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EXISTENCE AND UNIQUENESS OF CLASSICAL SOLUTIONS
TO SECOND-ORDER QUASILINEAR ELLIPTIC EQUATIONS

DIANE L. DENNY

Abstract. This article studies the existence of solutions to the second-order
quasilinear elliptic equation

−∇ · (a(u)∇u) + v · ∇u = f

with the condition u(x0) = u0 at a certain point in the domain, which is the 2

or the 3 dimensional torus. We prove that if the functions a, f , v satisfy certain

conditions, then there exists a unique classical solution. Applications of our
results include stationary heat/diffusion problems with convection and with a

source/sink, when the value of the solution is known at a certain location.

1. Introduction

In this article, we consider the following quasilinear elliptic equation for u(x)
under periodic boundary conditions:

−∇ · (a(u)∇u) + v · ∇u = f, (1.1)

u(x0) = u0, (1.2)

where u0 is a given constant and x0 a given point in the domain Ω. Here, f(x)
and v(x) are given smooth functions for x ∈ Ω, where the domain Ω = TN , the
N -dimensional torus, with N = 2, 3. We assume that a(u) is a smooth, positive
function of u for u ∈ Ḡ, where G ⊂ R is a bounded interval.

The purpose of this article is to prove the existence of a unique classical so-
lution u(x) to (1.1)-(1.2). What is new in this paper is the requirement that
condition (1.2) holds for a quasilinear elliptic equation of the form (1.1) which
includes a convection term v · ∇u. The proof of the existence theorem uses the
method of successive approximations in which an iteration scheme, based on solv-
ing a linearized version of the equation, will be defined and then convergence of
the sequence of approximating solutions to a unique solution satisfying the quasi-
linear equation will be proven. It will be shown that there exist positive con-
stants δ0, δ1, and δ2 such that if

∣∣ da
du

∣∣2
s,Ḡ1

‖f‖2s−1 ≤ δ0, and |∇ · v|L∞ ≤ δ1,
and max{1, |v|2L∞}‖f‖2s−1 ≤ δ2, and ‖Dv‖s ≤ 1

2 , where s > N
2 + 1, and where

G1 ⊂ G, then there exists a classical solution u(x) to (1.1)-(1.2). Here we define
| da
du |s,Ḡ1

= max{
∣∣ dj+1a
duj+1 (u∗)

∣∣ : u∗ ∈ Ḡ1, 0 ≤ j ≤ s}. And u(x) ∈ Ḡ1 for all x ∈ Ω.
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The solution u(x) ∈ Ḡ1 will be unique if a′′(u∗) ≤ 1
a(u∗)

(a′(u∗))2 for all u∗ ∈ Ḡ1.
The key to the proof lies in obtaining a priori estimates for u.

Applications of the existence of a unique solution to (1.1)-(1.2) include stationary
heat/diffusion problems with convection and with a source/sink. Solutions could be
obtained for problems in which, for example, the temperature or the concentration
of a substance in a fluid is monitored at a given spatial location x0 ∈ Ω .

This article is organized as follows. First, the main result is presented and
proved as Theorem 2.1 in the next section. Then lemmas supporting the proof of
the theorem are proven in Appendix A (which proves the existence of a solution
to the linearized equation used in the iteration scheme) and in Appendix B (which
presents proofs of the a priori estimates used in the proof of the theorem).

2. Existence theorem

We use the Sobolev space Hs(Ω) (where s is a non-negative integer) of real-
valued functions in L2(Ω) whose distribution derivatives up to order s are in L2(Ω),
with norm given by ‖g‖2s =

∑
0≤|α|≤s

∫
Ω
|Dαg|2dx and inner product (g, h)s =∑

0≤|α|≤s

∫
Ω
(Dαg) · (Dαh)dx. We use the notation ‖g‖2s =

∑
0≤r≤s

∫
Ω
|Drg|2dx,

where Drg is the set of all space derivatives Dαg with |α| = r, and |Drg|2 =∑
|α|=r |Dαg|2, where r ≥ 0 is an integer. Also, C(Ω) is the space of real-valued,

continuous functions with domain Ω. Here, we are using the standard multi-index
notation. Also, we let both ∇g and Dg denote the gradient of g.

Theorem 2.1. Let f(x) ∈ C(Ω) ∩ Hs−1(Ω), v(x) ∈ C2(Ω) ∩ Hs+1(Ω), and let
a(u) be a smooth, positive function of u for u ∈ Ḡ, where G ⊂ R is a bounded
interval. We require that the given data u(x0) satisfy u(x0) ∈ G, where x0 ∈ Ω
and where Ω = TN , the N -dimensional torus, with N = 2, 3. There exist positive
constants δ0, δ1, and δ2, and an interval G1 ⊂ G, such that if

∣∣ da
du

∣∣2
s,Ḡ1

‖f‖2s−1 ≤ δ0,
and |∇ · v|L∞ ≤ δ1, and max{1, |v|2L∞}‖f‖2s−1 ≤ δ2, and ‖Dv‖s ≤ 1/2, then there
exists a classical solution u(x) to (1.1)-(1.2). And u(x) ∈ Ḡ1 for all x ∈ Ω. Here,
we define | da

du |s,Ḡ1
= max{

∣∣ dj+1a
duj+1 (u∗)

∣∣ : u∗ ∈ Ḡ1, 0 ≤ j ≤ s}, where s > N
2 + 1. The

solution u(x) ∈ Ḡ1 will be unique if a′′(u∗) ≤ 1
a(u∗)

(a′(u∗))2 for all u∗ ∈ Ḡ1. The
regularity of the solution is u ∈ C2(Ω) ∩Hs+1(Ω).

Proof. We will construct the solution of the problem for (1.1)-(1.2) through an
iteration scheme. To define the iteration scheme, we will let the sequence of ap-
proximate solutions be {uk}∞k=1. Set u0 = u(x0). For k = 0, 1, 2, . . . , construct
uk+1 from the previous iterate uk by solving

−∇ · (a(uk)∇uk+1) + v · ∇uk+1 = f, (2.1)

uk+1(x0) = u(x0), (2.2)

Existence of a sufficiently smooth solution to (2.1), (2.2) for fixed k is proven in
Appendix A. The a priori estimates used in the proof are proven in Appendix B.
We proceed now to prove convergence of the iterates as k →∞ to a unique classical
solution of (1.1)-(1.2).

We fix an interval G1 ⊂ G by defining G1 = {u∗ ∈ G : |u∗ − u0|L∞ < R},
where R = dist(u0, ∂G). We fix a positive constant c1 such that a(u∗) > c1 for
all u∗ ∈ Ḡ1. Using a proof by induction on k, we assume that uk(x) ∈ Ḡ1 for all
x ∈ Ω, and then later we will show that uk+1(x) ∈ Ḡ1 for all x ∈ Ω. �
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Proposition 2.2. Assume that the hypotheses of Theorem 2.1 hold. Assume that
|∇ · v|L∞ ≤ c1

C∗
, where C∗ is the constant from Poincaré’s inequality ‖ū‖20 ≤

C∗‖∇u‖20, and where ū(x) = u(x) − 1
|Ω|

∫
Ω

u(x)dx. There exist constants C4, C5,

C1, L such that if
∣∣ da
du

∣∣2
s,Ḡ1

‖f‖2s−1 ≤ 1
C4

, and if max{1, |v|2L∞}‖f‖2s−1 ≤ R2

C2
5
, and if

‖Dv‖s ≤ 1
2 , where s > N

2 + 1, then the following hold for k = 1, 2, 3 . . .

‖∇uk‖2s ≤ 2C1‖f‖2s−1, (2.3)

|uk − u0|L∞ ≤ R, (2.4)

‖uk‖2s+1 ≤ L, (2.5)
∞∑

k=0

||uk+1 − uk‖2s+1 < ∞ (2.6)

Here, R = dist(u0, ∂G) and C1 is the constant in (B.9) from Lemma B.2 in Ap-
pendix B .

Proof. The proof is done by induction on k. We show only the inductive step.
We will derive estimates for uk+1, and then use these estimates to show that if uk

satisfies the estimates (2.3), (2.4), (2.5) then uk+1 also satisfies the same estimates.
We will prescribe L a priori, independent of k so that (2.5) holds for all k ≥ 1. We
assume by the induction hypothesis that uk(x) ∈ Ḡ1, and then we will show that
uk+1(x) ∈ Ḡ1, for all x ∈ TN . In the estimates below, we use C to denote a generic
constant whose value may change from one relation to the next. Recall that we let
both ∇g and Dg denote the gradient of g.

Estimate for ‖∇uk+1‖2s: We begin by applying estimate (B.9) from Lemma B.2
in Appendix B to equation (2.1), which yields

‖∇uk+1‖2s ≤ C1

[ s∑
j=0

(max{‖D(a(uk))‖2s1
, ‖Dv‖s1})j

]
‖f‖2s−1 (2.7)

where s1 = max{s− 1, s0}, and s0 = [N
2 ] + 1 = 2, and s > N

2 + 1, for N = 2, 3, so
s ≥ 3 and s1 = s− 1.

We consider two cases: when max{‖D(a(uk))‖2s1
, ‖Dv‖s1} = ‖D(a(uk))‖2s1

, and
when max{‖D(a(uk))‖2s1

, ‖Dv‖s1} = ‖Dv‖s1 .
Case 1: Suppose that max{‖D(a(uk))‖2s1

, ‖Dv‖s1} = ‖D(a(uk))‖2s1
in (2.7).

To estimate the term ‖D(a(uk))‖2s1
, we apply the Sobolev space inequality (B.1)

from Lemma B.1 in Appendix B, which yields the following:

‖D(a(uk))‖2s1
=

∑
0≤r≤s1

‖Dr(D(a(uk)))‖20 =
∑

0≤r≤s1

‖Dr+1(a(uk))‖20

≤
∑

0≤r≤s1

[
C

∣∣da

du

∣∣2
r,Ḡ1

(1 + |uk|L∞)2r‖∇uk‖2r
]

≤ C
∣∣da

du

∣∣2
s1,Ḡ1

(1 + |uk|L∞)2s1‖∇uk‖2s1

≤ C
∣∣da

du

∣∣2
s1,Ḡ1

(1 + |uk − u0|L∞ + |u0|L∞)2s1‖∇uk‖2s1

≤ C
∣∣da

du

∣∣2
s,Ḡ1

(1 + R + |u(x0)|)2s‖∇uk‖2s1
(2.8)
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≤ C
∣∣da

du

∣∣2
s,Ḡ1

(1 + R + (1 + |Ω|1/2)|u(x0)|)2s‖∇uk‖2s1

= C2

∣∣da

du

∣∣2
s,Ḡ1

‖∇uk‖2s1

≤ C3

∣∣da

du

∣∣2
s,Ḡ1

‖∇uk‖2s1

where | da
du |s,Ḡ1

= max{
∣∣ dj+1a
duj+1 (u∗)

∣∣∣ : u∗ ∈ Ḡ1, 0 ≤ j ≤ s}, from (B.1) in Lemma B.1.

Here C2 = C(1 + R + (1 + |Ω|1/2)|u(x0)|)2s, and we define C3 = MC2, where M
is a constant to be defined later and M ≥ 1. We can assume that C2 ≥ 1, so that
C3 ≥ 1. And we used the fact that

∣∣ da
du

∣∣
r,Ḡ1

≤
∣∣ da
du

∣∣
s1,Ḡ1

≤
∣∣ da
du

∣∣
s,Ḡ1

for r ≤ s1 and
s1 ≤ s. We also used the fact that |uk−u0|L∞ ≤ R holds by (2.4), since uk(x) ∈ Ḡ1

for all x ∈ TN by the induction hypothesis.
We now define the constant C4 to be C4 = 4C2

3C2
1 , where C1 is the constant in

(2.3) and in estimate (B.9) from Lemma B.2 in Appendix B, and where we may
assume that C1 ≥ 1. We assume that

∣∣∣ da
du

∣∣2
s,Ḡ1

‖f‖2s−1 ≤ 1
C4

. Substituting (2.8) into

(2.7), and using estimate (2.3), namely ‖∇uk‖2s ≤ 2C1‖f‖2s−1, which holds by the
induction hypothesis for uk, and using the fact that s1 ≤ s, yields

‖∇uk+1‖2s ≤ C1

[ s∑
j=0

Cj
3

∣∣da

du

∣∣2j

s,Ḡ1
‖∇uk‖2j

s1

]
‖f‖2s−1

≤ C1

[ s∑
j=0

Cj
3(2C1)j

∣∣da

du

∣∣2j

s,Ḡ1
‖f‖2j

s−1

]
‖f‖2s−1

≤ C1

[ s∑
j=0

Cj
3(2C1)j

( 1
C4

)j]
‖f‖2s−1

≤ C1

[ s∑
j=0

(1
2
)j

]
‖f‖2s−1

≤ 2C1‖f‖2s−1

(2.9)

where we used the fact that | da
du |

2
s,Ḡ1

‖f‖2s−1 ≤ 1
C4

. And we used the fact that
2C3C1

C4
≤ 1

2 and 1
C3C1

≤ 1, since C4 = 4C2
3C2

1 and C3C1 ≥ 1. Therefore (2.3) holds
for ‖∇uk+1‖2s when max{‖D(a(uk))‖2s1

, ‖Dv‖s1} = ‖D(a(uk))‖2s1
.

Case 2: Suppose that max{‖D(a(uk))‖2s1
, ‖Dv‖s1} = ‖Dv‖s1 in (2.7). From

(2.7), we obtain

‖∇uk+1‖2s ≤ C1

[ s∑
j=0

‖Dv‖j
s1

]
‖f‖2s−1 ≤ C1

[ s∑
j=0

(1
2
)j

]
‖f‖2s−1 ≤ 2C1‖f‖2s−1 (2.10)

where we used the fact that ‖Dv‖s1 ≤ ‖Dv‖s ≤ 1/2. This is the same result as
inequality (2.9), and therefore (2.3) holds for ‖∇uk+1‖2s.
Estimate for |uk+1−u0|L∞ : To obtain an estimate for |uk+1−u0|L∞ , we will use
Sobolev’s inequality |h|2L∞ ≤ C‖h‖2s0

(see, e.g., [1], [3]), where s0 = [N
2 ] + 1 = 2.

We will also apply inequality (B.4) from Lemma B.1 in Appendix B, which yields
the estimate ‖uk+1−u0‖20 ≤ C‖∇(uk+1−u0)‖22. And we will use the estimate (2.9),
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(2.10) just proven for ‖∇uk+1‖2s . We then obtain the following inequality:

|uk+1 − u0|2L∞ ≤ C‖uk+1 − u0‖2s0
≤ C‖uk+1 − u0‖2s+1

= C‖uk+1 − u0‖20 + C
∑

1≤|α|≤s+1

‖Dα(uk+1 − u0)‖20

≤ C‖uk+1 − u0‖20 + C‖∇(uk+1 − u0)‖2s
≤ C‖∇(uk+1 − u0)‖22 + C‖∇(uk+1 − u0)‖2s
≤ C‖∇(uk+1 − u0)‖2s
= C‖∇uk+1‖2s
≤ 2CC1‖f‖2s−1

(2.11)

Therefore, from (2.11) we have |uk+1 − u0|L∞ ≤ C5‖f‖s−1, where we define C5 =
(2CC1)1/2 from (2.11). We will assume that max{1, |v|2L∞}‖f‖2s−1 ≤ R2

C2
5
. It follows

that ‖f‖s−1 ≤ R
C5

, and therefore |uk+1 − u0|L∞ ≤ R. And so (2.4) holds for uk+1,
and uk+1(x) ∈ Ḡ1 for all x ∈ TN .

Estimate for ‖uk+1‖20 and ‖uk+1‖2s+1: To obtain an L2 estimate for uk+1 we
apply inequality (B.5) from Lemma B.1 in Appendix B, which yields

‖uk+1‖20 ≤ C‖u0‖20 + C‖∇u0‖22 + C‖∇uk+1‖22
≤ C‖u0‖20 + C‖∇uk+1‖2s
≤ C|Ω||u(x0)|2 + 2CC1‖f‖2s−1

(2.12)

Here we used the estimate for ‖∇uk+1‖2s from the result just proven in (2.9), (2.10).
And we used the fact that u0 is a constant. From the estimates (2.9), (2.10), (2.12)
and using the fact that ‖f‖2s−1 ≤ R2

C2
5

where C2
5 = 2CC1, yields

‖uk+1‖2s+1 = ‖uk+1‖20 +
∑

1≤|α|≤s+1

‖Dαuk+1‖20

≤ ‖uk+1‖20 + C‖∇uk+1‖2s
≤ C|Ω||u(x0)|2 + 2CC1‖f‖2s−1

≤ C|Ω||u(x0)|2 + CR2

(2.13)

We now define the constant L to be L = C|Ω||u(x0)|2 +CR2 from (2.13). Then we
have ‖uk+1‖2s+1 ≤ L, and so (2.5) holds for ‖uk+1‖2s+1. Therefore (2.3), (2.4), (2.5)
hold for all k ≥ 1, and uk(x) ∈ Ḡ1 for all x ∈ TN and for all k ≥ 1.

Estimate for ‖uk+1 − uk‖2s+1: Subtracting the equation (2.1) for uk from the
equation (2.1) for uk+1 yields the following equation

−∇· (a(uk)∇(uk+1−uk))+v ·∇(uk+1−uk) = ∇· ((a(uk)− a(uk−1))∇uk) (2.14)

We consider two cases: when max{‖D(a(uk))‖2s1
, ‖Dv‖s1} = ‖D(a(uk))‖2s1

, and
when max{‖D(a(uk))‖2s1

, ‖Dv‖s1} = ‖Dv‖s1 .
Case 1: Suppose that max{‖D(a(uk))‖2s1

, ‖Dv‖s1} = ‖D(a(uk))‖2s1
. Apply-

ing estimate (B.9) from Lemma B.2 in Appendix B to equation (2.14), and using
estimate (2.8) for ‖D(a(uk))‖2s1

, and using estimate (2.3) for ‖∇uk‖2s, yields the
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following:

‖∇(uk+1 − uk)‖2s

≤ C1

[ s∑
j=0

‖D(a(uk))‖2j
s1

]
‖∇ · ((a(uk)− a(uk−1))∇uk)‖2s−1

≤ CC1

[ s∑
j=0

Cj
3

∣∣da

du

∣∣2j

s,Ḡ1
‖∇uk‖2j

s1

]
‖(a(uk)− a(uk−1))∇uk‖2s

≤ CC1

[ s∑
j=0

Cj
3

∣∣da

du

∣∣2j

s,Ḡ1
‖∇uk‖2j

s

]
‖a(uk)− a(uk−1)‖2s‖∇uk‖2s

≤ CC1

[ s∑
j=0

Cj
3(2C1)j

∣∣da

du

∣∣2j

s,Ḡ1
‖f‖2j

s−1

]
‖a(uk)− a(uk−1)‖2s(2C1)‖f‖2s−1

≤ CC1

[ s∑
j=0

Cj
3(2C1)j

( 1
C4

)j]
‖a(uk)− a(uk−1)‖2s(2C1)‖f‖2s−1

≤ CC1

[ s∑
j=0

(1
2
)j

]
‖a(uk)− a(uk−1)‖2s(2C1)‖f‖2s−1

≤ C(2C1)2‖a(uk)− a(uk−1)‖2s‖f‖2s−1

(2.15)

where we used the Sobolev calculus inequality ‖gh‖2r ≤ C‖g‖2r‖h‖2r for r > N
2 ,

where C is a constant which depends on r (see, e.g., [3], [9]), and we let r = s
where s > N

2 + 1. We also used the fact that | da
du |

2
s,Ḡ1

‖f‖2s−1 ≤ 1
C4

. And we used
the fact that 2C3C1

C4
≤ 1

2 and 1
C3C1

≤ 1, since C4 = 4C2
3C2

1 and C3C1 ≥ 1.
To estimate the term ‖a(uk) − a(uk−1)‖2s, we will apply the Sobolev space in-

quality (B.2) from Lemma B.1 in Appendix B, which yields

‖a(uk)− a(uk−1)‖2s

≤ C
∣∣da

du

∣∣2
s,Ḡ1

(1 + |uk|L∞ + |uk−1|L∞)2(‖uk‖s + ‖uk−1‖s)2‖uk − uk−1‖2s

≤ C
∣∣da

du

∣∣2
s,Ḡ1

(1 + |uk − u0|L∞ + |uk−1 − u0|L∞ + 2|u0|L∞)2

× (‖uk‖2s + ‖uk−1‖2s)‖uk − uk−1‖2s

≤ C
∣∣da

du

∣∣2
s,Ḡ1

(2 + 2R + 2|u0|L∞)2(‖uk‖2s+1 + ‖uk−1‖2s+1)‖uk − uk−1‖2s

≤ CL
∣∣da

du

∣∣2
s,Ḡ1

(1 + R + (1 + |Ω|1/2)|u(x0)|)2s‖uk − uk−1‖2s

≤ CLC2

∣∣da

du

∣∣2
s,Ḡ1

‖uk − uk−1‖2s

≤ CLC3

∣∣da

du

∣∣2
s,Ḡ1

‖uk − uk−1‖2s

(2.16)

where C depends on s, and we used (2.5) to estimate ‖uk‖2s+1 ≤ L and ‖uk−1‖2s+1 ≤
L. We also used Cauchy’s inequality gh ≤ 1

2g2 + 1
2h2. Here, C2, C3 are the same
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constants as in (2.8). Then from (2.15) and (2.16) we obtain

‖∇(uk+1 − uk)‖2s ≤ CLC3(2C1)2
∣∣da

du

∣∣2
s,Ḡ1

‖f‖2s−1‖uk − uk−1‖2s

≤ CLC3(2C1)2
( 1

C4

)
‖uk − uk−1‖2s

=
CL

C3
‖uk − uk−1‖2s+1

(2.17)

Here we used the fact that C4 = 4C2
3C2

1 , and that
∣∣ da
du

∣∣2
s,Ḡ1

‖f‖2s−1 ≤ 1
C4

.
Case 2: Suppose that max{‖D(a(uk))‖2s1

, ‖Dv‖s1} = ‖Dv‖s1 . Applying esti-
mate (B.9) from Lemma B.2 in Appendix B to equation (2.14), and using (2.3),
(2.16), and using the proof of (2.17), yields the inequality

‖∇(uk+1 − uk)‖2s

≤ C1

[ s∑
j=0

‖Dv‖j
s1

]
‖∇ · ((a(uk)− a(uk−1))∇uk)‖2s−1

≤ CC1

[ s∑
j=0

(1
2
)j

]
‖a(uk)− a(uk−1)‖2s‖∇uk‖2s

≤ C(2C1)‖a(uk)− a(uk−1)‖2s(2C1)‖f‖2s−1

≤ CLC3(2C1)2
∣∣da

du

∣∣2
s,Ḡ1

‖f‖2s−1‖uk − uk−1‖2s

≤ CLC3(2C1)2
( 1

C4

)
‖uk − uk−1‖2s

≤ CL

C3
‖uk − uk−1‖2s+1

(2.18)

which is the same result as (2.17). Here, we used the facts that
∣∣ da
du

∣∣2
s,Ḡ1

‖f‖2s−1 ≤ 1
C4

where C4 = 4C2
3C2

1 , and that ‖Dv‖s1 ≤ ‖Dv‖s ≤ 1
2 .

To obtain an L2 estimate for uk+1 − uk, we apply inequality (B.4) from Lemma
B.1 in Appendix B, which yields

‖uk+1 − uk‖20 ≤ C‖∇(uk+1 − uk)‖22 ≤ C‖∇(uk+1 − uk)‖2s (2.19)

From (2.17)–(2.19), we obtain

‖uk+1 − uk‖2s+1 = ‖uk+1 − uk‖20 +
∑

1≤|α|≤s+1

‖Dα(uk+1 − uk)‖20

≤ ‖uk+1 − uk‖20 + C‖∇(uk+1 − uk)‖2s
≤ C‖∇(uk+1 − uk)‖2s

≤ CL

C3
‖uk − uk−1‖2s+1

(2.20)

where L = C|Ω||u(x0)|2+CR2 from (2.13) , and C2 = C(1+R+(1+|Ω|1/2)|u(x0)|)2s

and C3 = MC2 from (2.8). It follows that CL
C3

≤ C
M , where C depends on s and

s ≥ 3. We now define the constant M to be large enough so that C
M < 1. Then
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from (2.20), we have
∞∑

k=0

‖uk+1 − uk‖2s+1 < ∞ (2.21)

which is the inequality (2.6) to be proven. This completes the proof of Proposition
2.2. �

We now complete the proof of Theorem 2.1. From Lemma A.1 in Appendix A,
we know that uk ∈ C2(Ω) ∩Hs+1(Ω) for each k ≥ 1, where s > N

2 + 1. From (2.5)
in Proposition 2.2 and from Sobolev’s inequality |h|2L∞ ≤ C‖h‖2s0

(see, e.g., [1], [3]),
where s0 = [N

2 ] + 1 = 2, we know that {uk}∞k=1 is bounded in C2(Ω) ∩ Hs+1(Ω).
And from (2.6) in Proposition 2.2, it follows that ‖uk+1 − uk‖s+1 → 0 as k → ∞.
We conclude that there exists u ∈ C2(Ω) ∩Hs+1(Ω) such that ‖uk − u‖s+1 → 0 as
k →∞. From Lemma A.1 in Appendix A, we know that uk+1 is a solution of the
linear equation (2.1) for each k ≥ 0, and uk+1(x0) = u(x0) for each k ≥ 0, and so
it follows that u is a solution of the quasilinear equation (1.1), and u satisfies (1.2).

To prove uniqueness of the solution, let us assume that u1(x), u2(x) are two
solutions of (1.1)-(1.2), and u1(x) ∈ Ḡ1 and u2(x) ∈ Ḡ1 for all x ∈ TN . We
will show that there exists a constant C7, such that if

∣∣∣ da
du

∣∣2
s,Ḡ1

‖f‖2s−1 ≤ 1
C7

,

and if ‖Dv‖s1 ≤ 1
2 , and if a′′(u∗) ≤ 1

a(u∗)
(a′(u∗))2 for all u∗ ∈ Ḡ1, and if

max{1, |v|2L∞}‖f‖2s−1 ≤ R2

C2
5
, and if |∇ · v|L∞ ≤ c1

C∗
, where C5, c1, C∗ are the

constants from the proof of Proposition 2.2, then u1 = u2.
Note that since u1(x) ∈ Ḡ1 and u2(x) ∈ Ḡ1, it follows that |u1 − u0|L∞ ≤ R

and |u2 − u0|L∞ ≤ R, and a(u1) > c1 and a(u2) > c1, and a′′(u1) ≤ 1
a(u1)

(a′(u1))2

and a′′(u2) ≤ 1
a(u2)

(a′(u2))2. By Lemma B.3 from Appendix B applied to equation

(1.1) for u1 and u2, there exist constants C7, C8, such that if
∣∣∣ da
du

∣∣2
s,Ḡ1

‖f‖2s−1 ≤ 1
C7

,
then u1, u2 satisfy

‖∇u1‖2s ≤ 2C8‖f‖2s−1,

‖∇u2‖2s ≤ 2C8‖f‖2s−1

(2.22)

From Lemma B.3 in Appendix B, the constant C7 = 4C2
0C2

3C2
1K2

1 , and the constant
C8 = C0C1K1 so that we have C7 = 4C2

3C2
8 , and C0 is a constant which depends

on s, c1, and the constant K1 = max{1, |v|2L∞}. We may assume that C0 ≥ 1, so
that C1 ≤ C8.

And we have ‖u1‖20 ≤ |Ω||u1|2L∞ ≤ 2|Ω|(|u1 − u0|2L∞ + |u0|2L∞) ≤ 2|Ω|(R2 +
|u(x0)|2). So ‖u1‖2s+1 ≤ ‖u1‖20 + C‖∇u1‖2s ≤ 2|Ω|(R2 + |u(x0)|2) + 2CC8‖f‖2s−1.
It follows that u1 ∈ C2(Ω) ∩Hs+1(Ω). Similarly, u2 ∈ C2(Ω) ∩Hs+1(Ω). Here, we
used Sobolev’s inequality |h|2L∞ ≤ C‖h‖2s0

, where s0 = [N
2 ] + 1 = 2.

Subtracting (1.1) for u1 from (1.1) for u2 yields the equation

−∇ · (a(u1)∇(u2 − u1)) + v · ∇(u2 − u1) = ∇ · ((a(u2)− a(u1))∇u2) (2.23)

To obtain an estimate for ‖u2 − u1‖2s+1, we repeat the proof of the estimate for
‖uk+1−uk‖2s+1 from (2.15)-(2.20), and apply this proof to (2.23). We use inequality
(B.4) from Lemma B.1 in Appendix B, which yields ‖u2 − u1‖20 ≤ C‖∇(u2 −
u1)‖22, and we use inequality (B.9) from Lemma B.2 in Appendix B to estimate
‖∇(u2 − u1)‖2s, and we use inequality (2.8) to estimate ‖D(a(u1))‖2s1

and we use
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inequality (2.22) to estimate ‖∇u1‖2s and ‖∇u2‖2s. We also use the inequality∣∣∣ da
du

∣∣2
s,Ḡ1

‖f‖2s−1 ≤ 1
C7

and the inequality ‖Dv‖s1 ≤ 1
2 .

We consider two cases: when max{‖D(a(u1))‖2s1
, ‖Dv‖s1} = ‖D(a(u1))‖2s1

, and
when max{‖D(a(u1))‖2s1

, ‖Dv‖s1} = ‖Dv‖s1 .
Case 1: Suppose that max{‖D(a(u1))‖2s1

, ‖Dv‖s1} = ‖D(a(u1))‖2s1
. We obtain

‖u2 − u1‖2s+1

= ‖u2 − u1‖20 +
∑

1≤|α|≤s+1

‖Dα(u2 − u1)‖20

≤ ‖u2 − u1‖20 + C‖∇(u2 − u1)‖2s
≤ C‖∇(u2 − u1)‖22 + C‖∇(u2 − u1)‖2s
≤ C‖∇(u2 − u1)‖2s

≤ CC1

[ s∑
j=0

(max{‖D(a(u1))‖2s1
, ‖Dv‖s1})j

]
‖∇ · ((a(u2)− a(u1))∇u2)‖2s−1

≤ CC8

[ s∑
j=0

‖D(a(u1))‖2j
s1

]
‖a(u2)− a(u1)‖2s‖∇u2‖2s

≤ CC8

[ s∑
j=0

Cj
3

∣∣da

du

∣∣2j

s,Ḡ1
‖∇u1‖2j

s

]
‖a(u2)− a(u1)‖2s‖∇u2‖2s

≤ CC8

[ s∑
j=0

Cj
3(2C8)j

∣∣da

du

∣∣2j

s,Ḡ1
‖f‖2j

s−1

]
‖a(u2)− a(u1)‖2s(2C8)‖f‖2s−1

≤ CC8

[ s∑
j=0

Cj
3(2C8)j

( 1
C7

)j]
‖a(u2)− a(u1)‖2s(2C8)‖f‖2s−1

≤ CC8

[ s∑
j=0

(1
2
)j

]
‖a(u2)− a(u1)‖2s(2C8)‖f‖2s−1

≤ C(2C8)2‖a(u2)− a(u1)‖2s‖f‖2s−1

(2.24)
where we used that C1 ≤ C8, and C7 = 4C2

3C2
8 , and 2C3C8

C7
≤ 1

2 , since C3C8 ≥ 1.
From the third line in the proof of estimate (2.16), we have the inequality

‖a(u2)− a(u1)‖2s

≤ C
∣∣da

du

∣∣2
s,Ḡ1

(2 + 2R + 2|u(x0)|)2(‖u2‖2s+1 + ‖u1‖2s+1)‖u2 − u1‖2s

≤ C
∣∣da

du

∣∣2
s,Ḡ1

(1 + R + |u(x0)|)2(‖u2‖20 + C‖∇u2‖2s + ‖u1‖20
+ C‖∇u1‖2s)‖u2 − u1‖2s

(2.25)

By inequality (B.5) from Lemma B.1 in Appendix B, we have the estimate ‖u2‖20 ≤
C‖u0‖20+C‖∇u0‖22+C‖∇u2‖22 ≤ C|Ω||u(x0)|2+C‖∇u2‖2s. And a similar inequality
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holds for ‖u1‖20. Substituting these L2 estimates into (2.25) yields

‖a(u2)− a(u1)‖2s

≤ C
∣∣da

du

∣∣2
s,Ḡ1

(1 + R + |u(x0)|)2(|Ω||u(x0)|2 + ‖∇u2‖2s + ‖∇u1‖2s)‖u2 − u1‖2s

≤ C
∣∣da

du

∣∣2
s,Ḡ1

(1 + R + |u(x0)|)2(|Ω||u(x0)|2 + 4C8‖f‖2s−1)‖u2 − u1‖2s

≤ C
∣∣da

du

∣∣2
s,Ḡ1

(1 + R + |u(x0)|)2
(
|Ω||u(x0)|2 + 4C8

( R2

K1C2
5

))
‖u2 − u1‖2s

= C
∣∣da

du

∣∣2
s,Ḡ1

(1 + R + |u(x0)|)2
(
|Ω||u(x0)|2 +

(4C0C1K1R
2

2K1CC1

))
‖u2 − u1‖2s

≤ C
∣∣da

du

∣∣2
s,Ḡ1

(1 + R + (1 + |Ω|1/2)|u(x0)|)2s(|Ω||u(x0)|2 + R2)‖u2 − u1‖2s

≤ CC3L
∣∣da

du

∣∣2
s,Ḡ1

‖u2 − u1‖2s
(2.26)

where we used ‖f‖2s−1 ≤ R2

K1C2
5
, where K1 = max{1, |v|2L∞} and C5 = (2CC1)1/2.

And we used the fact that C8 = C0C1K1, where C0 depends on s, c1. And we used
inequality (2.22) to estimate ‖∇u1‖2s and ‖∇u2‖2s. Also, L = C|Ω||u(x0)|2 + CR2

from (2.13), and C2 = C(1 + R + (1 + |Ω|1/2)|u(x0)|)2s and C3 = MC2 from (2.8),
where M ≥ 1. Substituting (2.26) into (2.24) yields

‖u2 − u1‖2s+1 ≤ CC3L(2C8)2
∣∣da

du

∣∣2
s,Ḡ1

‖f‖2s−1‖u2 − u1‖2s

≤ CC3L(2C8)2
( 1

C7

)
‖u2 − u1‖2s

=
(CL

C3

)
‖u2 − u1‖2s+1

(2.27)

where we used the fact that C7 = 4C2
3C2

8 and
∣∣ da
du

∣∣2
s,Ḡ1

‖f‖2s−1 ≤ 1
C7

.
Case 2: Suppose that max{‖D(a(u1))‖2s1

, ‖Dv‖s1} = ‖Dv‖s1 . Repeating the
proof of (2.24)–(2.27) yields the following:

‖u2 − u1‖2s+1

≤ CC1

[ s∑
j=0

(max{‖D(a(u1))‖2s1
, ‖Dv‖s1})j

]
‖∇ · ((a(u2)− a(u1))∇u2)‖2s−1

≤ CC8

[ s∑
j=0

‖Dv‖j
s1

]
‖a(u2)− a(u1)‖2s‖∇u2‖2s

≤ CC8

[ s∑
j=0

(1
2
)j

]
‖a(u2)− a(u1)‖2s(2C8)‖f‖2s−1

≤ C(2C8)2‖a(u2)− a(u1)‖2s‖f‖2s−1

≤
(CL

C3

)
‖u2 − u1‖2s+1

which is the same estimate as (2.27).
Recall that L = C|Ω||u(x0)|2 + CR2 from (2.13) , and C2 = C(1 + R + (1 +

|Ω|1/2)|u(x0)|)2s and C3 = MC2 from (2.8). It follows that CL
C3

≤ C
M , where C
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depends on s. As in the proof of (2.21), we define the constant M to be large
enough so that C

M < 1. It follows that ||u2 − u1‖2s+1 = 0, and therefore u1 = u2

and the solution is unique.
This completes the proof of Theorem 2.1. Note that δ0 = min{ 1

C4
, 1

C7
}, and

δ1 = c1
C∗

, and δ2 = R2

C2
5

in the statement of Theorem 2.1 in which we assume that∣∣∣ da
du

∣∣2
s,Ḡ1

‖f‖2s−1 ≤ δ0, and |∇ · v|L∞ ≤ δ1 , and max{1, |v|2L∞}‖f‖2s−1 ≤ δ2, and

‖Dv‖s ≤ 1
2 . And δ0, δ1, δ2, C4, C5, C7 depend on s, c1, R, |Ω|, and |u(x0)|.

Appendix A. Existence for the linear equation

In this section, we present the proof of the existence of a solution to the linear
problem (2.1), (2.2).

Lemma A.1. Let a1 ∈ C1(Ω)∩Hs(Ω), f ∈ C(Ω)∩Hs−1(Ω), v ∈ C1(Ω)∩Hs(Ω) be
given functions, where a1(x) > c1 for some positive constant c1, for x ∈ Ω, Ω = TN ,
N = 2 or N = 3. We assume that |∇ · v|L∞ ≤ c1

C∗
, where C∗ is the constant from

Poincaré’s inequality ‖ū‖20 ≤ C∗‖∇u‖20, and where ū(x) = u(x) − 1
|Ω|

∫
Ω

u(x)dx.
Then there is a unique classical solution u ∈ C2(Ω) ∩Hs+1(Ω) of

−∇ · (a1∇u) + v · ∇u = f, (A.1)

u(x0) = u0, (A.2)

where u0 is a given constant and x0 ∈ Ω is a given point, and where s > N
2 + 1.

Proof. The operator in (A.1) is linear with a1(x) > c1 for x ∈ Ω. The existence
of a zero-mean solution ū(x) of equation (A.1) follows from the standard theory
for elliptic equations, specifically, the Lax-Milgram Lemma (see, e.g., [4]). We then
define the chosen solution u(x) to (A.1), (A.2) to be u(x) = ū(x)− ū(x0) + u0.

We remark that the condition for the Lax-Milgram Lemma that ‖ū‖21 ≤ CB[ū, ū],
where B[ū, ū] = (a1∇ū,∇ū) + (v · ∇ū, ū), and where ū(x) = u(x)− 1

|Ω|
∫
Ω

u(x)dx,
follows from the following inequality:

(c1∇u,∇u) ≤ (a1∇u,∇u)

= −(v · ∇ū, ū) + B[ū, ū]

=
1
2
(∇ · v · ū, ū) + B[ū, ū]

≤ 1
2
|∇ · v|L∞‖ū‖20 + B[ū, ū]

≤ 1
2
C∗|∇ · v|L∞‖∇u‖20 + B[ū, ū]

≤ c1

2
‖∇u‖20 + B[ū, ū]

where we used the fact that |∇ · v|L∞ ≤ c1
C∗

. And so 1
2 (c1∇u,∇u) ≤ B[ū, ū]. From

Poincaré’s inequality ‖ū‖20 ≤ C∗‖∇u‖20, we obtain the desired inequality ‖ū‖21 =
‖ū‖20 + ‖∇u‖20 ≤ (C∗ + 1)‖∇u‖20 ≤

2(C∗+1)
c1

B[ū, ū].
The regularity of the chosen solution u(x) follows from the estimates (B.5) from

Lemma B.1 and (B.9) from Lemma B.2 in Appendix B, applied to equation (A.1),
which yield:

‖u‖20 ≤ C‖u(x0)‖20 + C‖∇(u(x0))‖22 + C‖∇u‖22 ≤ C|Ω||u(x0)|2 + C‖∇u‖2s
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‖∇u‖2s ≤ C1

[ s∑
j=0

(max{‖Da1‖2s1
, ‖Dv‖s1})j

]
‖f‖2s−1

where s1 = max{s− 1, s0} = s− 1, and s0 = [N
2 ] + 1 = 2, and s > N

2 + 1, so s ≥ 3.
It follows that u ∈ C2(Ω) ∩ Hs+1(Ω) by the above estimates and by Sobolev’s
inequality |h|2L∞ ≤ C‖h‖2s0

(see, e.g., [1, 3]). �

Appendix B. A priori estimates

Recall that we will be using the Sobolev space Hs(Ω) (where s ≥ 0 is an integer)
of real-valued functions in L2(Ω) whose distribution derivatives up to order s are in
L2(Ω), with norm given by ‖g‖2s =

∑
|α|≤s

∫
Ω
|Dαg|2dx and inner product (g, h)s =∑

|α|≤s

∫
Ω
(Dαg) · (Dαh)dx. The domain Ω is the N-dimensional torus TN , where

N = 2 or N = 3. Here, we are using the standard multi-index notation. For
convenience, we are going to denote derivatives by gα = Dαg. And we will denote
the L2 inner product by (g, h) =

∫
Ω

g · h dx. We will use C to denote a generic
constant whose value may change from one relation to the next. Recall that we let
both ∇g and Dg denote the gradient of g.

We begin by listing several standard Sobolev space inequalities.

Lemma B.1 (Calculus Inequalities).
(a) Let g(u) be a smooth function on G, where u(x) is a continuous function and

where u(x) ∈ G1 for x ∈ Ω and G1 ⊂ G and u ∈ Hr(Ω)∩L∞(Ω). Then for r ≥ 1,

‖Dr(g(u))‖0 ≤ C
∣∣dg

du

∣∣
r−1,Ḡ1

(1 + |u|L∞)r−1‖Du‖r−1, (B.1)

where |h|r,Ḡ1
= max{

∣∣djh
duj (u∗)

∣∣∣ : u∗ ∈ Ḡ1, 0 ≤ j ≤ r}, and where C depends on r,
Ω.

(b) And

‖g(u)− g(v)‖r ≤ C
∣∣dg

du

∣∣
r,Ḡ1

(1 + |u|L∞ + |v|L∞)(‖u‖r + ‖v‖r)‖u− v‖r, (B.2)

where C depends on r, Ω.
(c) If Dg ∈ Hr1(Ω), h ∈ Hr−1(Ω), where r1 = max{r − 1, s0}, s0 = [N

2 ] + 1,
then for any r ≥ 1, g, h satisfy the estimate

‖Dα(gh)− gDαh‖0 ≤ C‖Dg‖r1‖h‖r−1, (B.3)

where r = |α|, and the constant C depends on r, Ω.
(d) Let v, w be C1(Ω)∩H3(Ω) functions on a bounded, open, connected, convex

domain Ω. And let v(x0) = w(x0) at a point x0 ∈ Ω. Then v−w and v satisfy the
estimates

‖v − w‖20 ≤ C‖∇(v − w)‖22, (B.4)

‖v‖20 ≤ C‖w‖20 + C‖∇w‖22 + C‖∇v‖22 (B.5)

Here C is a constant which depends on Ω.

Proofs of the inequalities (a), (b) may be found, for example, in [8], [10]. Proof
of inequalities (c), (d) may be found in [2]. Inequalities (a), (b) also appear in [3].

Lemmas B.2 and B.3 provide the key a priori estimates used in the proof of the
theorem.
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Lemma B.2. Let a1(x), v(x), and f(x) be sufficiently smooth functions in the
following equation

−∇ · (a1∇u) + v · ∇u = f, (B.6)

where a1(x) > c1, for some positive constant c1, and for all x ∈ Ω, with Ω = TN ,
and N = 2 or N = 3. We assume that |∇·v|L∞ ≤ c1

C∗
, where C∗ is the constant from

Poincaré’s inequality ‖ū‖20 ≤ C∗‖∇u‖20, and where ū(x) = u(x) − 1
|Ω|

∫
Ω

u(x)dx.
Then we obtain the inequalities:

‖∇u‖20 ≤ C‖f‖20, (B.7)

‖∇u‖2r ≤ C max{‖Da1‖2r1
, ‖Dv‖r1}‖∇u‖2r−1 + C‖f‖2r−1, (B.8)

‖∇u‖2r ≤ C1

[ r∑
j=0

(max{‖Da1‖2r1
, ‖Dv‖r1})j

]
‖f‖2r−1 (B.9)

where r ≥ 1, where r1 = max{r−1, s0}, and where s0 = [N
2 ]+1 = 2. Here constant

C in (B.7) depends on c1, and the constant C in (B.8) depends on r, c1, and the
constant C1 in (B.9) depends on r, c1.

Proof. First, we obtain an L2 estimate. Integrating equation (B.6) by parts with
ū, where ū(x) = u(x)− 1

|Ω|
∫
Ω

u(x)dx, yields

(c1∇u,∇u) ≤ (a1∇u,∇u) = −(∇ · (a1∇u), ū) = −(v · ∇u, ū) + (f, ū)

=
1
2
(∇ · v · ū, ū) + (f, ū)

≤ 1
2
|∇ · v|L∞‖ū‖20 +

1
4ε
‖f‖20 + ε‖ū‖20

≤ 1
2
C∗|∇ · v|L∞‖∇u‖20 +

1
4ε
‖f‖20 + εC∗‖∇u‖20

(B.10)

where we used Cauchy’s inequality with ε, namely gh ≤ 1
4εg

2 + εh2, and where
we used the fact that a1(x) > c1. We also used Poincaré’s inequality (see, e.g.,
[3], [4]) to estimate ‖ū‖20 ≤ C∗‖∇u‖20, where C∗ is a constant. We assume that
|∇ · v|L∞ ≤ c1

C∗
. And we let ε = c1

4C∗
. Then from (B.10), we obtain

‖∇u‖20 ≤ C‖f‖20 (B.11)

where C depends on c1. This is the desired inequality (B.7).
Next, after applying Dα to the equation (B.6), we obtain the equation:

−∇ · (a1∇uα) + v · ∇uα = Fα (B.12)

where Fα = fα + [∇ · (a1∇u)α −∇ · (a1∇uα)] −[(v · ∇u)α − v · ∇uα].
From (B.12) we obtain

c1(∇uα,∇uα) ≤ (a1∇uα,∇uα)

= −(∇ · (a1∇uα), uα)

= −(v · ∇uα, uα) + (Fα, uα)

≤ 1
2
|∇ · v|L∞‖uα‖20 + |(Fα, uα)|

≤ C|Dv|L∞‖∇u‖2k−1 + |(Fα, uα)|

(B.13)

where |α| = k.
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Next, we estimate |(Fα, uα)|. We use integration by parts, and then apply in-
equality (B.3) from Lemma B.1, to obtain the following inequality:

|(Fα, uα)|
≤ |(fα, uα)|+ |([∇ · (a1∇u)α −∇ · (a1∇uα)], uα)|+ |((v · ∇u)α − v · ∇uα, uα)|
= |(fα−β , uα+β)|+ |([(a1∇u)α − a1∇uα],∇uα)|+ |((v · ∇u)α − v · ∇uα, uα)|
≤ ‖fα−β‖0‖uα+β‖0 + ‖(a1∇u)α − a1∇uα‖0‖∇uα‖0

+ ‖(v · ∇u)α − v · ∇uα‖0‖uα‖0
≤ C‖f‖k−1‖∇u‖k + C‖Da1‖k1‖∇u‖k−1‖∇u‖k + C‖Dv‖k1‖∇u‖2k−1

≤ C

4ε
‖f‖2k−1 + ε‖∇u‖2k +

C

4ε
‖Da1‖2k1

‖∇u‖2k−1 + ε‖∇u‖2k + C‖Dv‖k1‖∇u‖2k−1

(B.14)
where |β| = 1, k = |α|, and k1 = max{k−1, s0}, with s0 = [N

2 ]+1. Again, we used
Cauchy’s inequality with ε. Substituting (B.14) into (B.13), and adding (B.13) over
|α| = k ≤ r, including the estimate (B.10), we obtain for r ≥ 1 the estimate

‖∇u‖2r ≤
C

4ε
(‖Da1‖2r1

+ ‖Dv‖r1)‖∇u‖2r−1 +
C

4ε
‖f‖2r−1 + εC‖∇u‖2r (B.15)

where r1 = max{r− 1, s0}, with s0 = [N
2 ] + 1, and where C depends on r, c1. Here

we used Sobolev’s lemma to obtain |Dv|L∞ ≤ C‖Dv‖s0 . Choosing ε sufficiently
small yields

‖∇u‖2r ≤ C max{‖Da1‖2r1
, ‖Dv‖r1}‖∇u‖2r−1 + C‖f‖2r−1 (B.16)

where C depends on r, c1. This is the desired inequality (B.8).
Applying the inequality (B.16) to ‖∇u‖2r−1 which appears on the right-hand side

of (B.16) yields

‖∇u‖2r ≤ C(max{‖Da1‖2r1
, ‖Dv‖r1})

×
[
C(max{‖Da1‖2r2

, ‖Dv‖r2})‖∇u‖2r−2 + C‖f‖2r−2

]
+ C‖f‖2r−1

≤ C(max{‖Da1‖2r1
, ‖Dv‖r1})2‖∇u‖2r−2

+ C(max{‖Da1‖2r1
, ‖Dv‖r1})‖f‖2r−2 + C‖f‖2r−1

(B.17)

where r1 = max{r− 1, s0}, r2 = max{r− 2, s0}, r2 ≤ r1, with s0 = [N
2 ] + 1 = 2 for

N = 2, 3.
Similarly, by applying the estimate (B.16) to ‖∇u‖2r−j for j = 2, 3, . . . , r − 1,

which will appear in the term C(max{‖Da1‖2r1
, ‖Dv‖r1})j‖∇u‖2r−j on the right-

hand side of (B.17), we obtain

‖∇u‖2r ≤ C
r−1∑
j=1

(max{‖Da1‖2r1
, ‖Dv‖r1})j‖f‖2r−1−j

+ C(max{‖Da1‖2r1
, ‖Dv‖r1})r‖∇u‖20 + C‖f‖2r−1

≤ C
[ r−1∑

j=0

(max{‖Da1‖2r1
, ‖Dv‖r1})j

]
‖f‖2r−1

+ C(max{‖Da1‖2r1
, ‖Dv‖r1})r‖∇u‖20

(B.18)
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Substituting the estimate ‖∇u‖20 ≤ C‖f‖20 into (B.18) yields

‖∇u‖2r

≤ C
[ r−1∑

j=0

(max{‖Da1‖2r1
, ‖Dv‖r1})j

]
‖f‖2r−1 + C(max{‖Da1‖2r1

, ‖Dv‖r1})r‖f‖20

≤ C1

[ r∑
j=0

(max{‖Da1‖2r1
, ‖Dv‖r1})j

]
‖f‖2r−1

where C1 depends on r, c1. This completes the proof. �

Lemma B.3. Let a(u) be a smooth function of u, and let v(x) and f(x) be suffi-
ciently smooth functions in the equation

−∇ · (a(u)∇u) + v · ∇u = f (B.19)

for x ∈ Ω, where Ω = TN , N = 2, 3, where a(u) > c1, for some positive constant c1,
and where |u− u0|L∞ ≤ R, where u0, R are given constants. We assume that |∇ ·
v|L∞ ≤ c1

C∗
, where C∗ is the constant from Poincaré’s inequality ‖ū‖20 ≤ C∗‖∇u‖20,

and where ū(x) = u(x) − 1
|Ω|

∫
Ω

u(x)dx. Then there exist constants C7, C8, such

that if
∣∣∣ da
du

∣∣2
s,Ḡ1

‖f‖2s−1 ≤ 1
C7

, and if ‖Dv‖s ≤ 1
2 , and if a′′(u) ≤ 1

a(u) (a
′(u))2, then

u satisfies the inequality

‖∇u‖2s ≤ 2C8‖f‖2s−1 (B.20)

We define C7 = 4C2
3C2

8 and C8 = C0C1K1, where C1 is the constant from estimate
(B.9) in Lemma B.2, and where C2 = C(1+R+(1+|Ω|1/2)|u(x0)|)2s and C3 = MC2

are the same constants as in (2.8) from Proposition 2.2, and C0 is a constant which
depends on s, c1, where s > N

2 + 1. We define the constant K1 = max{1, |v|2L∞}.
And we define | da

du |s,Ḡ1
= max{

∣∣ dj+1a
duj+1 (u∗)

∣∣∣ : u∗ ∈ Ḡ1, 0 ≤ j ≤ s}.

Proof. First we obtain estimates for ‖∇u‖20, ‖∇u‖21, ‖∇u‖22, and ‖∇u‖2r, where
3 ≤ r ≤ s. It is necessary to have an estimate for ‖∇u‖2j in order to obtain an
estimate for ‖∇u‖2j+1, for j = 0, 1, 2, . . . , s− 1. We will apply estimate (B.9) from
Lemma B.2 to obtain an estimate for ‖∇u‖2r, when 3 ≤ r ≤ s.

From inequality (B.7) in Lemma B.2 applied to equation (B.19), we obtain

‖∇u‖20 ≤ C‖f‖20 (B.21)

where C depends on c1. We now obtain an estimate for ‖∇u‖21. Applying Dα to
equation (B.19), with |α| = 1, yields

−∇ · (a(u)∇uα) = ∇ · ((a(u))α∇u)− (v · ∇u)α + fα (B.22)
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Integrating (B.22) by parts with uα, where |α| = 1, and using the fact from equation
(B.19) that ∇a(u) · ∇u = −a(u)∆u + v · ∇u− f , yields

(a(u)∇uα,∇uα) = −(∇ · (a(u)∇uα), uα)

= (∇ · ((a(u))α∇u), uα)− ((v · ∇u)α, uα) + (fα, uα)

= −((a(u))α∇u,∇uα)− ((v · ∇u)α, uα) + (fα, uα)

= −1
2
((a(u))α, (∇u · ∇u)α)− ((v · ∇u)α, uα) + (fα, uα)

= −1
2
(a′(u)uα, (∇u · ∇u)α)− ((v · ∇u)α, uα) + (fα, uα)

= −1
2
(uα, (a′(u)∇u · ∇u)α) +

1
2
(uα, (a′(u))α(∇u · ∇u))

− ((v · ∇u)α, uα) + (fα, uα)

= −1
2
(uα, (∇a(u) · ∇u)α) +

1
2
(uα, a′′(u)uα(∇u · ∇u))

− ((v · ∇u)α, uα) + (fα, uα)

=
1
2
(uα, (a(u)∆u− v · ∇u + f)α) +

1
2
((uα)2, a′′(u)(∇u · ∇u))

− ((v · ∇u)α, uα) + (fα, uα)

= −1
2
(uα+α, a(u)∆u) +

3
2
((v · ∇u), uα+α)− 3

2
(f, uα+α)

+
1
2
((uα)2, a′′(u)(∇u · ∇u))

(B.23)
Adding (B.23) over |α| = 1 yields∑

|α|=1

(a(u)∇uα,∇uα) = −1
2

∑
|α|=1

(uα+α, a(u)∆u) +
3
2

∑
|α|=1

((v · ∇u), uα+α)

− 3
2

∑
|α|=1

(f, uα+α) +
1
2

∑
|α|=1

((uα)2, a′′(u)(∇u · ∇u))

= −1
2
(∆u, a(u)∆u) +

3
2
((v · ∇u),∆u)− 3

2
(f,∆u)

+
1
2
((∇u · ∇u), a′′(u)(∇u · ∇u))

(B.24)
Next, we estimate the term 1

2 ((∇u · ∇u), a′′(u)(∇u · ∇u)) in (B.24). We assume
that a′′(u) ≤ 1

a(u) (a
′(u))2. We then obtain the inequality

1
2
((∇u · ∇u), a′′(u)(∇u · ∇u))

≤ 1
2
(

1
a(u)

(a′(u))2(∇u · ∇u), (∇u · ∇u))

=
1
2
((∇a(u) · ∇u),

1
a(u)

(∇a(u) · ∇u)) (B.25)

=
1
2
((a(u)∆u− v · ∇u + f),

1
a(u)

(a(u)∆u− v · ∇u + f))
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=
1
2
(∆u, a(u)∆u) +

1
2
(f,

1
a(u)

f) +
1
2
(v · ∇u,

1
a(u)

v · ∇u) (B.26)

+ (∆u, f)− (v · ∇u, ∆u)− (v · ∇u,
1

a(u)
f)

Substituting (B.26) into (B.24) yields∑
|α|=1

(a(u)∇uα,∇uα) =
1
2
(f,

1
a(u)

f) +
1
2
(v · ∇u,

1
a(u)

v · ∇u)

− 1
2
(∆u, f) +

1
2
(v · ∇u, ∆u)− (v · ∇u,

1
a(u)

f)

≤ 1
c1

(f, f) +
1
c1
|v|2L∞‖∇u‖20 + ε(∆u, ∆u)

+
1

16ε
(f, f) +

1
16ε

|v|2L∞‖∇u‖20 + ε(∆u, ∆u)

(B.27)

where we used Cauchy’s inequality with ε, and we used the fact that a(u) > c1.
We now use the fact that

∑
|α|=1(∇uα,∇uα) =

∑
|α|=1((uα+α,∆u) = (∆u, ∆u).

We also use the fact that a(u) > c1, and we define ε = c1
4 . Then (B.27) becomes∑

|α|=1

(c1∇uα,∇uα) ≤
∑
|α|=1

(a(u)∇uα,∇uα)

≤ c1

2
(∆u, ∆u) +

5
4c1

(f, f) +
5

4c1
|v|2L∞‖∇u‖20

=
c1

2

∑
|α|=1

(∇uα,∇uα) +
5

4c1
(f, f) +

5
4c1

|v|2L∞‖∇u‖20

(B.28)

Subtracting the term c1
2

∑
|α|=1(∇uα,∇uα) on both sides of (B.28), and using

inequality (B.21), namely ‖∇u‖20 ≤ C‖f‖20, yields the estimate∑
|α|=1

(∇uα,∇uα) ≤ C max{1, |v|2L∞}‖f‖20 (B.29)

where C depends on c1. Adding the inequalities (B.29), (B.21) yields

‖∇u‖21 = ‖∇u‖20 +
∑
|α|=1

(∇uα,∇uα) ≤ C max{1, |v|2L∞}‖f‖20 = CK1‖f‖20 (B.30)

where C depends on c1, and where we define the constant K1 = max{1, |v|2L∞}.
We now obtain an estimate for ‖∇u‖22. Applying Dα to equation (B.19), with

|α| = 2, yields

−∇ · (a(u)∇uα) = ∇ · ((a(u))α∇u) +∇ · ((a(u))α−β∇uβ) +∇ · ((a(u))β∇uα−β)
− v · ∇uα − vα · ∇u− vβ · ∇uα−β − vα−β · ∇uβ + fα

(B.31)
where |β| = 1. Integrating by parts with uα, where |α| = 2 and |β| = 1, and using
inequality (B.1) from Lemma B.1, yields

((a(u)∇uα,∇uα)

= −(∇ · (a(u)∇uα), uα)

= (∇ · ((a(u))α∇u), uα) + (∇ · ((a(u))α−β∇uβ), uα)

+ (∇ · ((a(u))β∇uα−β), uα)− (v · ∇uα, uα)
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− (vα · ∇u, uα)− (vβ · ∇uα−β , uα)− (vα−β · ∇uβ , uα) + (fα, uα)

= −((a(u))α∇u,∇uα)− ((a(u))α−β∇uβ ,∇uα)

− ((a(u))β∇uα−β ,∇uα) +
1
2
((∇ · v)uα, uα)− (vα · ∇u, uα)

− (vβ · ∇uα−β , uα)− (vα−β · ∇uβ , uα)− (fα−β , uα+β)

≤ ‖(a(u))α‖0|∇u|L∞‖∇uα‖0 + |(a(u))α−β |L∞‖∇uβ‖0‖∇uα‖0

+ |(a(u))β |L∞‖∇uα−β‖0‖∇uα‖0 +
1
2
|∇ · v|L∞‖uα‖20 + |vα|L∞‖∇u‖0‖uα‖0

+ |vβ |L∞‖∇uα−β‖0‖uα‖0 + |vα−β |L∞‖∇uβ‖0‖uα‖0 + ‖fα−β‖0‖uα+β‖0
≤ C‖D2(a(u))‖0‖∇u‖2‖∇uα‖0 + C‖D(a(u))‖2‖∇u‖1‖∇uα‖0 + C|∇ · v|L∞‖∇u‖21

+ C|D2v|L∞‖∇u‖0‖∇u‖1 + C|Dv|L∞‖∇u‖21 + C‖∇f‖0‖∇uα‖0

≤ C

4ε
‖D2(a(u))‖20‖∇u‖22 + ε‖∇uα‖20 +

C

4ε
‖D(a(u))‖22‖∇u‖21 + ε‖∇uα‖20

+ C|Dv|L∞‖∇u‖21 + C|D2v|L∞‖∇u‖20 + C|D2v|L∞‖∇u‖21

+ C|Dv|L∞‖∇u‖21 +
C

4ε
‖∇f‖20 + ε‖∇uα‖20

≤ C

4ε
‖D2(a(u))‖20‖∇u‖22 +

C

4ε

[ ∑
0≤r≤2

‖Dr+1(a(u))‖20
]
‖∇u‖21

+ C(|Dv|L∞ + |D2v|L∞)‖∇u‖21 + C|D2v|L∞‖∇u‖20 +
C

4ε
‖∇f‖20 + 3ε‖∇uα‖20

≤ C

4ε

∣∣da

du

∣∣2
1,Ḡ1

(1 + |u|L∞)2‖∇u‖21‖∇u‖22

+
C

4ε

[ ∑
0≤r≤2

∣∣da

du

∣∣2
r,Ḡ1

(1 + |u|L∞)2r‖∇u‖2r
]
‖∇u‖21

+ C(|Dv|L∞ + |D2v|L∞)‖∇u‖21 + C|D2v|L∞‖∇u‖20

+
C

4ε
‖∇f‖20 + 3ε‖∇uα‖20 (B.32)

≤ C

4ε

∣∣da

du

∣∣2
s,Ḡ1

(1 + |u|L∞)2s‖∇u‖21‖∇u‖22

+
C

4ε

∣∣da

du

∣∣2
s,Ḡ1

(1 + |u|L∞)2s
[ ∑

0≤r≤2

‖∇u‖2r
]
‖∇u‖21

+ C(‖Dv‖s0 + ‖D2v‖s0)‖∇u‖21 + C‖D2v‖s0‖∇u‖20 +
C

4ε
‖∇f‖20 + 3ε‖∇uα‖20

≤ C

4ε

∣∣da

du

∣∣2
s,Ḡ1

(1 + |u|L∞)2s‖∇u‖21‖∇u‖22 +
C

4ε

∣∣da

du

∣∣2
s,Ḡ1

(1 + |u|L∞)2s‖∇u‖22‖∇u‖21

+ C‖Dv‖s‖∇u‖21 + C‖Dv‖s‖∇u‖20 +
C

4ε
‖∇f‖20 + 3ε‖∇uα‖20

≤ C

2ε

∣∣da

du

∣∣2
s,Ḡ1

(1 + |u− u0|L∞ + |u0|L∞)2s‖∇u‖21‖∇u‖22

+ C‖Dv‖s‖∇u‖21 + C‖Dv‖s‖∇u‖20 +
C

4ε
‖∇f‖20 + 3ε‖∇uα‖20

≤ C

2ε

∣∣da

du

∣∣2
s,Ḡ1

(1 + R + |u(x0)|)2s‖∇u‖21‖∇u‖22
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+ C‖Dv‖s‖∇u‖21 + C‖Dv‖s‖∇u‖20 +
C

4ε
‖∇f‖20 + 3ε‖∇uα‖20

where we used inequality (B.1) from Lemma B.1. We also used Sobolev’s lemma
to obtain |Dv|L∞ ≤ C‖Dv‖s0 and |D2v|L∞ ≤ C‖D2v‖s0 , where s0 = [N

2 ] + 1 = 2
and s ≥ 3. We also used Cauchy’s inequality with ε.

We assume that
∣∣∣ da
du

∣∣2
s,Ḡ1

‖f‖2s−1 ≤ 1
C7

, where the constant C7 will be defined

later. And we assume that ‖Dv‖s ≤ 1
2 . Substituting estimates (B.30), (B.21) for

‖∇u‖21, ‖∇u‖20 into (B.32), and using the fact that a(u) > c1, and letting ε = c1
6 ,

yields

(c1∇uα,∇uα)

≤ ((a(u)∇uα,∇uα)

≤ CK1

∣∣da

du

∣∣2
s,Ḡ1

(1 + R + |u(x0)|)2s‖f‖20‖∇u‖22 + CK1‖Dv‖s‖f‖20

+ C‖Dv‖s‖f‖20 + C‖f‖21 +
c1

2
‖∇uα‖20

≤ CK1

∣∣da

du

∣∣2
s,Ḡ1

(1 + R + |u(x0)|)2s‖f‖2s−1‖∇u‖22 + CK1‖f‖21 +
c1

2
‖∇uα‖20

≤ CK1

( 1
C7

)
(1 + R + |u(x0)|)2s‖∇u‖22 + CK1‖f‖21 +

c1

2
‖∇uα‖20

(B.33)
where C depends on s, c1, and where we used the facts that ‖Dv‖s < 1, and that
K1 = max{1, |v|2L∞}.

Adding (B.33) over all |α| = 2 after moving the term c1
2 ‖∇uα‖20 to the left-hand

side, and adding the estimate (B.30) for ‖∇u‖21 yields

‖∇u‖22 = ‖∇u‖21 +
∑
|α|=2

(∇uα,∇uα)

≤ CK1

( 1
C7

)
(1 + R + |u(x0)|)2s‖∇u‖22 + CK1‖f‖21

≤ CK1

( 1
C7

)
(1 + R + (1 + |Ω|1/2)|u(x0)|)2s‖∇u‖22 + CK1‖f‖21

≤
(C0C2K1

C7

)
‖∇u‖22 + C0K1‖f‖21

≤
(C0C3K1

C7

)
‖∇u‖22 + C0K1‖f‖21

(B.34)

where the constant C0 depends on s, c1, and C2 = C(1 + R + (1 + |Ω|1/2)|u(x0)|)2s

and C3 = MC2 are the same constants as in (2.8) from Proposition 2.2, and M ≥ 1.
We now define C7 = 4C2

0C2
3C2

1K2
1 , where C0 is the constant from (B.34), and

where C1 is the constant from estimate (B.9) in Lemma B.2, and we may assume
that C1 ≥ 1, C0 ≥ 1, and C3 ≥ 1. Substituting the definition of C7 into (B.34)
yields

‖∇u‖22 ≤
1

4C0C2
1C3K1

‖∇u‖22 + C0K1‖f‖21 ≤
1
2
‖∇u‖22 + C0K1‖f‖21 (B.35)

where we used that K1 ≥ 1. We define C8 = C0C1K1. It follows from (B.35) that

‖∇u‖22 ≤ 2C0K1‖f‖21 ≤ 2C8‖f‖21 . (B.36)
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Note that since C8 = C0C1K1 we have C7 = 4C2
3C2

8 .
Next we estimate ‖∇u‖2r, where 3 ≤ r ≤ s. Using estimate (B.9) from Lemma

B.2 in Appendix B applied to equation (B.19) yields

‖∇u‖2r ≤ C1

[ r∑
j=0

(max{‖D(a(u))‖2r1
, ‖Dv‖r1})j

]
‖f‖2r−1

≤ C8

[ r∑
j=0

(max{‖D(a(u))‖2r−1, ‖Dv‖r−1})j
]
‖f‖2r−1,

(B.37)

where r1 = max{r − 1, s0} = r − 1, and s0 = [N
2 ] + 1 = 2.

We consider two cases: when max{‖D(a(u))‖2r−1, ‖Dv‖r−1} = ‖D(a(u))‖2r−1,
and when max{‖D(a(u))‖2r−1, ‖Dv‖r−1} = ‖Dv‖r−1.

Case 1: Suppose that max{‖D(a(u))‖2r−1, ‖Dv‖r−1} = ‖D(a(u))‖2r−1. From
(2.8) in Proposition 2.2, we have ‖D(a(u))‖2r−1 ≤ C3

∣∣ da
du

∣∣2
s,Ḡ1

‖∇u‖2r−1. Repeatedly
applying estimate (B.37), letting r = 3, 4, . . . , s and using the fact that ‖∇u‖2r−1 ≤
2C8‖f‖2r−2, and using estimate (2.8) for ‖D(a(u))‖2r−1, and using the fact that
r1 = max{r − 1, s0} = r − 1 when r ≥ 3, we obtain

‖∇u‖2r ≤ C8

[ r∑
j=0

‖D(a(u))‖2j
r−1

]
‖f‖2r−1

≤ C8

[ r∑
j=0

Cj
3

∣∣da

du

∣∣2j

s,Ḡ1
‖∇u‖2j

r−1

]
‖f‖2r−1

≤ C8

[ r∑
j=0

Cj
3(2C8)j

∣∣da

du

∣∣2j

s,Ḡ1
‖f‖2j

r−2

]
‖f‖2r−1

≤ C8

[ s∑
j=0

Cj
3(2C8)j

∣∣da

du

∣∣2j

s,Ḡ1
‖f‖2j

s−1

]
‖f‖2r−1

≤ C8

[ s∑
j=0

Cj
3(2C8)j

( 1
C7

)j]
‖f‖2r−1

≤ C8

[ s∑
j=0

(1
2
)j

]
‖f‖2r−1

≤ 2C8‖f‖2r−1

(B.38)

where we used the fact that
∣∣ da
du

∣∣2
s,Ḡ1

‖f‖2s−1 ≤ 1
C7

, and C7 = 4C2
3C2

8 , and C3C8 ≥ 1.
Case 2: Suppose that max{‖D(a(u))‖2r−1, ‖Dv‖r−1} = ‖Dv‖r−1. From (B.37),

and using the fact that ‖Dv‖s ≤ 1
2 , we obtain the following:

‖∇u‖2r ≤ C8

[ r∑
j=0

‖Dv‖j
r−1

]
‖f‖2r−1 ≤ C8

[ s∑
j=0

(1
2
)j

]
‖f‖2r−1 ≤ 2C8‖f‖2r−1

for 3 ≤ r ≤ s, which is the same estimate as (B.38). Therefore we have ‖∇u‖2r ≤
2C8‖f‖2r−1 for 3 ≤ r ≤ s. It follows that ‖∇u‖2s ≤ 2C8‖f‖2s−1. This completes the
proof. �
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