×

{
|x1|+ |φ(0)|+

∫ T

0

|h(T, τ, xτ )|dτ +
∫ T

0

|g(T, τ, xτ )||v(τ)|dτ
}
ds

= I1 + I2 + I3 + I4.

By (H)(c), there exists δ1 > 0 such that

I1 =
∫ T

0

sup
φ∈L∞

|h(t′, s, φ)− h(t′′, s, φ)|ds < ε

5
if |t′ − t′′| < δ1

Using the condition (F)(c) for δ2 > 0

I2 =
∫ t′

0

|g(t′, s, xs)− g(t′′, s, xs)||v(s)|ds
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≤
∫ t′

0

sup
φ∈L∞

|g(t′, s, φ)− g(t′′, s, φ)|ψδ2(s) + δ2η(s)|ds

=
∫ t′

0

sup
φ∈L∞

|g(t′, s, φ)− g(t′′, s, φ)|ψδ1(s)ds

+ δ2

∫ t′

0

sup
φ∈L∞

|g(t′, s, φ)− g(t′′, s, φ)|η(s)ds

= I21 + I22

Since g is a bounded function, taking its bound as Mg and ψδ2 ∈ L1([0, T ]; Rn). We
apply the Lesbesgue dominated convergence theorem. Therefore for a small δ3 > 0,

lim
t′→t′′

∫ t′

0

sup
φ∈L∞

|g(t′, s, φ)− g(t′′, s, φ)|ψδ2(s)ds

=
∫ t′

0

lim
t′→t′′

sup
φ∈L∞

|g(t′, s, φ)− g(t′′, s, φ)|ψδ2(s)ds .

Using (G)(c),

I21 =
∫ t′

0

sup
φ∈L∞

|g(t′, s, φ)− g(t′′, s, φ)|ψδ2(s)ds

≤ ε

5k1

∫ t′

0

ψδ2(s)ds for
∫ t′

0

ψδ2(s)ds = k1 ≤ ∞

≤ ε

5k1
k1

=
ε

5
if |t′ − t′′| ≤ δ3 .

I22 = δ2

∫ t′

0

sup
φ∈L∞

|g(t′, s, φ)− g(t′′, s, φ)|η(s)ds

≤ δ22Mg

∫ t′

0

η(s)ds

≤ δ12MgM

≤ ε

10MgM
2MgM (taking δ1 ≤

ε

10MgM
)

=
ε

5
.

I3 =
∫ t′′

t′
|g(t′′, s, xs)||v(s)|ds

≤ (Mg

∫ t′′

t′
|v(s)|ds)

≤Mg

( ∫ t′′

t′
|v(s)|ds

)1/2( ∫ t′′

t′
ds

)1/2

≤Mg(k1 +M)1/2(t′′ − t′)1/2 for t′′ − t′ ≤ δ4

≤Mg(k1 +M)1/2δ4



EJDE-2010/79 URYSOHN INTEGRAL INCLUSION 7

≤ ε

5
taking δ4 ≤

ε

5Mg(M +K)1/2

The function h satisfies the condition (H), so for any given t ∈ [0, T ], there exists a
finite b = b(t̂) such that∫ T

0

h(t̂, s, xs)ds ≤
∫ T

0

sup
φ∈L∞

|h(t̂, s, φ)ds ≤ b(t̂) .

I4 =
{
|x1|+ |φ(0)|+

∫ T

0

|h(T, τ, xτ )|dτ +
∫ T

0

|g(T, τ, xτ )||v(τ)|dτ
}

×
( ∫ t′

0

|K(t′, s)−K(t′′, s)||P (s)|ds+
∫ t′′

t′
|K(t′′, s)||P (s)|ds

)
≤

{
|x1|+ |φ(0)|+ b(T ) +Mg(M + k1)

}
×

(
P

∫ t′

0

|K(t′, s)−K(t′′, s)|ds+KP

∫ t′′

t′
ds

)
where K and P are bounds of K(t, s) and P (s)

≤ R(Pt′
ε

10PRt′
+KP (t′ − t′′))

≤ R(
ε

10R
+KPδ5) (if |t′ − t′′| ≤ δ5 and taking δ5 ≤

ε

10KPR
)

≤ R(
ε

10R
+KP

ε

10RKP
)

=
ε

5
Thus continuity of y, follows by choosing δ ≤ min(δ1, δ2, δ3, δ4, δ5) and so the piece-
wise continuous function z is defined by

z(t) =

{
WepreferJPGfφ(t) if − r ≤ t ≤ 0
y(t) if 0 ≤ t ≤ T

lies in S. Hence Ψ(x) 6= ∅. Here the elements of Ψ(S) in the interval [0, T ] form
an equicontinuos family. Hence Relative sequential compactness will now follow
from the equiboundedness of Ψ(S), since then any sequence in Ψ(S) say, {zk},
restricted to [0, T ], will have a uniformly convergent subsequence by the Arzela -
Ascoli theorem. Now to show that Ψ(S) is equibounded, let us consider y ∈ Ψ(S)
on [0, T ], for a given t0 ∈ [0, T ],

y(t0) = φ(0) +
∫ T

0

h(t0, s, xs)ds+
∫ t0

0

g(t0, s, xs)v(s)ds+
∫ t0

0

K(t0, s)P (s)

×
{
x1 − φ(0)−

∫ T

0

h(T, τ, xτ )dτ −
∫ T

0

g(T, τ, xτ )v(τ)dτ
}
ds

and

|y(t0)|

≤ |φ(0)|+
∫ T

0

|h(t0, s, xs)|ds+
∫ t0

0

|g(t0, s, xs)||v(s)|ds

+
∫ t0

0

|K(t0, s)||P (s)|
∣∣∣x1 − φ(0)−

∫ T

0

h(T, τ, xτ )dτ −
∫ T

0

g(T, τ, xτ )v(τ)dτ
∣∣∣ds



8 T. S. ANGELL, R. K. GEORGE, J. P. SHARMA EJDE-2010/79

≤ |φ(0)|+
∫ T

0

|h(t0, s, xs)|ds+Mg(M + k1)

+ (KPt0)
{
|x1|+ |φ(0)|+

∫ T

0

|h(T, τ, xτ )|dτ +Mg(M + k1)
}

≤ |φ(0)|+ b(t0) +Mg(M + k1) + (KPt0)
{
|x1|+ |φ(0)|+ h(T ) +Mg(M + k1)

}
<∞

Hence y is bounded uniformly on [0, T ]. It follows that the set Ψ(S) is relatively
sequentially compact, since the initial function φ is fixed and the restrictions of
elements of S to [0, T ] are continuous. �

Theorem 3.4. The set Ψ(x) is convex for each x ∈ S.

Proof. Let y(1), y(2) ∈ Ψ(x). Then there exists v(i)(t) ∈ F (t, xt), i = 1, 2, such that

y(i)(t)

= φ(0) +
∫ T

0

h(t, s, xs)ds+
∫ t

0

g(t, s, xs)v(i)(s)ds

+
∫ t

0

K(s, t)P (s)
[
x1 − φ(0)−

∫ T

0

h(T, τ, xτ )dτ −
∫ T

0

g(T, τ, xτ )v(i)(τ)dτ
]
ds.

Thus, for 0 < λ < 1,

λy(1)(t) + (1− λ)y(2)(t)

= φ(0) +
∫ T

0

h(t, s, xs)ds+
∫ t

0

g(t, s, xs)(λv(1)(s) + (1− λ)v(2)(s))ds

+
∫ t

0

K(s, t)P (s)
{
x1 − φ(0)−

∫ T

0

h(T, τ, xτ )dτ

−
∫ T

0

g(T, τ, xτ )(λv(1)(τ) + (1− λ)v(2)(τ))dτ
}
ds.

By the convexity of F (t, xt) we have (λv(1)(t) + (1 − λ)v(2)(t)) ∈ F (t, xt). And
hence Ψ(x) is convex. �

Now we prove that G(Ψ) is closed. For proving this, we use the following theo-
rems, which were used in [2] and modified by Cesari [4].

Theorem 3.5. Let I = [0, T ], consider the set-valued mapping F : I ×L∞ → 2En

,
and assume that F satisfies the conditions (F)(a) and (F)(b) with respect to φ. Let
ξ, ξk, x, xk be functions measurable on I, x, xk bounded, and let ξ, ξk ∈ L1(I; Rn).
Then if ξk(t) ∈ F (t, xt) a.e. in I and ξk → ξ weakly in L1(I; Rn), while x → xk

uniformly on I, then ξ(t) ∈ F (t, xt) in I.

We now use Theorem 3.5 to show that the graph of the map Ψ, defined by the
relation (3.3), has a closed graph.

Theorem 3.6. Under the assumption (H), (G), (F), (K) the map Ψ : S → 2S has
a closed graph. That is, {(x, y) ∈ S × S : y ∈ Ψ(x)}is closed.
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Proof. Let {xk, yk} be a sequence of functions such that yk ∈ Ψ(xk) which converges
to a limit point (x, y) of G(Ψ). Thus, xk → x and yk → y uniformly on [0, T ]. By
definition of Ψ there exists a sequence vk, with vk ∈ Φ(xk), such that

yk(t) = φ(0) +
∫ T

0

h(t, s, xks
)ds+

∫ t

0

g(t, s, xks
)vk(s)ds

+
∫ t

0

K(t, s)P (s)
[
x1 − φ(0)−

∫ T

0

h(T, τ, xkτ
)dτ

−
∫ T

0

g(T, τ, xkτ
)vk(τ)dτ

]
ds

Without loss of generality we may assume that vk → v weakly in L1([0, T ]; Rn) and
v(s) ∈ F (s, xs). We wish to show y satisfies the equation

y(t) = φ(0) +
∫ T

0

h(t, s, xs)ds+
∫ t

0

g(t, s, xs)v(s)ds

+
∫ t

0

K(t, s)P (s)
[
x1 − φ(0)−

∫ T

0

h(T, τ, xτ )dτ −
∫ T

0

g(T, τ, xτ )v(τ)dτ
]
ds

Now considering that∣∣∣y(t)− φ(0)−
∫ T

0

h(t, s, xs)ds−
∫ t

0

g(t, s, xs)v(s)ds

−
∫ t

0

K(t, s)P (s)
[
x1 − φ(0)−

∫ T

0

h(T, τ, xτ )dτ −
∫ T

0

g(T, τ, xτ )v(τ)dτ
]
ds

∣∣∣
=

∣∣∣y(t)− yk(t) + yk(t)− φ(0)−
∫ T

0

h(t, s, xs)ds−
∫ t

0

g(t, s, xs)v(s)ds

−
∫ t

0

K(t, s)P (s)
[
x1 − φ(0)−

∫ T

0

h(T, τ, xτ )dτ −
∫ T

0

g(T, τ, xτ )v(τ)dτ
]
ds

∣∣∣
=

∣∣∣y(t)− yk(t) + φ(0) +
∫ T

0

h(t, s, xks
)ds+

∫ t

0

g(t, s, xks
)vk(s)ds

+
∫ t

0

K(t, s)P (s)
[
x1 − φ(0)−

∫ T

0

h(T, τ, xkτ
)dτ −

∫ T

0

g(T, τ, xkτ
)vk(τ)dτ

]
ds

− φ(0)−
∫ T

0

h(t, s, xs)ds−
∫ t

0

g(t, s, xs)v(s)ds

−
∫ t

0

K(t, s)P (s)
[
x1 − φ(0)−

∫ T

0

h(T, τ, xτ )dτ −
∫ T

0

g(T, τ, xτ )v(τ)dτ
]
ds

∣∣∣
≤ |y(t)− yk(t)|+

∫ T

0

|h(t, s, xks
)− h(t, s, xs)|ds

+
∫ t

0

|g(t, s, xks)vk(s)− g(t, s, xs)v(s)|ds+
∫ t

0

∣∣∣K(t, s)P (s)

×
[ ∫ T

0

(h(T, τ, xτ )− h(T, τ, xkτ ))dτ

+
∫ T

0

g(T, τ, xτ )v(τ)− g(T, τ, xkτ )vk(τ)dτ
]
ds

∣∣∣
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≤ |y(t)− yk(t)|+
∫ T

0

|h(t, s, xks)− h(t, s, xs)|ds+
∫ t

0

|g(t, s, xs)||vk(s)− v(s)|ds

+
∫ t

0

|g(t, s, xks)− g(t, s, xs)||vk(s)|ds+
∫ t

0

∣∣K(t, s)P (s)|

×
∣∣∣ ∫ T

0

(h(T, τ, xτ )− h(T, τ, xkτ
))dτ

+
∫ T

0

g(T, τ, xτ )v(τ)− g(T, τ, xkτ
)vk(τ)dτ

∣∣∣ds
Here we need to show that the relation holds pointwise so for a fixed t0 we consider
each term separately.

|y(t0)− yk(t0)| ≤
ε

5
since yk → y uniformly.

From (H) each element of the sequence of functions s→ |h(t0, s, xk)| k=1,2,. . . is
bounded above by the integrable function s → sup |h(t0), s, φ|. Since xk → x
uniformly we have from (H) that h(t0, s, xks

) → h(t0, s, xs) pointwise a.e. in [0, T ]
and so

lim
k→∞

∫ T

0

h(t0, s, xks
)ds =

∫ T

0

h(t0, s, xs)ds .

Also, ∫ t0

0

|g(t, s, xs)||vk(s)− v(s)|ds ≤ ε

5

Applying Egorov’s theorem and condition (G),∫ t0

0

|g(t0, s, xks)− g(t0, s, xs)||vk(s)|ds

can be made less than ε/5
Using the continuity and boundedness of K,P and the conditions (H),(G) and

(F) for the following terms, we obtain∫ t

0

|K(t, s)P (s)|
∣∣∣ ∫ T

0

(h(T, τ, xτ )− h(T, τ, xkτ
))dτ

+
∫ T

0

g(T, τ, xτ )v(τ)− g(T, τ, xkτ
)vk(τ)dτ

∣∣∣ds ≤ ε

5

Hence for a given ε > 0,

|y(t)− φ(0)−
∫ T

0

h(t, s, xs)ds+
∫ t

0

g(t, s, xs)v(s)ds

−
∫ t

0

K(t, s)P (s)
[
x1 − φ(0)−

∫ T

0

h(T, τ, xτ )dτ −
∫ T

0

g(T, τ, xτ )v(τ)dτ
]
ds| ≤ ε

Hence, (x, y) ∈ G and the graph of Ψ is closed. �

With this theorem all of the hypothesis of the fixed point theorem are satisfied.
And now we consider the main controllability theorem.
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4. The Main Result

Theorem 4.1. Under assumption (H)(b), the nonlinear system described by the
integral inclusion (2.1) is controllable.

Proof. We have proved in Theorem 3.2, Theorem 3.3, Theorem 3.4 and Theorem 3.6
that under the assumptions (H)(b) the map ψ : S → 2S satisfies all the hypotheses
of the Bohnenblust-Karlin extension of KaKutani’s fixed point theorem. Hence Ψ
has a fixed point in S. Let x ∈ S be the fixed point of the mapping ψ defined by
the relation (3.3) that is x ∈ ψ(x). Therefore, for a selection v ∈ φ(x) such that
v(t) ∈ F (t, xt) a.e, we have

x(t)

= φ(0) +
∫ T

0

h(t, s, xs)ds+
∫ t

0

g(t, s, xs)v(s)ds

+
∫ t

0

K(s, t)B(s)P (s)
[
x1 − φ(0)−

∫ T

0

h(T, τ, xτ )dτ −
∫ T

0

g(T, τ, xτ )v(τ)dτ
]
ds.

Obviously x(0) = x0 and x(T ) = x1. Hence the system is controllable. �

We conclude this section with an example similar to one presented by Angel [1],
which illustrate our result.

Example 4.2. Let us consider the integral inclusion

x(t) ∈
∫ 1

0

[
sin(s2) sin(t2)
3 + arctanx(s)

+
cos(sx(s))
3
√

1 + t
F (s, x(s))]ds+

∫ t

0

et−su(s)ds

where r = 0, m = n = 1, and F : [0, T ]×R→ 2R is the set-valued map defined by

F (t, x) =


u with |u| ≤ t+ |x| if t 6= 0 and − 1− 1√

t
≤ x ≤ 1 + 1√

t
, ,

u with |u| ≤ |x|, if t = 0,
0 otherwise.

Here F has a closed graph and convex values, also the growth condition (F)(c)
is satisfied for the set-valued map F , since any selection ξ(t) ∈ F (t, x(t)) satisfies

|ξ(t)| ≤ t+ |x(t)| ≤ t+ 1 +
1√
(t)

it follows that F (t, x(t) is integrably bounded. Now

h(t, s, x) =
sin(s2) sin(t2)
3 + arctanx(s)

satisfies |h(t, s, x)| ≤ 1 and h(0, ·, ·) = 0 while

g(t, s, x) =
cos(sx(s))
3
√

1 + t

is bounded. Also h, g and K(t, s) = et−s satisfy the conditions (H), (G) and (K).
Since the linear system is obviously controllable, applying Theorem 4.1 we have the
above integral inclusion is controllable.
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