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OSCILLATION OF HIGHER-ORDER LINEAR DIFFERENTIAL
EQUATIONS WITH ENTIRE COEFFICIENTS

ZHI GANG HUANG, GUI RONG SUN

Abstract. This article is devoted to studying the solutions to the differential
equation

f (k) + Ak−1(z)f (k−1) + · · ·+ A0(z)f = 0, k ≥ 2,

where coefficients Aj(z) are entire functions of integer order. We obtain esti-

mates on the orders and the hyper orders of the solutions to the above equation.

1. Introduction and main results

In this note, we apply standard notation of the Nevanlinna theory, see [6]. Let
f(z) be a nonconstant meromorphic function. As usual, σ(f) denote the order. In
addition, we use the notation σ2(f) to denote the hyper-order of f(z),

σ2(f) = lim sup
r→∞

log log T (r, f)
log r

.

Chen [1] studied this differential equation when all the coefficients are of order 1.

Theorem 1.1. Let a, b be nonzero complex numbers and a 6= b, Q(z) be a non-
constant polynomial or Q(z) = h(z)ebz where h(z) is nonzero polynomial. Then
every solution f(6≡ 0) of the equation

f ′′ + eazf ′ +Q(z)f = 0 (1.1)

is of infinite order.

Later on, Li and Huang[7], Chen and Shon[2] extended this result to the equation

f (k) +Ak−1f
(k−1) + · · ·+A0f = 0, k ≥ 2. (1.2)

Chen and Shon[2] obtained the following result.

Theorem 1.2. Let Aj(z) = Bj(z)ePj(z)(0 ≤ j ≤ k − 1), where Bj(z) are entire
functions with σ(Bj) < 1 and Pj(z) = ajz with aj are complex numbers. Suppose
that there exists as such that Bs 6≡ 0, and for j 6= s, if Bj 6≡ 0, aj = cjas,
0 < cj < 1; If Bj ≡ 0, we define cj = 0. Then every transcendental solution f of
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the (1.2) satisfies σ(f) = ∞. Furthermore, if max{c1, . . . , cs−1} < c0, then every
solution f(6≡ 0) of (1) is of infinite order.

Theorem 1.3. Let Pj be polynomials, s and Aj,aj , Bj satisfy the other additional
hypotheses of Theorem 1.2. Then every transcendental solution f of the (1.2) satis-
fies σ(f) = ∞ and σ2(f) = 1. Furthermore, if max{c1, . . . , cs−1} < c0, then every
solution f(6≡ 0) of (1.2) is of infinite order and σ2(f) = 1.

The aim of this paper is to improve Theorems 1.2 and 1.3.

Theorem 1.4. Let Aj(z) = Bj(z)ePj(z) (j = 0, 1, . . . , k − 1), where Bj(z) are
entire functions, Pj(z) are non-constant polynomials with deg(Pj(z) − Pi(z)) ≥ 1
and max{σ(Bj), σ(Bi)} < deg(Pi −Pj)(i 6= j). Then every transcendental solution
f of (1.2) satisfies σ(f) = ∞.

Theorem 1.5. Let Pj(z) = aj,nz
n+ aj,n−1z

n−1 + · · ·+ aj,0(0 ≤ j ≤ k− 1) be non-
constant polynomials, where aj,n 6= 0 and deg(Pj(z)−Pi(z)) = n, and let Qj(z) and
Bj(z)(0 ≤ j ≤ k−1) be entire functions with max{σ(Bj), σ(Qj), 0 ≤ j ≤ k−1} < n.
Set Aj(z) = Bj(z)ePj(z) +Qj(z). Suppose that one of the following occurs:

(1) There exist t, s ∈ {0, 1, . . . , k − 1}, such that at,n

as,n
< 0;

(2) arg a0,n 6= arg a1,n and aj,n = cja1,n(cj > 0, j = 2, 3, . . . , k − 1).
Then every transcendental solution f of (1.2) satisfies σ(f) = ∞.

Theorem 1.6. Let Aj = Pj(eR(z)) + Qj(e−R(z)) for j = 1, 2, . . . , k − 1 where
Pj(z), Qj(z) and R(z) = csz

s+ · · ·+ c1z+ c0(s(≥ 1) is an integer) are polynomials.
Suppose that P0(z) + Q0(z) 6≡ 0 and there exists d(0 ≤ d ≤ k − 1), such that for
j 6= d, degPd > degPj and degQd > degQj. Then every solution f(z) of (1.2) is
of infinite order and satisfies σ2(f) = s.

We remark that many authors have studied the order and the hyper order of
solutions of (1.2). But, they always require that there exists some coefficient Aj
(j ∈ {0, 1, . . . , k − 1}) such that the order of Aj is greater than the order of other
coefficients. We note that our theorems do not need the hypothesis. Our hypothesis
of Theorem 1.6 are partly motivated by [3].

2. Preliminary lemmas

Assume that R(z) = csz
s + · · · + c1z + c0(s(≥ 1) is a polynomial. Below, for

θ ∈ [0, 2π), we denote δj(R, θ) = Re(cj(eiθ)j) for j ∈ {1, 2, . . . , s}. Especially, we
write δ(R, θ) = δs(R, θ).

For j ∈ {0, 1, . . . , k − 1}, let

Pj(eR(z)) = ajmj
emjR(z) + aj(mj−1)e

(mj−1)R(z) + · · ·+ aj1e
R(z) + aj0

and

Qj(e−R(z)) = bjtje
−tjR(z) + bj(tj−1)e

−(tj−1)R(z) + · · ·+ bj1e
−R(z) + bj0,

where ajmj
, . . . , aj0 and bjtj , . . . , bj0 are constants, mj ≥ 0 and tj ≥ 0 are integers,

ajmj
6= 0, bjtj 6= 0. So we have

|Pj(eR(z)) +Qj(e−R(z))|

=

{
|ajmj

|emjr
sδ(R,θ)(1 + o(1)), arg z = θ, δ(R, θ) > 0, r →∞,

|bjtj |e−tjr
sδ(R,θ)(1 + o(1)), arg z = θ, δ(R, θ) < 0, r →∞;

(2.1)
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To prove our results, some lemmas are needed.

Lemma 2.1. Let f(z) be a transcendental meromorphic function with σ(f) = σ <
∞. Let Γ = {(k1, j1), . . . , (km, jm)} be a finite set of distinct pairs of integers
satisfying ki > ji ≥ 0 for i = 1, 2, . . . ,m. Also let ε > 0 be a given constant.
Then, there exists a set E1 ⊂ [0, 2π) that has linear measure zero, such that if
ψ0 ∈ [0, 2π) \ E1, then there is a constant R0 = R0(ψ0) > 1 such that for all z
satisfying arg z = ψ0 and |z| ≥ R0, and for all (k, j) ∈ Γ, we have

|w(k)(z)|
|w(j)(z)|

≤ |z|(k−j)(σ−1+ε).

The above lemma is [5, Corollary 1]. We also need the following lemma given in
Chen [2].

Lemma 2.2. Suppose that P (z) is a non-constant polynomial, w(z) is a meromor-
phic function with σ(w) < degP (z) = n. Let g(z) = w(z)eP (z), then there exists a
set H1 ⊂ [0, 2π) that has linear measure zero, such that for θ ∈ [0, 2π) \ (H1 ∪H2)
and arbitrary constant ε(0 < ε < 1), when r > r0(θ, ε), we have

(1) if δ(P, θ) < 0, then exp((1+ε)δ(P, θ)rn) ≤ |g(reiθ)| ≤ exp((1−ε)δ(P, θ)rn),
(2) if δ(P, θ) > 0, then exp((1−ε)δ(P, θ)rn) ≤ |g(reiθ)| ≤ exp((1+ε)δ(P, θ)rn),

where H2 = {θ : δ(P, θ) = 0, 0 ≤ θ < 2π} is a finite set.

We shall use a special version of Phragmén-Lindelöf-type theorem to prove our
results. We refer to Titchmarsh [8, p.177].

Lemma 2.3. Let f(z) be an analytic function of z = reiθ, regular in the region
D between two straight lines making an angle π

β−α at the origin and on the lines
themselves. Suppose that |f(z)| ≤ M on the lines, and for any given ε > 0, as

r → ∞, |f(z)| < O(eεr
π

β−α ), uniformly in the angle. Then actually the inequality
|f(z)| ≤M holds throughout the region D.

Lemma 2.4. Let n ≥ 2 and Aj(z) = Bj(z)ePj(z)(1 ≤ j ≤ n) where each Bj(z) is an
entire function , and Pj(z) is a non-constant polynomial. Suppose that deg(Pj(z)−
Pi(z)) ≥ 1, max{σ(Bj), σ(Bi)} < deg(Pi − Pj) for i 6= j. Then there exists a set
H1 ⊂ [0, 2π) that has linear measure zero such that for any given constant M > 0
and z = reiθ, θ ∈ [0, 2π)\(H1∪H2), we have some s = s(θ) ∈ {1, . . . , n}, for j 6= s,

|Aj(reiθ)||z|M

|As(reiθ)|
→ 0, as r →∞,

where H2 = {θ : δ(Pj , θ) = 0 or δ(Pi, θ) = δ(Pj , θ), i, j ∈ {1, 2, . . . , n}, i 6= j, 0 ≤
θ < 2π} is a finite set.

Proof. We use mathematical induction. For n = 2, Lemma 2.4 can be proved by
applying Lemma 2.2 to A1

A2
or A2

A1
.

Assume that Lemma 2.4 holds for n ≤ k − 1. For the case n = k. Take
θ ∈ [0, 2π) \ (H1 ∪ H2), there exists some t = t(θ) ∈ {1, 2, . . . , k − 1}, such that
|Aj(re

iθ)||z|M
|At(reiθ)| → 0 for j ∈ {1, . . . , t − 1, t + 1, . . . k − 1}. Now we compare At(reiθ)

with Ak(reiθ). If δ(Pt − Pk, θ, ) < 0, from Lemma 2.2, deg(Pt − Pk) ≥ 1 and
max{σ(Bt), σ(Bk)} < deg(Pt − Pk), for any given 1 > ε > 0, we have

|At(re
iθ)

Ak(reiθ)
| ≤ e(1−ε)δ(Pt−Pk,θ)r

deg(Pt−Pk)
≤ e(1−ε)δ(Pt−Pk,θ)r,
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thus |At(re
iθ)

Ak(reiθ)
| |zM | → 0 as r →∞. Therefore, for j 6= k,

|Aj(re
iθ)

Ak(reiθ)
||zM | = |Aj(re

iθ)
At(reiθ)

||zM ||At(re
iθ)

Ak(reiθ)
| → 0.

If δ(Pt − Pk, θ) > 0, then δ(Pk − Pt, θ) < 0, by the similar discussion as above, we
have |Ak(reiθ)

At(reiθ)
||zM | → 0 as r →∞. The proof is now complete. �

Observe that (1) For θ ∈ [0, 2π) \ (H1 ∪H2), set v = degPs and δ = δ(Ps, θ) as
in Lemma 2.4. Since for j 6= s, |Aj(re

iθ)||z|M
|As(reiθ)| → 0, as r → ∞. Then if degPj >

v, j 6= s, we have deg(Pt − Ps) = degPt, so δ(Pj , θ) < 0. If degPj = v, j 6= s,

then δ(Pj , θ) < δ. If degPj < v, j 6= t, |Aj(re
iθ)||z|M

|As(reiθ)| → 0 no matter that δ(Pj , θ) is
positive or negative.

(2) From the proof of Lemma 2.4, if there exist a polynomial Pv(z) which is a
constant (v ∈ {1, 2, . . . , n}), then the lemma is also true. In fact, the hypothesis
deg(Pj(z) − Pi(z)) ≥ 1(j 6= i) implies that there is at most one polynomial which
can be a constant.

From the proof of Lemma 2.4, we can easily obtain the following lemma.

Lemma 2.5. Let Pj(z)(1 ≤ j ≤ m) be non-constant polynomial with degree n. Let
Bj(z) and Qj(z)(1 ≤ j ≤ m) be entire functions with max{σ(Bj), σ(Qj), 1 ≤ j ≤
m} < n. Set Aj(z) = Bj(z)ePj(z) + Qj(z). For θ ∈ [0, 2π), suppose that not all
δ(Pj , θ)(1 ≤ j ≤ n) are negative. Then there exists some s = s(θ) ∈ {1, . . . , n}, for
j 6= s, as r →∞,

|Aj(reiθ)||z|M

|As(reiθ)|
→ 0,

where M is a constant.

3. Proof of main results

Proof of Theorem 1.4. Without loss of generality, we can assume that each
Aj 6≡ 0, j ∈ {0, 1, . . . , k − 1}.
Claim: Each transcendental solution f of equation (1.1) is infinite order.

Suppose to the contrary, there exists a transcendental solution f(z) which has
order σ(f) = σ < ∞. By Lemma 2.1, for any given ε0(0 < ε0 < 1), there exists a
set E1 ⊂ [0, 2π) that has linear measure zero, such that if ψ0 ∈ [0, 2π) \ E1, then

|f (j)(z)|
|f (i)(z)|

≤ |z|kσ, i = 0, 1, . . . , k − 1; j = i+ 1, . . . , k (3.1)

as z → ∞ along arg z = ψ0. Denote E2 = {θ ∈ [0, 2π) : δ(Pj , θ) = 0, 0 ≤
j ≤ k} ∪ {θ ∈ [0, 2π) : δ(Pj − Pi, θ) = 0, 0 ≤ j ≤ k, 0 ≤ i ≤ k}, so E2 is a
finite set. Suppose that Hj ⊂ [0, 2π) is the exceptional set applying Lemma 2.2
to Aj(j = 0, 1, . . . , k − 1). Then E3 =

⋃k−1
j=0 Hj has linear measure zero. Take

arg z = ψ0 ∈ [0, 2π) − (E1 ∪ E2 ∪ E3) and write δj = δ(Pj , ψ0). We need to treat
two cases:

Case (i): Not all δ0, δ1,. . . , δk−1 are negative. By Lemma 2.4, there exists some
t ∈ {0, 1, 2, . . . , k − 1} such that for j 6= t, M > 0,

|Aj(re
iψ0)

At(reiψ0)
||zM | → 0, (3.2)
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as r → ∞. Let v = deg(Pt), δ = δ(Pt, ψ0). From the observation, it is obvious
δ > 0. Now we prove |f (t)(z)| is bounded on the ray arg z = ψ0. Suppose that it is
not. Let

M(r, f (t), ψ0) = max{|f (t)(z)| : 0 ≤ |z| ≤ r, arg z = ψ0}.
There exists an infinite sequence of points zn = rne

iψ0 such that

M(rn, f (t), ψ0) = |f (t)(rneiψ0)|, rn →∞.

Take a curve Cn : z = reiψ0 , 0 ≤ r ≤ |zn|, for each n, we have

f (t−1)(zn) = f (t−1)(0) +
∫
C

f (t)(u)du.

And hence
|f (t−1)(zn)| ≤ |f (t−1)(0)|+ |zn| · |f (t)(zn)|

holds, which leads to

|f (t−1)(zn)|
|f (t)(zn)|

≤ (1 + ◦(1))|zn|, zn →∞.

Furthermore,

|f (t−j)(zn)|
|f (t)(zn)|

≤ (1 + ◦(1))|zn|j , j = 1, 2, . . . , t. (3.3)

as zn →∞. Since f (t) 6≡ 0, then by (1.1),

|At(zn)| ≤
|f (k)(zn)|
|f (t)(zn)|

+ · · ·+ |At+1(zn)| ·
|f (t+1)(zn)|
|f (t)(zn)|

+ |At−1(zn)| ·
|f (t−1)(zn)|
|f (t)(zn)|

+ · · ·+ |A0(zn)| ·
|f(zn)|
|f (t)(zn)|

(3.4)

holds as zn →∞. So we obtain

1 ≤ 1
|At(zn)|

(
|f (k)(zn)|
|f (t)(zn)|

+ · · ·+ |At+1(zn)| ·
|f (t+1)(zn)|
|f (t)(zn)|

+ |At−1(zn)| ·
|f (t−1)(zn)|
|f (t)(zn)|

+ · · ·+ |A0(zn)| ·
|f(zn)|
|f (t)(zn)|

).
(3.5)

Since δ > 0, by Lemma 2.2 and (3.2), it is easy to deduce |f(k)(zn)|
|f(t)(zn)||At(zn)| → 0.

Then from (3.2), (3.3) and (3.4), the right hand of (3.5) tends to 0 as zn → ∞,
a contradiction. Thus, |f (t)| is bounded on arg z = ψ0 ∈ [0, 2π) \ (E1 ∪ E2 ∪ E3).
Assume that |f (t)(reiψ0)| ≤ M1(M1 > 0 is a constant). Take a curve C ′ = {z :
arg z = ψ0, 0 ≤ |z| ≤ r}. Since

f (t−1)(z) = f (t−1)(0) +
∫
C′
f (t)(u)du,

for large z = reiψ0 , we have |f (t−1)(z)| ≤ M2|z| (M2 > 0 is a constant). By
induction, we obtain

|f(z)| ≤M3|z|t ≤M4|z|k. (3.6)
(ii) Assume that for any j : 0 ≤ j ≤ k − 1, δ(Pj , ψ0) < 0. By Lemma 2.4, there

exists some s ∈ {0, 1, 2, . . . , k − 1}, for j 6= s, we have

|Aj(re
iψ0)

As(reiψ0)
| → 0
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as r → ∞. Let v = deg(Ps), δ = δ(Ps, ψ0), then δ < 0. From Lemma 2.2, for any
given ε(0 < ε < 1/2),

|Aj(reiψ0)| ≤ |As(reiψ0)| ≤ exp ((1− ε)δrv). (3.7)

Suppose that |f (k)(z)| is unbounded on the ray arg z = ψ0. Let

M(r, f (k), ψ0) = max{|f (k)(z)| : 0 ≤ |z| ≤ r, arg z = ψ0}.
There exists a infinite sequence of points zn = rne

iψ0 such that

M(rn, f (k), ψ0) = |f (k)(rneiψ0)|
holds as rn → ∞. Take a curve Cn : z = reiψ0 , 0 ≤ r ≤ |zn|. Since f (k−1)(zn) =
f (k−1)(0) +

∫
Cn
f (k)(u)du, and on Cn, |f (k)(z)| ≤ |f (k)(zn)|, we have

|f (k−1)(zn)| ≤ |f (k−1)(0)|+ |zn| · |f (k)(zn)|.
It follows that

|f (k−1)(zn)|
|f (k)(zn)|

≤ (1 + ◦(1))|zn|.

So we have
|f (k−j)(zn)|
|f (k)(zn)|

≤ (1 + ◦(1))|zn|j , j = 1, 2, . . . , k. (3.8)

Since f (k) 6≡ 0, by (1.1), (3.7) and (3.8), for sufficiently large n, we have

1 ≤ |Ak−1(zn)|·
|f (k−1)(zn)|
|f (k)(zn)|

+· · ·+|A0(zn)|·
|f(zn)|
|f (k)(zn)|

≤ exp {(1− ε)δ|zn|v}·|zn|M5 ,

(3.9)
where M5 is a positive constant. This is impossible since δ < 0. Then f (k)(z) is
bounded on arg z = ψ0. Assume that |f (k)(reiψ0)| ≤M6(M6 > 0). We take a curve
C ′ = {z : arg z = ψ0, 0 ≤ |z| ≤ r}. Since

f (k−1)(z) = f (k−1)(0) +
∫
C′
f (k)(u)du,

for sufficiently large z = reiψ0 , by induction, we have

|f(z)| ≤M7|z|k (M7 > 0). (3.10)

Combine case (i) and case (ii), for arg z = ψ0 ∈ [0, 2π) \ (E1 ∪ E2 ∪ E3) and
|z| = r ≥ r0(ψ0) > 0, we obtain

|f(z)| ≤M(ψ0)|z|k, (3.11)

where M(ψ0) > 0 is a constant dependent only on ψ0.
On the other hand, we can choose θj ∈ [0, 2π)\(E1∪E2∪E3) (j = 1, 2, . . . , n, n+

1) such that
0 ≤ θ1 < θ2 · · · < θn < 2π, θn+1 = θ1 + 2π

and
max{θj+1 − θj |1 ≤ j ≤ n} < π

σ + 1
.

For any given positive number ε, we have
|f(z)|
|zk|

≤ |f(z)| ≤ exp{εrσ+1}

for sufficiently large r = |z|. From (3.10) and Lemma 2.3, |f(z)|
|zk| ≤ M ′(M ′ is

a positive constant) holds in the sectors {z : θj ≤ argz ≤ θj+1, |z| ≥ r} (j =
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1, 2, . . . , n) for sufficiently large r. Therefore, |f(z)|
|zk| ≤M ′′ holds in the whole plane,

where M ′′ is a positive constant. Thus f(z) is a polynomial. It is a contradiction,
and hence σ(f) = ∞.

Proof of Theorem 1.5. Assume that f(z) ia a transcendental solution of (1.2)
with σ(f) = σ < +∞. Set ω = max{σ(Bj), σ(Qj), 0 ≤ j ≤ k − 1}.

(1) If there exist t, s ∈ {0, 1, . . . , k − 1}, such that at,n

as,n
< 0. By the similar

discussion to Theorem 1.4, we take arg z = ψ0 ∈ [0, 2π)− (E1 ∪E2 ∪E3). So either
δ(Pt, ψ0) > 0 or δ(Ps, ψ0) > 0. Therefore, not all δ0, δ1, . . . , δk−1 are negative. By
Lemma 2.5, we can obtain (3.2). Following the proof of (i) of Theorem 1.4, we can
get (3.6) and (3.10). Then σ(f) = ∞.

(2) By Lemma 2.1, for any given ε0 with 0 < ε0 < min{ 1
2 ,

n−ω
2 }, there exists a

set E4 ⊂ [0, 2π) that has linear measure zero, such that if θ ∈ [0, 2π) \E4, we have

|f (j)(z)|
|f (i)(z)|

≤ |z|kσ, i = 0, 1, . . . , k − 1; j = i+ 1, . . . , k (3.12)

as z →∞ along arg z = θ. For BjePj , suppose that H ′
j ⊂ [0, 2π) is the exceptional

set applying Lemma 2.2 to Bje
Pj (j = 0, 1, . . . , k − 1). Then E5 =

⋃k−1
j=0 Hj has

linear measure zero. Since arg a0,n 6= arg a1,n, it is obvious that there exists a ray
arg z = φ0 ∈ [0, 2π) \ (E4 ∪ E5) such that δ(P0, φ0) > 0 and δ(P1, φ0) < 0. By
Lemma 2.2, for sufficiently large r, we have

|B0(reiφ0)eP0(re
iφ0 ) +Q0(reiφ0)| ≥ exp{(1− ε0)δ(P0, φ0)rn} (3.13)

and

|B1(reiφ0)eP1(re
iφ0 ) +Q1(reiφ0)|

≤ exp{(1− ε0)δ(P1, φ0)rn} exp{rω+ε0}+ exp{rω+ε0}.
(3.14)

So for j = 2, 3, . . . , k − 1, we obtain

|Bj(reiφ0)ePj(re
iφ0 ) +Qj(reiφ0)|

≤ exp{(1− ε0)cjδ(P1, φ0)rn} exp{rω+ε0}+ exp{rω+ε0}.
(3.15)

From (1.2), we have

|A0(reiφ0)|

≤ |f (k)(reiφ0)|
|f(reiφ0)|

+ |Ak−1(reiφ0)| · |f
(k−1)(reiφ0)|
|f(reiφ0)|

+ · · ·+ |A1(reiφ0)| |f
′(reiφ0)|

|f(reiφ0)|
.

(3.16)
Combine (3.12)–(3.16), we have

exp{(1− ε0)δ(P0, φ0)rn}

≤ rkσ + rkσ[(exp{(1− ε0)δ(P1, φ0)rn} exp{rω+ε0}+ exp{rω+ε0})

+ Σk−1
j=2 (exp{(1− ε0)cjδ(P1, φ0)rn} exp{rω+ε0}+ exp{rω+ε0})].

This is impossible, since ω + ε0 < n.
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4. Proof of Theorem 1.6

Lemma 4.1 ([2]). Let f(z) be an entire function with σ(f) = ∞ and σ2(f) =
α < +∞, let a set E ⊂ [1,∞) has finite logarithmic measure. Then there exists a
sequence {zk = rke

iθk} satisfying |f(zk)| = M(rk, f), θk ∈ [0, 2π) , limk→∞ θk =
θ0 ∈ [0, 2π), rk 6∈ E, and for any given ε1 > 0, as rk → ∞, we have the following
properties:

(i) If σ2(f) = α (0 < α <∞), then

exp{rα−ε1k } < v(rk) < exp{rα+ε1
k },

where v(f) is the central index of f .
(ii) If σ(f) = ∞ and σ2(f) = 0, then for any given constant M(> 0),

rMk < v(rk) < exp{rε1k }.

Lemma 4.2 ([2]). Let Aj(0 ≤ j ≤ k−1) be an entire function with σ(Aj) ≤ σ <∞.
Then every non-trivial solution f of (1.2) satisfies σ2(f) ≤ σ.

Proof of Theorem 1.6. Assume that f(z) is a solution of (1.2). Clearly f is entire.
Since P0 + Q0 6≡ 0, f can not be a constant function. Compare with two sides of
(1.2), f can not be a polynomial whose degree is equal or greater than 1.

Step 1: We prove that σ(f) = ∞. If it is not true. Assume σ(f) = σ < +∞.
By Lemma 2.1, for any given ε0(0 < ε0 < 1), there exists a subset E1 ⊂ [0, 2π) that
has linear measure zero such that if ψ0 ∈ [0, 2π) \ E1, there is a constant R0 > 1,
such that for arg z = ψ0 and |z| > R0, we have

|f (j)(z)|
|f (i)(z)|

≤ |z|kσ, i = 0, 1, . . . , k − 1; j = i+ 1, . . . , k. (4.1)

Take a ray arg z = ψ0 ∈ [0, 2π) \ E1, we consider the following two cases:
Case A1: δ(R,ψ0) > 0. We claim that |f (d)(z)| is bounded on the ray arg z =

ψ0. Suppose that it is not. Following the proof of Theorem 1.4, we have

|f (d−j)(zn)|
|f (d)(zn)|

≤ (1 + ◦(1))|zn|j , j = 1, 2, . . . , d, (4.2)

as zn →∞. Since f (d) 6≡ 0, from (1.2),

Ad(z) = (−1)(
f (k)(z)
f (d)(z)

+ · · ·+Ad+1(z) ·
f (d+1)(z)
f (d)(z)

+Ad−1(z) ·
f (d−1)(z)
f (d)(z)

+ · · ·+A0(z) ·
f(z)
f (d)(z)

)

holds, as z →∞. By (4.1) and (4.2), as zn →∞, we obtain

|Pd(eR(zn)) +Qd(e−R(zn))| ≤ rM · Σj 6=d|Pj(eR(zn)) +Qj(e−R(zn))|, (4.3)

where M is a constant. By (3), we obtain

|Pd(eR(zn)) +Qd(e−R(zn))| = |admd
|emdr

sδ(R,θ)(1 + o(1)) (4.4)

and

|Pj(eR(zn)) +Qj(−R(zn))| ≤ |ajmj |emjr
sδ(R,θ)(1 + o(1)) +M1, j 6= d, (4.5)

where M1 is a positive constant. Substituting (4.4) and (4.5) into (4.3), we obtain
a contradiction since md > mj(j 6= d) ≥ 0. Hence, |f (d)(reψ0)| is bounded on the
ray arg z = ψ0. By the similar discussion to Theorem 1.4, we can obtain (3.6).
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Case A2: δ(R,ψ0) < 0. By a similar discussion to subcase A1 and noting that
(4.4) and (4.5) can be substituted by

|Pd(eR(z)) +Qd(e−R(z))| = |bdtd |etdr
sδ(R,ψ0)(1 + o(1)), (4.6)

and

|Pj(eR(z)) +Qj(e−R(z))| ≤ |bjtj |etjr
sδ(R,ψ0)(1 + o(1)) +M2. (4.7)

Thus, we can deduce (3.10).
Combine Case A1 and Case A2, we have (3.11). Following the proof of Theorem

1.4, we can also obtain a contradiction.
Step 2: In this step, we prove σ2(f) = s. By Lemma 4.2, we have

σ2(f) ≤ s. (4.8)

Now we assume that σ2(f) = α < s, we will get a contradiction.
Recall the Wiman-Valiron theory [9], there exists a subset E3 ⊂ (1,∞) that has

finite logarithmic measure, such that for |z| = r 6∈ E3 ∪ [0, 1] and |f(z)| = M(r, f),
we have

f (j)(z)
f(z)

= (
v(r)
z

)j(1 + o(1))(j = 1, 2, . . . , k), (4.9)

where v(r) is central index of f(z).
If σ2(f) = α (0 < α < s), from Lemma 4.1, we can take a sequence of points

{zn = rne
iθn} satisfying |f(zn)| = M(rn, f), θn ∈ [0, 2π), limn→∞θn = θ0 ∈ [0, 2π),

for any given ε1(0 < ε1 < min{α, s− α}) and rn 6∈ E2 ∪ E3 ∪ [0, 1], we obtain

exp{rα−ε1n } < v(rk) < exp{rα+ε1
n }, (4.10)

as rn →∞. If σ2(f) = α = 0, then for any positive constant M , we have

rMn < v(rn) < exp{rε1n }, (4.11)

as rn →∞.
In the following, we consider three cases:
Case B1: δ(R, θ0) > 0. From (1.2), we have

Ad(z)(
f (d)(z)
f(z)

) = (−1)
{f (k)(z)

f(z)
+ · · ·+Ad+1(z) ·

f (d+1)(z)
f(z)

+Ad−1(z) ·
f (d−1)(z)
f(z)

+ · · ·+A0(z)
}
.

(4.12)

For sufficiently large n, δ(R, θn) > 0 since θn → θ0. For the point range {zn =
rne

iθn}, combine (2.1), (4.9) and (4.12), we obtain

|admd
|emdr

s
nδ(R,θn)|1 + o(1)|(v(rn)

rn
)d

≤ (
v(rn)
rn

)k + · · ·+ (
v(rn)
rn

)d+1(|ad+1md+1 |emd+1r
s
nδ(R,θn))|1 + o(1)|

+ (
v(rn)
rn

)d−1(|ad−1md−1 |emd−1r
s
nδ(R,θn)|1 + o(1)|

+ · · ·+ |a0m0 |em0r
s
nδ(R,θn)|1 + o(1)|.
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By (4.10) or (4.11), we obtain

|admd
|emdr

s
nδ(R,θn)|1 + o(1)|(exp(drα−ε1n )

rdn
)

≤ (
exp(krα+ε1

n )
rkn

) + · · ·+ (
exp((d+ 1)rα+ε1

n )
rd+1
n

)(|ad+1md+1 |emd+1r
s
nδ(R,θn))|1 + o(1)|

+ (
exp((d− 1)rα+ε1

n )
rd−1
n

)(|ad−1md−1 |emd−1r
s
nδ(R,θn))|1 + o(1)|

+ · · ·+ |a0m0 |em0r
s
nδ(R,θn)|1 + o(1)|

or

|admd
|emdr

s
nδ(R,θn)|1 + o(1)|(r

M
n

rdn
)

≤ (
exp(krε1n )

rkn
) + · · ·+ (

exp((d+ 1)rε1n )
rd+1
n

)(|ad+1md+1 |emd+1r
s
nδ(R,θn))|1 + o(1)|

+ (
exp((d− 1)rε1n )

rd−1
n

)(|ad−1md−1 |emd−1r
s
nδ(R,θn))|1 + o(1)|

+ · · ·+ |a0m0 |em0r
s
nδ(R,θn)|1 + o(1)|.

Since md > mj(j 6= d) and α + ε1 < s, the above two inequalities are impossible.
This shows case B1 can not occur.

Case B2: δ(R, θ0) < 0. For sufficiently large n, δ(R, θn) < 0 since θn → θ0.
Following the discussion of Subcase B1, we have

|bdtd |e−tdr
s
nδ(R,θn)|1 + o(1)|(exp(drα−ε1n )

rdn
)

≤ (
exp(krα+ε1

n )
rkn

) + · · ·+ (
exp((d+ 1)rα+ε1

n )
rd+1
n

)(|bd+1td+1 |e−td+1r
s
nδ(R,θn))|1 + o(1)|

+ (
exp((d− 1)rα+ε1

n )
rd−1
n

)(|bd−1td−1 |e−td−1r
s
nδ(R,θn))|1 + o(1)|

+ · · ·+ |b0t0 |e−t0r
s
nδ(R,θn)|1 + o(1)|

or

|bdtd |e−tdr
s
nδ(R,θn)|1 + o(1))|(r

M
n

rdn
)

≤ (
exp(krε1n )

rkn
) + · · ·+ (

exp((d+ 1)rε1n )
rd+1
n

)(|bd+1td+1 |e−td+1r
s
nδ(R,θn))|1 + o(1)|

+ (
exp((d− 1)rε1n )

rd−1
n

)(|bd−1td−1 |e−td−1r
s
nδ(R,θn))|1 + o(1)|

+ · · ·+ |b0t0 |e−t0r
s
nδ(R,θn)|1 + o(1)|.

Since td > tj(j 6= d) and α+ ε1 < s, we also obtain a contradiction.
Case B3: δ(R, θ0) = 0. If there exists a subsequence of {θn} such that

δ(R, θn) > 0 or δ(R, θn) < 0. Then by case B1 and case B2, we can get a contra-
diction.

Now, suppose that for sufficiently large n, δ(R, θn) = 0. Then we consider three
subcases: δs−1(R, θ) < 0;δs−1(R, θ) > 0; δs−1(R, θ) = 0. If δs−1(R, θ) < 0 or
δs−1(R, θ) > 0. Then replace δ(R, θ) by δs−1(R, θ) in the case B1 and B2, we can
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obtain a contradiction. If δs−1(R, θ) = 0, from the previous discussion in case B3,
the remain case is δs−1(R, θ) = 0 and δs−1(R, θn) = 0 for sufficiently large n. Then
we can consider δs−2(R, θ), and we can also obtain a contradiction. On the analogy
by this, the remain case is that δj(R, θn) = 0 for j ∈ {1, 2, . . . , s} and for sufficiently
large n.

Rewriting (1.2), we have

(−v(rn)
zn

)k(1 + o(1)) = Ak−1(zn)(
v(rn)
zn

)k−1(1 + o(1)) + . . .

+Ad(zn)(
v(rn)
zn

)d(1 + o(1)) + · · ·+A0(zn).
(4.13)

For zn = rne
θn , since δj(R, θn) = 0 for j ∈ {1, 2, . . . , s}, it leads to

|Aj(zn)| = |Pj(eR(zn)) +Qj(e−R(zn))| ≤M, j ∈ {1, 2, . . . , k}, (4.14)

where M is a constant. From (4.14), we obtain

v(rn) ≤ Brkn, (4.15)

where B is a constant. However, this contradicts (4.10) and (4.11). Therefore, case
B3 can not occur.

Combining case B1, B2 and B3, we have σ2(f) = s. �
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